
Спасибо, что скачали книгу в бесплатной электронной библиотеке BooksCafe.Net
Все книги автора
Эта же книга в других форматах

Приятного чтения!

Programming Bottom-Up

(This essay is from the introduction to On Lisp.The red text explains the origins of Arc's name.)
It's a long-standing principle of programming style that the functional elements of a program should not be too large. If some component of a program grows beyond the stage where it's readily comprehensible, it becomes a mass of complexity which conceals errors as easily as a big city conceals fugitives. Such software will be hard to read, hard to test, and hard to debug.
In accordance with this principle, a large program must be divided into pieces, and the larger the program, the more it must be divided. How do you divide a program? The traditional approach is called top-down design: you say "the purpose of the program is to do these seven things, so I divide it into seven major subroutines. The first subroutine has to do these four things, so it in turn will have four of its own subroutines," and so on. This process continues until the whole program has the right level of granularity-- each part large enough to do something substantial, but small enough to be understood as a single unit.
Experienced Lisp programmers divide up their programs differently. As well as top-down design, they follow a principle which could be called bottom-up design -- changing the language to suit the problem. In Lisp, you don't just write your program down toward the language, you also build the language up toward your program. As you're writing a program you may think "I wish Lisp had such-and-such an operator." So you go and write it. Afterward you realize that using the new operator would simplify the design of another part of the program, and so on. Language and program evolve together. Like the border between two warring states, the boundary between language and program is drawn and redrawn, until eventually it comes to rest along the mountains and rivers, the natural frontiers of your problem. In the end your program will look as if the language had been designed for it. And when language and program fit one another well, you end up with code which is clear, small, and efficient.
It's worth emphasizing that bottom-up design doesn't mean just writing the same program in a different order. When you work bottom-up, you usually end up with a different program. Instead of a single, monolithic program, you will get a larger language with more abstract operators, and a smaller program written in it. Instead of a lintel, you'll get an arch.
In typical code, once you abstract out the parts which are merely bookkeeping, what's left is much shorter; the higher you build up the language, the less distance you will have to travel from the top down to it. This brings several advantages:
By making the language do more of the work, bottom-up design yields programs which are smaller and more agile. A shorter program doesn't have to be divided into so many components, and fewer components means programs which are easier to read or modify. Fewer components also means fewer connections between components, and thus less chance for errors there. As industrial designers strive to reduce the number of moving parts in a machine, experienced Lisp programmers use bottom-up design to reduce the size and complexity of their programs.
Bottom-up design promotes code re-use. When you write two or more programs, many of the utilities you wrote for the first program will also be useful in the succeeding ones. Once you've acquired a large substrate of utilities, writing a new program can take only a fraction of the effort it would require if you had to start with raw Lisp.
Bottom-up design makes programs easier to read. An instance of this type of abstraction asks the reader to understand a general-purpose operator; an instance of functional abstraction asks the reader to understand a special-purpose subroutine. [1]
Because it causes you always to be on the lookout for patterns in your code, working bottom-up helps to clarify your ideas about the design of your program. If two distant components of a program are similar in form, you'll be led to notice the similarity and perhaps to redesign the program in a simpler way.
Bottom-up design is possible to a certain degree in languages other than Lisp. Whenever you see library functions, bottom-up design is happening. However, Lisp gives you much broader powers in this department, and augmenting the language plays a proportionately larger role in Lisp style-- so much so that Lisp is not just a different language, but a whole different way of programming.
It's true that this style of development is better suited to programs which can be written by small groups. However, at the same time, it extends the limits of what can be done by a small group. In The Mythical Man-Month, Frederick Brooks proposed that the productivity of a group of programmers does not grow linearly with its size. As the size of the group increases, the productivity of individual programmers goes down. The experience of Lisp programming suggests a more cheerful way to phrase this law: as the size of the group decreases, the productivity of individual programmers goes up. A small group wins, relatively speaking, simply because it's smaller. When a small group also takes advantage of the techniques that Lisp makes possible, it can win outright.

Lisp for Web-Based Applications

One of the reasons to use Lisp in writing Web-based applications is that you *can* use Lisp. When you're writing software that is only going to run on your own servers, you can use whatever language you want.
For a long time programmers didn't have a lot of choice about what language to use for writing application programs. Until recently, writing application programs meant writing software to run on desktop computers. In desktop software there was a strong bias toward writing the application in the same language as the operating system. Ten years ago, for all practical purposes, applications were written in C.
With Web-based applications, that changes. You control the servers, and you can write your software in any language you want. You can take it for granted now that you have the source code of both your operating system and your compilers. If there does turn out to be any kind of problem between the language and the OS, you can fix it yourself.
This new freedom is a double-edged sword, however. Having more choices means that you now have to think about which choice to make. It was easier in the old days. If you were in charge of a software project, and some troublesome person suggested writing the software in a different language from whatever you usually used, you could just tell them that it would be impractical, and that would be the end of it.
Now, with server-based applications, everything is changed. You're now subject to market forces in what language you choose. If you try to pretend that nothing has changed, and just use C and C++, like most of our competitors did, you are setting yourself up for a fall. A little startup using a more powerful language will eat your lunch.
Incremental Development
There is a certain style of software development associated with Lisp. One of its traditions is incremental development: you start by writing, as quickly as possible, a program that does almost nothing. Then you gradually add features to it, but at every step you have working code.
I think this way you get better software, written faster. Everything about Lisp is tuned to this style of programming, because Lisp programmers have worked this way for at least thirty years. The Viaweb editor must be one of the most extreme cases of incremental development. It began with a 120-line program for generating Web sites that I had used in an example in a book that I finished just before we started Viaweb. The Viaweb editor, which eventually grew to be about 25,000 lines of code, grew incrementally from this program. I never once sat down and rewrote the whole thing. I don't think I was ever more than a day or two without running code.
The whole development process was one long series of gradual changes. This style of development fits well with the rolling releases that are possible with Web-based software. It's also a faster way to get software written generally.
Interactive Toplevel
Lisp's interactive toplevel is a great help in developing software rapidly. But the biggest advantage for us was probably in finding bugs. As I mentioned before, with Web-based applications you have the users' data on your servers and can usually reproduce bugs. When one of the customer support people came to me with a report of a bug in the editor, I would load the code into the Lisp interpreter and log into the user's account. If I was able to reproduce the bug I'd get an actual break loop, telling me exactly what was going wrong. Often I could fix the code and release a fix right away. And when I say right away, I mean while the user was still on the phone.
Such fast turnaround on bug fixes put us into an impossibly tempting position. If we could catch and fix a bug while the user was still on the phone, it was very tempting for us to give the user the impression that they were imagining it. And so we sometimes (to their delight) had the customer support people tell the user to just try logging in again and see if they still had the problem. And of course when the user logged back in they'd get the newly released version of the software with the bug fixed, and everything would work fine. I realize this was a bit sneaky of us, but it was also a lot of fun.
Macros for Html
Lisp macros were another big win for us. We used them very extensively in the Viaweb editor. It could accurately be described as one big macro. And that gives you an idea of how much we depended on Lisp, because no other language has macros in the sense that Lisp does.
One way we used macros was to generate Html. There is a very natural fit between macros and Html, because Html is a prefix notation like Lisp, and Html is recursive like Lisp. So we had macro calls within macro calls, generating the most complicated Html, and it was all still very manageable.
Embedded Languages
Another big use for macros was the embedded language we had for describing pages, called Rtml. (We made up various explanations for what Rtml was supposed to stand for, but actually I named it after Robert Morris, the other founder of Viaweb, whose username is Rtm.)
Every page made by our software was generated by a program written in Rtml. We called these programs templates to make them less frightening, but they were real programs. In fact, they were Lisp programs. Rtml was a combination of macros and the built-in Lisp operators.
Users could write their own Rtml templates to describe what they wanted their pages to look like. We had a structure editor for manipulating these templates, a lot like the structure editor they had in Interlisp. Instead of typing free-form text, you cut and pasted bits of code together. This meant that it was impossible to get syntax errors. It also meant that we didn't have to display the parentheses in the underlying s-expressions: we could show structure by indentation. By this means we made the language look a lot less threatening.
We also designed Rtml so that there could be no errors at runtime: every Rtml program yielded some kind of Web page, and you could debug it by hacking it until it produced the page you meant it to. Initially we expected our users to be Web consultants, and we expected them to use Rtml a lot. We provided some default templates for section pages and item pages and so on, and the idea was that the users could take them and modify them to make whatever pages they wanted.
In fact it turned out that Web consultants didn't like Viaweb. Consultants, as a general rule, like to use products that are too hard for their clients to use, because it guarantees them ongoing employment. Consultants would come to our Web site, which said all over it that our software was so easy to use that it would let anyone make an online store in five minutes, and they'd say, there's no way we're using that. So we didn't get a lot of interest from Web consultants. Instead the users all tended to be end-users, the actual merchants themselves. They loved the idea of being in control of their own Web sites. And this kind of user did not want to do any kind of programming. They just used the default templates.
So Rtml didn't end up being the main interface to the program. It ended up playing two roles. First of all, it was an escape valve for the really sophisticated users, who wanted something our built-in templates couldn't provide. Somewhere in the course of doing Viaweb, someone gave me a very useful piece of advice: users always want an upgrade path, even though as a rule they'll never take it. Rtml was our upgrade path. If you wanted to, you could get absolute control over everything on your pages.
Only one out of every couple hundred users actually wrote their own templates. And this led to the second advantage of Rtml. By looking at the way these users modified our built-in templates, we knew what we needed to add to them. Eventually we made it our goal that no one should ever have to use Rtml. Our built-in templates should do everything people wanted. In this new approach, Rtml served us as a warning sign that something was missing in our software.
The third and biggest win from using Rtml was the advantage we ourselves got from it. Even if we had been the only people who used Rtml, it would have been very much worth while writing the software that way. Having that extra layer of abstraction in our software gave us a big advantage over competitors. It made the design of our software much cleaner, for one thing. Instead of just having bits of actual C or Perl code that generated our Web pages, like our competitors, we had a very high-level language for generating Web pages, and our page styles specified in that. It made the code much cleaner and easier to modify. I've already mentioned that Web-based applications get released as a series of many small modifications. When you do that you want to be able to know how serious any given modification is. By dividing your code into layers, you get a better handle on this. Modifying stuff in lower layers (Rtml itself) was a serious matter to be done rarely, and after much thought. Whereas modifying the top layers (template code) was something you could do quickly without worrying too much about the consequences.
Rtml was a very Lispy proposition. It was mostly Lisp macros, to start with. The online editor was, behind the scenes, manipulating s-expressions. And when people ran templates, they got compiled into Lisp functions by calling compile at runtime. Rtml even depended heavily on keyword parameters, which up to that time I had always considered one of the more dubious features of Common Lisp. Because of the way Web-based software gets released, you have to design the software so that it's easy to change. And Rtml itself had to be easy to change, just like any other part of the software. Most of the operators in Rtml were designed to take keyword parameters, and what a help that turned out to be. If I wanted to add another dimension to the behavior of one of the operators, I could just add a new keyword parameter, and everyone's existing templates would continue to work. A few of the Rtml operators didn't take keyword parameters, because I didn't think I'd ever need to change them, and almost every one I ended up kicking myself about later. If I could go back and start over from scratch, one of the things I'd change would be that I'd make every Rtml operator take keyword parameters.
We had a couple embedded languages within the editor, in fact. Another one, which we didn't expose directly to the users, was for describing images. Viaweb included an image generator, written in C, that could take a description of an image, create that image, and return its url. We used s-expressions to describe these images as well.
Closures Simulate Subroutines
One of the problems with using Web pages as a UI is the inherent statelessness of Web sessions. We got around this by using lexical closures to simulate subroutine-like behavior. If you understand about continuations, one way to explain what we did would be to say that we wrote our software in continuation-passing style. When most web-based software generates a link on a page, it tends to be thinking, if the user clicks on this link, I want to call this cgi script with these arguments. When our software generated a link, it could think, if the user clicks on this link, I want to run this piece of code. And the piece of code could an arbitrary piece of code, possibly (in fact, usually) containing free variables whose value came from the surrounding context.
The way we did this was to write a macro that took an initial argument expected to be a closure, followed by a body of code. The code would then get stored in a global hash table under a unique id, and whatever output was generated by the code in the body would appear within a link whose url contained that hash key. If that link was the next one clicked on, our software would find and call the corresponding bit of code, and the chain would continue. Effectively we were writing cgi scripts on the fly, except that they were closures that could refer to the surrounding context. So far this sounds very theoretical, so let me give you an example of where this technique made an obvious difference. One of the things you often want to do in Web-based applications is edit an object with various types of properties. Many of the properties of an object can be represented as form fields or menus. If you're editing an object representing a person, for example, you might get a field, for their name, a menu choice for their title, and so on.
Now what happens when some object has a property that is a color? If you use ordinary cgi scripts, where everything has to happen on one form, with an Update button at the bottom, you are going to have a hard time. You could use a text field and make the user type an rgb number into it, but end-users don't like that. Or you could have a menu of possible colors, but then you have to limit the possible colors, or otherwise even to offer just the standard Web colormap, you'd need 256 menu items with barely distinguishable names.
What we were able to do, in Viaweb, was display a color as a swatch representing the current value, followed by a button that said "Change." If the user clicked on the Change button they'd go to a page with an imagemap of colors to choose among. And after they chose a color, they'd be back on the page where they were editing the object's properties, with that color changed. This is what I mean about simulating subroutine-like behavior. The software could behave as if it were returning from having chosen a color. It wasn't, of course; it was making a new cgi call that looked like going back up a stack. But by using closures, we could make it look to the user, and to ourselves, as if we were just doing a subroutine call. We could write the code to say, if the user clicks on this link, go to the color selection page, and then come back here. This was just one of the places were we took advantage of this possibility. It made our software visibly more sophisticated than that of our competitors.

Beating the Averages

(This article is derived from a talk given at the 2001 Franz Developer Symposium.)
In the summer of 1995, my friend Robert Morris and I started a startup called Viaweb. Our plan was to write software that would let end users build online stores. What was novel about this software, at the time, was that it ran on our server, using ordinary Web pages as the interface.
A lot of people could have been having this idea at the same time, of course, but as far as I know, Viaweb was the first Web-based application. It seemed such a novel idea to us that we named the company after it: Viaweb, because our software worked via the Web, instead of running on your desktop computer.
Another unusual thing about this software was that it was written primarily in a programming language called Lisp. It was one of the first big end-user applications to be written in Lisp, which up till then had been used mostly in universities and research labs. [1]
The Secret Weapon
Eric Raymond has written an essay called "How to Become a Hacker," and in it, among other things, he tells would-be hackers what languages they should learn. He suggests starting with Python and Java, because they are easy to learn. The serious hacker will also want to learn C, in order to hack Unix, and Perl for system administration and cgi scripts. Finally, the truly serious hacker should consider learning Lisp:
Lisp is worth learning for the profound enlightenment experience you will have when you finally get it; that experience will make you a better programmer for the rest of your days, even if you never actually use Lisp itself a lot.
This is the same argument you tend to hear for learning Latin. It won't get you a job, except perhaps as a classics professor, but it will improve your mind, and make you a better writer in languages you do want to use, like English.
But wait a minute. This metaphor doesn't stretch that far. The reason Latin won't get you a job is that no one speaks it. If you write in Latin, no one can understand you. But Lisp is a computer language, and computers speak whatever language you, the programmer, tell them to.
So if Lisp makes you a better programmer, like he says, why wouldn't you want to use it? If a painter were offered a brush that would make him a better painter, it seems to me that he would want to use it in all his paintings, wouldn't he? I'm not trying to make fun of Eric Raymond here. On the whole, his advice is good. What he says about Lisp is pretty much the conventional wisdom. But there is a contradiction in the conventional wisdom: Lisp will make you a better programmer, and yet you won't use it.
Why not? Programming languages are just tools, after all. If Lisp really does yield better programs, you should use it. And if it doesn't, then who needs it?
This is not just a theoretical question. Software is a very competitive business, prone to natural monopolies. A company that gets software written faster and better will, all other things being equal, put its competitors out of business. And when you're starting a startup, you feel this very keenly. Startups tend to be an all or nothing proposition. You either get rich, or you get nothing. In a startup, if you bet on the wrong technology, your competitors will crush you.
Robert and I both knew Lisp well, and we couldn't see any reason not to trust our instincts and go with Lisp. We knew that everyone else was writing their software in C++ or Perl. But we also knew that that didn't mean anything. If you chose technology that way, you'd be running Windows. When you choose technology, you have to ignore what other people are doing, and consider only what will work the best.
This is especially true in a startup. In a big company, you can do what all the other big companies are doing. But a startup can't do what all the other startups do. I don't think a lot of people realize this, even in startups.
The average big company grows at about ten percent a year. So if you're running a big company and you do everything the way the average big company does it, you can expect to do as well as the average big company-- that is, to grow about ten percent a year.
The same thing will happen if you're running a startup, of course. If you do everything the way the average startup does it, you should expect average performance. The problem here is, average performance means that you'll go out of business. The survival rate for startups is way less than fifty percent. So if you're running a startup, you had better be doing something odd. If not, you're in trouble.
Back in 1995, we knew something that I don't think our competitors understood, and few understand even now: when you're writing software that only has to run on your own servers, you can use any language you want. When you're writing desktop software, there's a strong bias toward writing applications in the same language as the operating system. Ten years ago, writing applications meant writing applications in C. But with Web-based software, especially when you have the source code of both the language and the operating system, you can use whatever language you want.
This new freedom is a double-edged sword, however. Now that you can use any language, you have to think about which one to use. Companies that try to pretend nothing has changed risk finding that their competitors do not.
If you can use any language, which do you use? We chose Lisp. For one thing, it was obvious that rapid development would be important in this market. We were all starting from scratch, so a company that could get new features done before its competitors would have a big advantage. We knew Lisp was a really good language for writing software quickly, and server-based applications magnify the effect of rapid development, because you can release software the minute it's done.
If other companies didn't want to use Lisp, so much the better. It might give us a technological edge, and we needed all the help we could get. When we started Viaweb, we had no experience in business. We didn't know anything about marketing, or hiring people, or raising money, or getting customers. Neither of us had ever even had what you would call a real job. The only thing we were good at was writing software. We hoped that would save us. Any advantage we could get in the software department, we would take.
So you could say that using Lisp was an experiment. Our hypothesis was that if we wrote our software in Lisp, we'd be able to get features done faster than our competitors, and also to do things in our software that they couldn't do. And because Lisp was so high-level, we wouldn't need a big development team, so our costs would be lower. If this were so, we could offer a better product for less money, and still make a profit. We would end up getting all the users, and our competitors would get none, and eventually go out of business. That was what we hoped would happen, anyway.
What were the results of this experiment? Somewhat surprisingly, it worked. We eventually had many competitors, on the order of twenty to thirty of them, but none of their software could compete with ours. We had a wysiwyg online store builder that ran on the server and yet felt like a desktop application. Our competitors had cgi scripts. And we were always far ahead of them in features. Sometimes, in desperation, competitors would try to introduce features that we didn't have. But with Lisp our development cycle was so fast that we could sometimes duplicate a new feature within a day or two of a competitor announcing it in a press release. By the time journalists covering the press release got round to calling us, we would have the new feature too.
It must have seemed to our competitors that we had some kind of secret weapon-- that we were decoding their Enigma traffic or something. In fact we did have a secret weapon, but it was simpler than they realized. No one was leaking news of their features to us. We were just able to develop software faster than anyone thought possible.
When I was about nine I happened to get hold of a copy of The Day of the Jackal, by Frederick Forsyth. The main character is an assassin who is hired to kill the president of France. The assassin has to get past the police to get up to an apartment that overlooks the president's route. He walks right by them, dressed up as an old man on crutches, and they never suspect him.
Our secret weapon was similar. We wrote our software in a weird AI language, with a bizarre syntax full of parentheses. For years it had annoyed me to hear Lisp described that way. But now it worked to our advantage. In business, there is nothing more valuable than a technical advantage your competitors don't understand. In business, as in war, surprise is worth as much as force.
And so, I'm a little embarrassed to say, I never said anything publicly about Lisp while we were working on Viaweb. We never mentioned it to the press, and if you searched for Lisp on our Web site, all you'd find were the titles of two books in my bio. This was no accident. A startup should give its competitors as little information as possible. If they didn't know what language our software was written in, or didn't care, I wanted to keep it that way.[2]
The people who understood our technology best were the customers. They didn't care what language Viaweb was written in either, but they noticed that it worked really well. It let them build great looking online stores literally in minutes. And so, by word of mouth mostly, we got more and more users. By the end of 1996 we had about 70 stores online. At the end of 1997 we had 500. Six months later, when Yahoo bought us, we had 1070 users. Today, as Yahoo Store, this software continues to dominate its market. It's one of the more profitable pieces of Yahoo, and the stores built with it are the foundation of Yahoo Shopping. I left Yahoo in 1999, so I don't know exactly how many users they have now, but the last I heard there were about 20,000.
The Blub Paradox
What's so great about Lisp? And if Lisp is so great, why doesn't everyone use it? These sound like rhetorical questions, but actually they have straightforward answers. Lisp is so great not because of some magic quality visible only to devotees, but because it is simply the most powerful language available. And the reason everyone doesn't use it is that programming languages are not merely technologies, but habits of mind as well, and nothing changes slower. Of course, both these answers need explaining.
I'll begin with a shockingly controversial statement: programming languages vary in power.
Few would dispute, at least, that high level languages are more powerful than machine language. Most programmers today would agree that you do not, ordinarily, want to program in machine language. Instead, you should program in a high-level language, and have a compiler translate it into machine language for you. This idea is even built into the hardware now: since the 1980s, instruction sets have been designed for compilers rather than human programmers.
Everyone knows it's a mistake to write your whole program by hand in machine language. What's less often understood is that there is a more general principle here: that if you have a choice of several languages, it is, all other things being equal, a mistake to program in anything but the most powerful one. [3]
There are many exceptions to this rule. If you're writing a program that has to work very closely with a program written in a certain language, it might be a good idea to write the new program in the same language. If you're writing a program that only has to do something very simple, like number crunching or bit manipulation, you may as well use a less abstract language, especially since it may be slightly faster. And if you're writing a short, throwaway program, you may be better off just using whatever language has the best library functions for the task. But in general, for application software, you want to be using the most powerful (reasonably efficient) language you can get, and using anything else is a mistake, of exactly the same kind, though possibly in a lesser degree, as programming in machine language.
You can see that machine language is very low level. But, at least as a kind of social convention, high-level languages are often all treated as equivalent. They're not. Technically the term "high-level language" doesn't mean anything very definite. There's no dividing line with machine languages on one side and all the high-level languages on the other. Languages fall along a continuum [4] of abstractness, from the most powerful all the way down to machine languages, which themselves vary in power.
Consider Cobol. Cobol is a high-level language, in the sense that it gets compiled into machine language. Would anyone seriously argue that Cobol is equivalent in power to, say, Python? It's probably closer to machine language than Python.
Or how about Perl 4? Between Perl 4 and Perl 5, lexical closures got added to the language. Most Perl hackers would agree that Perl 5 is more powerful than Perl 4. But once you've admitted that, you've admitted that one high level language can be more powerful than another. And it follows inexorably that, except in special cases, you ought to use the most powerful you can get.
This idea is rarely followed to its conclusion, though. After a certain age, programmers rarely switch languages voluntarily. Whatever language people happen to be used to, they tend to consider just good enough.
Programmers get very attached to their favorite languages, and I don't want to hurt anyone's feelings, so to explain this point I'm going to use a hypothetical language called Blub. Blub falls right in the middle of the abstractness continuum. It is not the most powerful language, but it is more powerful than Cobol or machine language.
And in fact, our hypothetical Blub programmer wouldn't use either of them. Of course he wouldn't program in machine language. That's what compilers are for. And as for Cobol, he doesn't know how anyone can get anything done with it. It doesn't even have x (Blub feature of your choice).
As long as our hypothetical Blub programmer is looking down the power continuum, he knows he's looking down. Languages less powerful than Blub are obviously less powerful, because they're missing some feature he's used to. But when our hypothetical Blub programmer looks in the other direction, up the power continuum, he doesn't realize he's looking up. What he sees are merely weird languages. He probably considers them about equivalent in power to Blub, but with all this other hairy stuff thrown in as well. Blub is good enough for him, because he thinks in Blub.
When we switch to the point of view of a programmer using any of the languages higher up the power continuum, however, we find that he in turn looks down upon Blub. How can you get anything done in Blub? It doesn't even have y.
By induction, the only programmers in a position to see all the differences in power between the various languages are those who understand the most powerful one. (This is probably what Eric Raymond meant about Lisp making you a better programmer.) You can't trust the opinions of the others, because of the Blub paradox: they're satisfied with whatever language they happen to use, because it dictates the way they think about programs.
I know this from my own experience, as a high school kid writing programs in Basic. That language didn't even support recursion. It's hard to imagine writing programs without using recursion, but I didn't miss it at the time. I thought in Basic. And I was a whiz at it. Master of all I surveyed.
The five languages that Eric Raymond recommends to hackers fall at various points on the power continuum. Where they fall relative to one another is a sensitive topic. What I will say is that I think Lisp is at the top. And to support this claim I'll tell you about one of the things I find missing when I look at the other four languages. How can you get anything done in them, I think, without macros? [5]
Many languages have something called a macro. But Lisp macros are unique. And believe it or not, what they do is related to the parentheses. The designers of Lisp didn't put all those parentheses in the language just to be different. To the Blub programmer, Lisp code looks weird. But those parentheses are there for a reason. They are the outward evidence of a fundamental difference between Lisp and other languages.
Lisp code is made out of Lisp data objects. And not in the trivial sense that the source files contain characters, and strings are one of the data types supported by the language. Lisp code, after it's read by the parser, is made of data structures that you can traverse.
If you understand how compilers work, what's really going on is not so much that Lisp has a strange syntax as that Lisp has no syntax. You write programs in the parse trees that get generated within the compiler when other languages are parsed. But these parse trees are fully accessible to your programs. You can write programs that manipulate them. In Lisp, these programs are called macros. They are programs that write programs.
Programs that write programs? When would you ever want to do that? Not very often, if you think in Cobol. All the time, if you think in Lisp. It would be convenient here if I could give an example of a powerful macro, and say there! how about that? But if I did, it would just look like gibberish to someone who didn't know Lisp; there isn't room here to explain everything you'd need to know to understand what it meant. In Ansi Common Lisp I tried to move things along as fast as I could, and even so I didn't get to macros until page 160.
But I think I can give a kind of argument that might be convincing. The source code of the Viaweb editor was probably about 20-25% macros. Macros are harder to write than ordinary Lisp functions, and it's considered to be bad style to use them when they're not necessary. So every macro in that code is there because it has to be. What that means is that at least 20-25% of the code in this program is doing things that you can't easily do in any other language. However skeptical the Blub programmer might be about my claims for the mysterious powers of Lisp, this ought to make him curious. We weren't writing this code for our own amusement. We were a tiny startup, programming as hard as we could in order to put technical barriers between us and our competitors.
A suspicious person might begin to wonder if there was some correlation here. A big chunk of our code was doing things that are very hard to do in other languages. The resulting software did things our competitors' software couldn't do. Maybe there was some kind of connection. I encourage you to follow that thread. There may be more to that old man hobbling along on his crutches than meets the eye.
Aikido for Startups
But I don't expect to convince anyone (over 25) to go out and learn Lisp. The purpose of this article is not to change anyone's mind, but to reassure people already interested in using Lisp-- people who know that Lisp is a powerful language, but worry because it isn't widely used. In a competitive situation, that's an advantage. Lisp's power is multiplied by the fact that your competitors don't get it.
If you think of using Lisp in a startup, you shouldn't worry that it isn't widely understood. You should hope that it stays that way. And it's likely to. It's the nature of programming languages to make most people satisfied with whatever they currently use. Computer hardware changes so much faster than personal habits that programming practice is usually ten to twenty years behind the processor. At places like MIT they were writing programs in high-level languages in the early 1960s, but many companies continued to write code in machine language well into the 1980s. I bet a lot of people continued to write machine language until the processor, like a bartender eager to close up and go home, finally kicked them out by switching to a risc instruction set.
Ordinarily technology changes fast. But programming languages are different: programming languages are not just technology, but what programmers think in. They're half technology and half religion.[6] And so the median language, meaning whatever language the median programmer uses, moves as slow as an iceberg. Garbage collection, introduced by Lisp in about 1960, is now widely considered to be a good thing. Runtime typing, ditto, is growing in popularity. Lexical closures, introduced by Lisp in the early 1970s, are now, just barely, on the radar screen. Macros, introduced by Lisp in the mid 1960s, are still terra incognita.
Obviously, the median language has enormous momentum. I'm not proposing that you can fight this powerful force. What I'm proposing is exactly the opposite: that, like a practitioner of Aikido, you can use it against your opponents.
If you work for a big company, this may not be easy. You will have a hard time convincing the pointy-haired boss to let you build things in Lisp, when he has just read in the paper that some other language is poised, like Ada was twenty years ago, to take over the world. But if you work for a startup that doesn't have pointy-haired bosses yet, you can, like we did, turn the Blub paradox to your advantage: you can use technology that your competitors, glued immovably to the median language, will never be able to match.
If you ever do find yourself working for a startup, here's a handy tip for evaluating competitors. Read their job listings. Everything else on their site may be stock photos or the prose equivalent, but the job listings have to be specific about what they want, or they'll get the wrong candidates.
During the years we worked on Viaweb I read a lot of job descriptions. A new competitor seemed to emerge out of the woodwork every month or so. The first thing I would do, after checking to see if they had a live online demo, was look at their job listings. After a couple years of this I could tell which companies to worry about and which not to. The more of an IT flavor the job descriptions had, the less dangerous the company was. The safest kind were the ones that wanted Oracle experience. You never had to worry about those. You were also safe if they said they wanted C++ or Java developers. If they wanted Perl or Python programmers, that would be a bit frightening-- that's starting to sound like a company where the technical side, at least, is run by real hackers. If I had ever seen a job posting looking for Lisp hackers, I would have been really worried.
Notes
[1] Viaweb at first had two parts: the editor, written in Lisp, which people used to build their sites, and the ordering system, written in C, which handled orders. The first version was mostly Lisp, because the ordering system was small. Later we added two more modules, an image generator written in C, and a back-office manager written mostly in Perl.
In January 2003, Yahoo released a new version of the editor written in C++ and Perl. It's hard to say whether the program is no longer written in Lisp, though, because to translate this program into C++ they literally had to write a Lisp interpreter: the source files of all the page-generating templates are still, as far as I know, Lisp code. (See Greenspun's Tenth Rule.)
[2] Robert Morris says that I didn't need to be secretive, because even if our competitors had known we were using Lisp, they wouldn't have understood why: "If they were that smart they'd already be programming in Lisp."
[3] All languages are equally powerful in the sense of being Turing equivalent, but that's not the sense of the word programmers care about. (No one wants to program a Turing machine.) The kind of power programmers care about may not be formally definable, but one way to explain it would be to say that it refers to features you could only get in the less powerful language by writing an interpreter for the more powerful language in it. If language A has an operator for removing spaces from strings and language B doesn't, that probably doesn't make A more powerful, because you can probably write a subroutine to do it in B. But if A supports, say, recursion, and B doesn't, that's not likely to be something you can fix by writing library functions.
[4] Note to nerds: or possibly a lattice, narrowing toward the top; it's not the shape that matters here but the idea that there is at least a partial order.
[5] It is a bit misleading to treat macros as a separate feature. In practice their usefulness is greatly enhanced by other Lisp features like lexical closures and rest parameters.
[6] As a result, comparisons of programming languages either take the form of religious wars or undergraduate textbooks so determinedly neutral that they're really works of anthropology. People who value their peace, or want tenure, avoid the topic. But the question is only half a religious one; there is something there worth studying, especially if you want to design new languages.

Java's Cover

This essay developed out of conversations I've had with several other programmers about why Java smelled suspicious. It's not a critique of Java! It is a case study of hacker's radar.
Over time, hackers develop a nose for good (and bad) technology. I thought it might be interesting to try and write down what made Java seem suspect to me.
Some people who've read this think it's an interesting attempt to write about something that hasn't been written about before. Others say I will get in trouble for appearing to be writing about things I don't understand. So, just in case it does any good, let me clarify that I'm not writing here about Java (which I have never used) but about hacker's radar (which I have thought about a lot).
The aphorism "you can't tell a book by its cover" originated in the times when books were sold in plain cardboard covers, to be bound by each purchaser according to his own taste. In those days, you couldn't tell a book by its cover. But publishing has advanced since then: present-day publishers work hard to make the cover something you can tell a book by.
I spend a lot of time in bookshops and I feel as if I have by now learned to understand everything publishers mean to tell me about a book, and perhaps a bit more. The time I haven't spent in bookshops I've spent mostly in front of computers, and I feel as if I've learned, to some degree, to judge technology by its cover as well. It may be just luck, but I've saved myself from a few technologies that turned out to be real stinkers.
So far, Java seems like a stinker to me. I've never written a Java program, never more than glanced over reference books about it, but I have a hunch that it won't be a very successful language. I may turn out to be mistaken; making predictions about technology is a dangerous business. But for what it's worth, as a sort of time capsule, here's why I don't like the look of Java:
1. It has been so energetically hyped. Real standards don't have to be promoted. No one had to promote C, or Unix, or HTML. A real standard tends to be already established by the time most people hear about it. On the hacker radar screen, Perl is as big as Java, or bigger, just on the strength of its own merits.
2. It's aimed low. In the original Java white paper, Gosling explicitly says Java was designed not to be too difficult for programmers used to C. It was designed to be another C++: C plus a few ideas taken from more advanced languages. Like the creators of sitcoms or junk food or package tours, Java's designers were consciously designing a product for people not as smart as them. Historically, languages designed for other people to use have been bad: Cobol, PL/I, Pascal, Ada, C++. The good languages have been those that were designed for their own creators: C, Perl, Smalltalk, Lisp.
3. It has ulterior motives. Someone once said that the world would be a better place if people only wrote books because they had something to say, rather than because they wanted to write a book. Likewise, the reason we hear about Java all the time is not because it has something to say about programming languages. We hear about Java as part of a plan by Sun to undermine Microsoft.
4. No one loves it. C, Perl, Python, Smalltalk, and Lisp programmers love their languages. I've never heard anyone say that they loved Java.
5. People are forced to use it. A lot of the people I know using Java are using it because they feel they have to. Either it's something they felt they had to do to get funded, or something they thought customers would want, or something they were told to do by management. These are smart people; if the technology was good, they'd have used it voluntarily.
6. It has too many cooks. The best programming languages have been developed by small groups. Java seems to be run by a committee. If it turns out to be a good language, it will be the first time in history that a committee has designed a good language.
7. It's bureaucratic. From what little I know about Java, there seem to be a lot of protocols for doing things. Really good languages aren't like that. They let you do what you want and get out of the way.
8. It's pseudo-hip. Sun now pretends that Java is a grassroots, open-source language effort like Perl or Python. This one just happens to be controlled by a giant company. So the language is likely to have the same drab clunkiness as anything else that comes out of a big company.
9. It's designed for large organizations. Large organizations have different aims from hackers. They want languages that are (believed to be) suitable for use by large teams of mediocre programmers-- languages with features that, like the speed limiters in U-Haul trucks, prevent fools from doing too much damage. Hackers don't like a language that talks down to them. Hackers just want power. Historically, languages designed for large organizations (PL/I, Ada) have lost, while hacker languages (C, Perl) have won. The reason: today's teenage hacker is tomorrow's CTO.
10. The wrong people like it. The programmers I admire most are not, on the whole, captivated by Java. Who does like Java? Suits, who don't know one language from another, but know that they keep hearing about Java in the press; programmers at big companies, who are amazed to find that there is something even better than C++; and plug-and-chug undergrads, who are ready to like anything that might get them a job (will this be on the test?). These people's opinions change with every wind.
11. Its daddy is in a pinch. Sun's business model is being undermined on two fronts. Cheap Intel processors, of the same type used in desktop machines, are now more than fast enough for servers. And FreeBSD seems to be at least as good an OS for servers as Solaris. Sun's advertising implies that you need Sun servers for industrial strength applications. If this were true, Yahoo would be first in line to buy Suns; but when I worked there, the servers were all Intel boxes running FreeBSD. This bodes ill for Sun's future. If Sun runs into trouble, they could drag Java down with them.
12. The DoD likes it. The Defense Department is encouraging developers to use Java. This seems to me the most damning sign of all. The Defense Department does a fine (though expensive) job of defending the country, but they love plans and procedures and protocols. Their culture is the opposite of hacker culture; on questions of software they will tend to bet wrong. The last time the DoD really liked a programming language, it was Ada.
Bear in mind, this is not a critique of Java, but a critique of its cover. I don't know Java well enough to like it or dislike it. This is just an explanation of why I don't find that I'm eager to learn it.
It may seem cavalier to dismiss a language before you've even tried writing programs in it. But this is something all programmers have to do. There are too many technologies out there to learn them all. You have to learn to judge by outward signs which will be worth your time. I have likewise cavalierly dismissed Cobol, Ada, Visual Basic, the IBM AS400, VRML, ISO 9000, the SET protocol, VMS, Novell Netware, and CORBA, among others. They just smelled wrong.
It could be that in Java's case I'm mistaken. It could be that a language promoted by one big company to undermine another, designed by a committee for a "mainstream" audience, hyped to the skies, and beloved of the DoD, happens nonetheless to be a clean, beautiful, powerful language that I would love programming in. It could be, but it seems very unlikely.

Being Popular

(This article was written as a kind of business plan for a new language. So it is missing (because it takes for granted) the most important feature of a good programming language: very powerful abstractions.)
A friend of mine once told an eminent operating systems expert that he wanted to design a really good programming language. The expert told him that it would be a waste of time, that programming languages don't become popular or unpopular based on their merits, and so no matter how good his language was, no one would use it. At least, that was what had happened to the language he had designed.
What does make a language popular? Do popular languages deserve their popularity? Is it worth trying to define a good programming language? How would you do it?
I think the answers to these questions can be found by looking at hackers, and learning what they want. Programming languages are for hackers, and a programming language is good as a programming language (rather than, say, an exercise in denotational semantics or compiler design) if and only if hackers like it.
1 The Mechanics of Popularity
It's true, certainly, that most people don't choose programming languages simply based on their merits. Most programmers are told what language to use by someone else. And yet I think the effect of such external factors on the popularity of programming languages is not as great as it's sometimes thought to be. I think a bigger problem is that a hacker's idea of a good programming language is not the same as most language designers'.
Between the two, the hacker's opinion is the one that matters. Programming languages are not theorems. They're tools, designed for people, and they have to be designed to suit human strengths and weaknesses as much as shoes have to be designed for human feet. If a shoe pinches when you put it on, it's a bad shoe, however elegant it may be as a piece of sculpture.
It may be that the majority of programmers can't tell a good language from a bad one. But that's no different with any other tool. It doesn't mean that it's a waste of time to try designing a good language. Expert hackers can tell a good language when they see one, and they'll use it. Expert hackers are a tiny minority, admittedly, but that tiny minority write all the good software, and their influence is such that the rest of the programmers will tend to use whatever language they use. Often, indeed, it is not merely influence but command: often the expert hackers are the very people who, as their bosses or faculty advisors, tell the other programmers what language to use.
The opinion of expert hackers is not the only force that determines the relative popularity of programming languages-- legacy software (Cobol) and hype (Ada, Java) also play a role-- but I think it is the most powerful force over the long term. Given an initial critical mass and enough time, a programming language probably becomes about as popular as it deserves to be. And popularity further separates good languages from bad ones, because feedback from real live users always leads to improvements. Look at how much any popular language has changed during its life. Perl and Fortran are extreme cases, but even Lisp has changed a lot. Lisp 1.5 didn't have macros, for example; these evolved later, after hackers at MIT had spent a couple years using Lisp to write real programs. [1]
So whether or not a language has to be good to be popular, I think a language has to be popular to be good. And it has to stay popular to stay good. The state of the art in programming languages doesn't stand still. And yet the Lisps we have today are still pretty much what they had at MIT in the mid-1980s, because that's the last time Lisp had a sufficiently large and demanding user base.
Of course, hackers have to know about a language before they can use it. How are they to hear? From other hackers. But there has to be some initial group of hackers using the language for others even to hear about it. I wonder how large this group has to be; how many users make a critical mass? Off the top of my head, I'd say twenty. If a language had twenty separate users, meaning twenty users who decided on their own to use it, I'd consider it to be real.
Getting there can't be easy. I would not be surprised if it is harder to get from zero to twenty than from twenty to a thousand. The best way to get those initial twenty users is probably to use a trojan horse: to give people an application they want, which happens to be written in the new language.
2 External Factors
Let's start by acknowledging one external factor that does affect the popularity of a programming language. To become popular, a programming language has to be the scripting language of a popular system. Fortran and Cobol were the scripting languages of early IBM mainframes. C was the scripting language of Unix, and so, later, was Perl. Tcl is the scripting language of Tk. Java and Javascript are intended to be the scripting languages of web browsers.
Lisp is not a massively popular language because it is not the scripting language of a massively popular system. What popularity it retains dates back to the 1960s and 1970s, when it was the scripting language of MIT. A lot of the great programmers of the day were associated with MIT at some point. And in the early 1970s, before C, MIT's dialect of Lisp, called MacLisp, was one of the only programming languages a serious hacker would want to use.
Today Lisp is the scripting language of two moderately popular systems, Emacs and Autocad, and for that reason I suspect that most of the Lisp programming done today is done in Emacs Lisp or AutoLisp.
Programming languages don't exist in isolation. To hack is a transitive verb-- hackers are usually hacking something-- and in practice languages are judged relative to whatever they're used to hack. So if you want to design a popular language, you either have to supply more than a language, or you have to design your language to replace the scripting language of some existing system.
Common Lisp is unpopular partly because it's an orphan. It did originally come with a system to hack: the Lisp Machine. But Lisp Machines (along with parallel computers) were steamrollered by the increasing power of general purpose processors in the 1980s. Common Lisp might have remained popular if it had been a good scripting language for Unix. It is, alas, an atrociously bad one.
One way to describe this situation is to say that a language isn't judged on its own merits. Another view is that a programming language really isn't a programming language unless it's also the scripting language of something. This only seems unfair if it comes as a surprise. I think it's no more unfair than expecting a programming language to have, say, an implementation. It's just part of what a programming language is.
A programming language does need a good implementation, of course, and this must be free. Companies will pay for software, but individual hackers won't, and it's the hackers you need to attract.
A language also needs to have a book about it. The book should be thin, well-written, and full of good examples. K&R is the ideal here. At the moment I'd almost say that a language has to have a book published by O'Reilly. That's becoming the test of mattering to hackers.
There should be online documentation as well. In fact, the book can start as online documentation. But I don't think that physical books are outmoded yet. Their format is convenient, and the de facto censorship imposed by publishers is a useful if imperfect filter. Bookstores are one of the most important places for learning about new languages.
3 Brevity
Given that you can supply the three things any language needs-- a free implementation, a book, and something to hack-- how do you make a language that hackers will like?
One thing hackers like is brevity. Hackers are lazy, in the same way that mathematicians and modernist architects are lazy: they hate anything extraneous. It would not be far from the truth to say that a hacker about to write a program decides what language to use, at least subconsciously, based on the total number of characters he'll have to type. If this isn't precisely how hackers think, a language designer would do well to act as if it were.
It is a mistake to try to baby the user with long-winded expressions that are meant to resemble English. Cobol is notorious for this flaw. A hacker would consider being asked to write
add x to y giving z
instead of
z = x+y
as something between an insult to his intelligence and a sin against God.
It has sometimes been said that Lisp should use first and rest instead of car and cdr, because it would make programs easier to read. Maybe for the first couple hours. But a hacker can learn quickly enough that car means the first element of a list and cdr means the rest. Using first and rest means 50% more typing. And they are also different lengths, meaning that the arguments won't line up when they're called, as car and cdr often are, in successive lines. I've found that it matters a lot how code lines up on the page. I can barely read Lisp code when it is set in a variable-width font, and friends say this is true for other languages too.
Brevity is one place where strongly typed languages lose. All other things being equal, no one wants to begin a program with a bunch of declarations. Anything that can be implicit, should be.
The individual tokens should be short as well. Perl and Common Lisp occupy opposite poles on this question. Perl programs can be almost cryptically dense, while the names of built-in Common Lisp operators are comically long. The designers of Common Lisp probably expected users to have text editors that would type these long names for them. But the cost of a long name is not just the cost of typing it. There is also the cost of reading it, and the cost of the space it takes up on your screen.
4 Hackability
There is one thing more important than brevity to a hacker: being able to do what you want. In the history of programming languages a surprising amount of effort has gone into preventing programmers from doing things considered to be improper. This is a dangerously presumptuous plan. How can the language designer know what the programmer is going to need to do? I think language designers would do better to consider their target user to be a genius who will need to do things they never anticipated, rather than a bumbler who needs to be protected from himself. The bumbler will shoot himself in the foot anyway. You may save him from referring to variables in another package, but you can't save him from writing a badly designed program to solve the wrong problem, and taking forever to do it.
Good programmers often want to do dangerous and unsavory things. By unsavory I mean things that go behind whatever semantic facade the language is trying to present: getting hold of the internal representation of some high-level abstraction, for example. Hackers like to hack, and hacking means getting inside things and second guessing the original designer.
Let yourself be second guessed. When you make any tool, people use it in ways you didn't intend, and this is especially true of a highly articulated tool like a programming language. Many a hacker will want to tweak your semantic model in a way that you never imagined. I say, let them; give the programmer access to as much internal stuff as you can without endangering runtime systems like the garbage collector.
In Common Lisp I have often wanted to iterate through the fields of a struct-- to comb out references to a deleted object, for example, or find fields that are uninitialized. I know the structs are just vectors underneath. And yet I can't write a general purpose function that I can call on any struct. I can only access the fields by name, because that's what a struct is supposed to mean.
A hacker may only want to subvert the intended model of things once or twice in a big program. But what a difference it makes to be able to. And it may be more than a question of just solving a problem. There is a kind of pleasure here too. Hackers share the surgeon's secret pleasure in poking about in gross innards, the teenager's secret pleasure in popping zits. [2] For boys, at least, certain kinds of horrors are fascinating. Maxim magazine publishes an annual volume of photographs, containing a mix of pin-ups and grisly accidents. They know their audience.
Historically, Lisp has been good at letting hackers have their way. The political correctness of Common Lisp is an aberration. Early Lisps let you get your hands on everything. A good deal of that spirit is, fortunately, preserved in macros. What a wonderful thing, to be able to make arbitrary transformations on the source code.
Classic macros are a real hacker's tool-- simple, powerful, and dangerous. It's so easy to understand what they do: you call a function on the macro's arguments, and whatever it returns gets inserted in place of the macro call. Hygienic macros embody the opposite principle. They try to protect you from understanding what they're doing. I have never heard hygienic macros explained in one sentence. And they are a classic example of the dangers of deciding what programmers are allowed to want. Hygienic macros are intended to protect me from variable capture, among other things, but variable capture is exactly what I want in some macros.
A really good language should be both clean and dirty: cleanly designed, with a small core of well understood and highly orthogonal operators, but dirty in the sense that it lets hackers have their way with it. C is like this. So were the early Lisps. A real hacker's language will always have a slightly raffish character.
A good programming language should have features that make the kind of people who use the phrase "software engineering" shake their heads disapprovingly. At the other end of the continuum are languages like Ada and Pascal, models of propriety that are good for teaching and not much else.
5 Throwaway Programs
To be attractive to hackers, a language must be good for writing the kinds of programs they want to write. And that means, perhaps surprisingly, that it has to be good for writing throwaway programs.
A throwaway program is a program you write quickly for some limited task: a program to automate some system administration task, or generate test data for a simulation, or convert data from one format to another. The surprising thing about throwaway programs is that, like the "temporary" buildings built at so many American universities during World War II, they often don't get thrown away. Many evolve into real programs, with real features and real users.
I have a hunch that the best big programs begin life this way, rather than being designed big from the start, like the Hoover Dam. It's terrifying to build something big from scratch. When people take on a project that's too big, they become overwhelmed. The project either gets bogged down, or the result is sterile and wooden: a shopping mall rather than a real downtown, Brasilia rather than Rome, Ada rather than C.
Another way to get a big program is to start with a throwaway program and keep improving it. This approach is less daunting, and the design of the program benefits from evolution. I think, if one looked, that this would turn out to be the way most big programs were developed. And those that did evolve this way are probably still written in whatever language they were first written in, because it's rare for a program to be ported, except for political reasons. And so, paradoxically, if you want to make a language that is used for big systems, you have to make it good for writing throwaway programs, because that's where big systems come from.
Perl is a striking example of this idea. It was not only designed for writing throwaway programs, but was pretty much a throwaway program itself. Perl began life as a collection of utilities for generating reports, and only evolved into a programming language as the throwaway programs people wrote in it grew larger. It was not until Perl 5 (if then) that the language was suitable for writing serious programs, and yet it was already massively popular.
What makes a language good for throwaway programs? To start with, it must be readily available. A throwaway program is something that you expect to write in an hour. So the language probably must already be installed on the computer you're using. It can't be something you have to install before you use it. It has to be there. C was there because it came with the operating system. Perl was there because it was originally a tool for system administrators, and yours had already installed it.
Being available means more than being installed, though. An interactive language, with a command-line interface, is more available than one that you have to compile and run separately. A popular programming language should be interactive, and start up fast.
Another thing you want in a throwaway program is brevity. Brevity is always attractive to hackers, and never more so than in a program they expect to turn out in an hour.
6 Libraries
Of course the ultimate in brevity is to have the program already written for you, and merely to call it. And this brings us to what I think will be an increasingly important feature of programming languages: library functions. Perl wins because it has large libraries for manipulating strings. This class of library functions are especially important for throwaway programs, which are often originally written for converting or extracting data. Many Perl programs probably begin as just a couple library calls stuck together.
I think a lot of the advances that happen in programming languages in the next fifty years will have to do with library functions. I think future programming languages will have libraries that are as carefully designed as the core language. Programming language design will not be about whether to make your language strongly or weakly typed, or object oriented, or functional, or whatever, but about how to design great libraries. The kind of language designers who like to think about how to design type systems may shudder at this. It's almost like writing applications! Too bad. Languages are for programmers, and libraries are what programmers need.
It's hard to design good libraries. It's not simply a matter of writing a lot of code. Once the libraries get too big, it can sometimes take longer to find the function you need than to write the code yourself. Libraries need to be designed using a small set of orthogonal operators, just like the core language. It ought to be possible for the programmer to guess what library call will do what he needs.
Libraries are one place Common Lisp falls short. There are only rudimentary libraries for manipulating strings, and almost none for talking to the operating system. For historical reasons, Common Lisp tries to pretend that the OS doesn't exist. And because you can't talk to the OS, you're unlikely to be able to write a serious program using only the built-in operators in Common Lisp. You have to use some implementation-specific hacks as well, and in practice these tend not to give you everything you want. Hackers would think a lot more highly of Lisp if Common Lisp had powerful string libraries and good OS support.
7 Syntax
Could a language with Lisp's syntax, or more precisely, lack of syntax, ever become popular? I don't know the answer to this question. I do think that syntax is not the main reason Lisp isn't currently popular. Common Lisp has worse problems than unfamiliar syntax. I know several programmers who are comfortable with prefix syntax and yet use Perl by default, because it has powerful string libraries and can talk to the os.
There are two possible problems with prefix notation: that it is unfamiliar to programmers, and that it is not dense enough. The conventional wisdom in the Lisp world is that the first problem is the real one. I'm not so sure. Yes, prefix notation makes ordinary programmers panic. But I don't think ordinary programmers' opinions matter. Languages become popular or unpopular based on what expert hackers think of them, and I think expert hackers might be able to deal with prefix notation. Perl syntax can be pretty incomprehensible, but that has not stood in the way of Perl's popularity. If anything it may have helped foster a Perl cult.
A more serious problem is the diffuseness of prefix notation. For expert hackers, that really is a problem. No one wants to write (aref a x y) when they could write a[x,y].
In this particular case there is a way to finesse our way out of the problem. If we treat data structures as if they were functions on indexes, we could write (a x y) instead, which is even shorter than the Perl form. Similar tricks may shorten other types of expressions.
We can get rid of (or make optional) a lot of parentheses by making indentation significant. That's how programmers read code anyway: when indentation says one thing and delimiters say another, we go by the indentation. Treating indentation as significant would eliminate this common source of bugs as well as making programs shorter.
Sometimes infix syntax is easier to read. This is especially true for math expressions. I've used Lisp my whole programming life and I still don't find prefix math expressions natural. And yet it is convenient, especially when you're generating code, to have operators that take any number of arguments. So if we do have infix syntax, it should probably be implemented as some kind of read-macro.
I don't think we should be religiously opposed to introducing syntax into Lisp, as long as it translates in a well-understood way into underlying s-expressions. There is already a good deal of syntax in Lisp. It's not necessarily bad to introduce more, as long as no one is forced to use it. In Common Lisp, some delimiters are reserved for the language, suggesting that at least some of the designers intended to have more syntax in the future.
One of the most egregiously unlispy pieces of syntax in Common Lisp occurs in format strings; format is a language in its own right, and that language is not Lisp. If there were a plan for introducing more syntax into Lisp, format specifiers might be able to be included in it. It would be a good thing if macros could generate format specifiers the way they generate any other kind of code.
An eminent Lisp hacker told me that his copy of CLTL falls open to the section format. Mine too. This probably indicates room for improvement. It may also mean that programs do a lot of I/O.
8 Efficiency
A good language, as everyone knows, should generate fast code. But in practice I don't think fast code comes primarily from things you do in the design of the language. As Knuth pointed out long ago, speed only matters in certain critical bottlenecks. And as many programmers have observed since, one is very often mistaken about where these bottlenecks are.
So, in practice, the way to get fast code is to have a very good profiler, rather than by, say, making the language strongly typed. You don't need to know the type of every argument in every call in the program. You do need to be able to declare the types of arguments in the bottlenecks. And even more, you need to be able to find out where the bottlenecks are.
One complaint people have had with Lisp is that it's hard to tell what's expensive. This might be true. It might also be inevitable, if you want to have a very abstract language. And in any case I think good profiling would go a long way toward fixing the problem: you'd soon learn what was expensive.
Part of the problem here is social. Language designers like to write fast compilers. That's how they measure their skill. They think of the profiler as an add-on, at best. But in practice a good profiler may do more to improve the speed of actual programs written in the language than a compiler that generates fast code. Here, again, language designers are somewhat out of touch with their users. They do a really good job of solving slightly the wrong problem.
It might be a good idea to have an active profiler-- to push performance data to the programmer instead of waiting for him to come asking for it. For example, the editor could display bottlenecks in red when the programmer edits the source code. Another approach would be to somehow represent what's happening in running programs. This would be an especially big win in server-based applications, where you have lots of running programs to look at. An active profiler could show graphically what's happening in memory as a program's running, or even make sounds that tell what's happening.
Sound is a good cue to problems. In one place I worked, we had a big board of dials showing what was happening to our web servers. The hands were moved by little servomotors that made a slight noise when they turned. I couldn't see the board from my desk, but I found that I could tell immediately, by the sound, when there was a problem with a server.
It might even be possible to write a profiler that would automatically detect inefficient algorithms. I would not be surprised if certain patterns of memory access turned out to be sure signs of bad algorithms. If there were a little guy running around inside the computer executing our programs, he would probably have as long and plaintive a tale to tell about his job as a federal government employee. I often have a feeling that I'm sending the processor on a lot of wild goose chases, but I've never had a good way to look at what it's doing.
A number of Lisps now compile into byte code, which is then executed by an interpreter. This is usually done to make the implementation easier to port, but it could be a useful language feature. It might be a good idea to make the byte code an official part of the language, and to allow programmers to use inline byte code in bottlenecks. Then such optimizations would be portable too.
The nature of speed, as perceived by the end-user, may be changing. With the rise of server-based applications, more and more programs may turn out to be i/o-bound. It will be worth making i/o fast. The language can help with straightforward measures like simple, fast, formatted output functions, and also with deep structural changes like caching and persistent objects.
Users are interested in response time. But another kind of efficiency will be increasingly important: the number of simultaneous users you can support per processor. Many of the interesting applications written in the near future will be server-based, and the number of users per server is the critical question for anyone hosting such applications. In the capital cost of a business offering a server-based application, this is the divisor.
For years, efficiency hasn't mattered much in most end-user applications. Developers have been able to assume that each user would have an increasingly powerful processor sitting on their desk. And by Parkinson's Law, software has expanded to use the resources available. That will change with server-based applications. In that world, the hardware and software will be supplied together. For companies that offer server-based applications, it will make a very big difference to the bottom line how many users they can support per server.
In some applications, the processor will be the limiting factor, and execution speed will be the most important thing to optimize. But often memory will be the limit; the number of simultaneous users will be determined by the amount of memory you need for each user's data. The language can help here too. Good support for threads will enable all the users to share a single heap. It may also help to have persistent objects and/or language level support for lazy loading.
9 Time
The last ingredient a popular language needs is time. No one wants to write programs in a language that might go away, as so many programming languages do. So most hackers will tend to wait until a language has been around for a couple years before even considering using it.
Inventors of wonderful new things are often surprised to discover this, but you need time to get any message through to people. A friend of mine rarely does anything the first time someone asks him. He knows that people sometimes ask for things that they turn out not to want. To avoid wasting his time, he waits till the third or fourth time he's asked to do something; by then, whoever's asking him may be fairly annoyed, but at least they probably really do want whatever they're asking for.
Most people have learned to do a similar sort of filtering on new things they hear about. They don't even start paying attention until they've heard about something ten times. They're perfectly justified: the majority of hot new whatevers do turn out to be a waste of time, and eventually go away. By delaying learning VRML, I avoided having to learn it at all.
So anyone who invents something new has to expect to keep repeating their message for years before people will start to get it. We wrote what was, as far as I know, the first web-server based application, and it took us years to get it through to people that it didn't have to be downloaded. It wasn't that they were stupid. They just had us tuned out.
The good news is, simple repetition solves the problem. All you have to do is keep telling your story, and eventually people will start to hear. It's not when people notice you're there that they pay attention; it's when they notice you're still there.
It's just as well that it usually takes a while to gain momentum. Most technologies evolve a good deal even after they're first launched-- programming languages especially. Nothing could be better, for a new techology, than a few years of being used only by a small number of early adopters. Early adopters are sophisticated and demanding, and quickly flush out whatever flaws remain in your technology. When you only have a few users you can be in close contact with all of them. And early adopters are forgiving when you improve your system, even if this causes some breakage.
There are two ways new technology gets introduced: the organic growth method, and the big bang method. The organic growth method is exemplified by the classic seat-of-the-pants underfunded garage startup. A couple guys, working in obscurity, develop some new technology. They launch it with no marketing and initially have only a few (fanatically devoted) users. They continue to improve the technology, and meanwhile their user base grows by word of mouth. Before they know it, they're big.
The other approach, the big bang method, is exemplified by the VC-backed, heavily marketed startup. They rush to develop a product, launch it with great publicity, and immediately (they hope) have a large user base.
Generally, the garage guys envy the big bang guys. The big bang guys are smooth and confident and respected by the VCs. They can afford the best of everything, and the PR campaign surrounding the launch has the side effect of making them celebrities. The organic growth guys, sitting in their garage, feel poor and unloved. And yet I think they are often mistaken to feel sorry for themselves. Organic growth seems to yield better technology and richer founders than the big bang method. If you look at the dominant technologies today, you'll find that most of them grew organically.
This pattern doesn't only apply to companies. You see it in sponsored research too. Multics and Common Lisp were big-bang projects, and Unix and MacLisp were organic growth projects.
10 Redesign
"The best writing is rewriting," wrote E. B. White. Every good writer knows this, and it's true for software too. The most important part of design is redesign. Programming languages, especially, don't get redesigned enough.
To write good software you must simultaneously keep two opposing ideas in your head. You need the young hacker's naive faith in his abilities, and at the same time the veteran's skepticism. You have to be able to think how hard can it be? with one half of your brain while thinking it will never work with the other.
The trick is to realize that there's no real contradiction here. You want to be optimistic and skeptical about two different things. You have to be optimistic about the possibility of solving the problem, but skeptical about the value of whatever solution you've got so far.
People who do good work often think that whatever they're working on is no good. Others see what they've done and are full of wonder, but the creator is full of worry. This pattern is no coincidence: it is the worry that made the work good.
If you can keep hope and worry balanced, they will drive a project forward the same way your two legs drive a bicycle forward. In the first phase of the two-cycle innovation engine, you work furiously on some problem, inspired by your confidence that you'll be able to solve it. In the second phase, you look at what you've done in the cold light of morning, and see all its flaws very clearly. But as long as your critical spirit doesn't outweigh your hope, you'll be able to look at your admittedly incomplete system, and think, how hard can it be to get the rest of the way?, thereby continuing the cycle.
It's tricky to keep the two forces balanced. In young hackers, optimism predominates. They produce something, are convinced it's great, and never improve it. In old hackers, skepticism predominates, and they won't even dare to take on ambitious projects.
Anything you can do to keep the redesign cycle going is good. Prose can be rewritten over and over until you're happy with it. But software, as a rule, doesn't get redesigned enough. Prose has readers, but software has users. If a writer rewrites an essay, people who read the old version are unlikely to complain that their thoughts have been broken by some newly introduced incompatibility.
Users are a double-edged sword. They can help you improve your language, but they can also deter you from improving it. So choose your users carefully, and be slow to grow their number. Having users is like optimization: the wise course is to delay it. Also, as a general rule, you can at any given time get away with changing more than you think. Introducing change is like pulling off a bandage: the pain is a memory almost as soon as you feel it.
Everyone knows that it's not a good idea to have a language designed by a committee. Committees yield bad design. But I think the worst danger of committees is that they interfere with redesign. It is so much work to introduce changes that no one wants to bother. Whatever a committee decides tends to stay that way, even if most of the members don't like it.
Even a committee of two gets in the way of redesign. This happens particularly in the interfaces between pieces of software written by two different people. To change the interface both have to agree to change it at once. And so interfaces tend not to change at all, which is a problem because they tend to be one of the most ad hoc parts of any system.
One solution here might be to design systems so that interfaces are horizontal instead of vertical-- so that modules are always vertically stacked strata of abstraction. Then the interface will tend to be owned by one of them. The lower of two levels will either be a language in which the upper is written, in which case the lower level will own the interface, or it will be a slave, in which case the interface can be dictated by the upper level.
11 Lisp
What all this implies is that there is hope for a new Lisp. There is hope for any language that gives hackers what they want, including Lisp. I think we may have made a mistake in thinking that hackers are turned off by Lisp's strangeness. This comforting illusion may have prevented us from seeing the real problem with Lisp, or at least Common Lisp, which is that it sucks for doing what hackers want to do. A hacker's language needs powerful libraries and something to hack. Common Lisp has neither. A hacker's language is terse and hackable. Common Lisp is not.
The good news is, it's not Lisp that sucks, but Common Lisp. If we can develop a new Lisp that is a real hacker's language, I think hackers will use it. They will use whatever language does the job. All we have to do is make sure this new Lisp does some important job better than other languages.
History offers some encouragement. Over time, successive new programming languages have taken more and more features from Lisp. There is no longer much left to copy before the language you've made is Lisp. The latest hot language, Python, is a watered-down Lisp with infix syntax and no macros. A new Lisp would be a natural step in this progression.
I sometimes think that it would be a good marketing trick to call it an improved version of Python. That sounds hipper than Lisp. To many people, Lisp is a slow AI language with a lot of parentheses. Fritz Kunze's official biography carefully avoids mentioning the L-word. But my guess is that we shouldn't be afraid to call the new Lisp Lisp. Lisp still has a lot of latent respect among the very best hackers-- the ones who took 6.001 and understood it, for example. And those are the users you need to win.
In "How to Become a Hacker," Eric Raymond describes Lisp as something like Latin or Greek-- a language you should learn as an intellectual exercise, even though you won't actually use it:
Lisp is worth learning for the profound enlightenment experience you will have when you finally get it; that experience will make you a better programmer for the rest of your days, even if you never actually use Lisp itself a lot.
If I didn't know Lisp, reading this would set me asking questions. A language that would make me a better programmer, if it means anything at all, means a language that would be better for programming. And that is in fact the implication of what Eric is saying.
As long as that idea is still floating around, I think hackers will be receptive enough to a new Lisp, even if it is called Lisp. But this Lisp must be a hacker's language, like the classic Lisps of the 1970s. It must be terse, simple, and hackable. And it must have powerful libraries for doing what hackers want to do now.
In the matter of libraries I think there is room to beat languages like Perl and Python at their own game. A lot of the new applications that will need to be written in the coming years will be server-based applications. There's no reason a new Lisp shouldn't have string libraries as good as Perl, and if this new Lisp also had powerful libraries for server-based applications, it could be very popular. Real hackers won't turn up their noses at a new tool that will let them solve hard problems with a few library calls. Remember, hackers are lazy.
It could be an even bigger win to have core language support for server-based applications. For example, explicit support for programs with multiple users, or data ownership at the level of type tags.
Server-based applications also give us the answer to the question of what this new Lisp will be used to hack. It would not hurt to make Lisp better as a scripting language for Unix. (It would be hard to make it worse.) But I think there are areas where existing languages would be easier to beat. I think it might be better to follow the model of Tcl, and supply the Lisp together with a complete system for supporting server-based applications. Lisp is a natural fit for server-based applications. Lexical closures provide a way to get the effect of subroutines when the ui is just a series of web pages. S-expressions map nicely onto html, and macros are good at generating it. There need to be better tools for writing server-based applications, and there needs to be a new Lisp, and the two would work very well together.
12 The Dream Language
By way of summary, let's try describing the hacker's dream language. The dream language is beautiful, clean, and terse. It has an interactive toplevel that starts up fast. You can write programs to solve common problems with very little code. Nearly all the code in any program you write is code that's specific to your application. Everything else has been done for you.
The syntax of the language is brief to a fault. You never have to type an unnecessary character, or even to use the shift key much.
Using big abstractions you can write the first version of a program very quickly. Later, when you want to optimize, there's a really good profiler that tells you where to focus your attention. You can make inner loops blindingly fast, even writing inline byte code if you need to.
There are lots of good examples to learn from, and the language is intuitive enough that you can learn how to use it from examples in a couple minutes. You don't need to look in the manual much. The manual is thin, and has few warnings and qualifications.
The language has a small core, and powerful, highly orthogonal libraries that are as carefully designed as the core language. The libraries all work well together; everything in the language fits together like the parts in a fine camera. Nothing is deprecated, or retained for compatibility. The source code of all the libraries is readily available. It's easy to talk to the operating system and to applications written in other languages.
The language is built in layers. The higher-level abstractions are built in a very transparent way out of lower-level abstractions, which you can get hold of if you want.
Nothing is hidden from you that doesn't absolutely have to be. The language offers abstractions only as a way of saving you work, rather than as a way of telling you what to do. In fact, the language encourages you to be an equal participant in its design. You can change everything about it, including even its syntax, and anything you write has, as much as possible, the same status as what comes predefined.
Notes
[1] Macros very close to the modern idea were proposed by Timothy Hart in 1964, two years after Lisp 1.5 was released. What was missing, initially, were ways to avoid variable capture and multiple evaluation; Hart's examples are subject to both.
[2] In When the Air Hits Your Brain, neurosurgeon Frank Vertosick recounts a conversation in which his chief resident, Gary, talks about the difference between surgeons and internists ("fleas"):
Gary and I ordered a large pizza and found an open booth. The chief lit a cigarette. "Look at those goddamn fleas, jabbering about some disease they'll see once in their lifetimes. That's the trouble with fleas, they only like the bizarre stuff. They hate their bread and butter cases. That's the difference between us and the fucking fleas. See, we love big juicy lumbar disc herniations, but they hate hypertension...."
It's hard to think of a lumbar disc herniation as juicy (except literally). And yet I think I know what they mean. I've often had a juicy bug to track down. Someone who's not a programmer would find it hard to imagine that there could be pleasure in a bug. Surely it's better if everything just works. In one way, it is. And yet there is undeniably a grim satisfaction in hunting down certain sorts of bugs.

Five Questions about Language Design

Guiding Philosophy
1. Programming Languages Are for People.
Programming languages are how people talk to computers. The computer would be just as happy speaking any language that was unambiguous. The reason we have high level languages is because people can't deal with machine language. The point of programming languages is to prevent our poor frail human brains from being overwhelmed by a mass of detail.
Architects know that some kinds of design problems are more personal than others. One of the cleanest, most abstract design problems is designing bridges. There your job is largely a matter of spanning a given distance with the least material. The other end of the spectrum is designing chairs. Chair designers have to spend their time thinking about human butts.
Software varies in the same way. Designing algorithms for routing data through a network is a nice, abstract problem, like designing bridges. Whereas designing programming languages is like designing chairs: it's all about dealing with human weaknesses.
Most of us hate to acknowledge this. Designing systems of great mathematical elegance sounds a lot more appealing to most of us than pandering to human weaknesses. And there is a role for mathematical elegance: some kinds of elegance make programs easier to understand. But elegance is not an end in itself.
And when I say languages have to be designed to suit human weaknesses, I don't mean that languages have to be designed for bad programmers. In fact I think you ought to design for the best programmers, but even the best programmers have limitations. I don't think anyone would like programming in a language where all the variables were the letter x with integer subscripts.
2. Design for Yourself and Your Friends.
If you look at the history of programming languages, a lot of the best ones were languages designed for their own authors to use, and a lot of the worst ones were designed for other people to use.
When languages are designed for other people, it's always a specific group of other people: people not as smart as the language designer. So you get a language that talks down to you. Cobol is the most extreme case, but a lot of languages are pervaded by this spirit.
It has nothing to do with how abstract the language is. C is pretty low-level, but it was designed for its authors to use, and that's why hackers like it.
The argument for designing languages for bad programmers is that there are more bad programmers than good programmers. That may be so. But those few good programmers write a disproportionately large percentage of the software.
I'm interested in the question, how do you design a language that the very best hackers will like? I happen to think this is identical to the question, how do you design a good programming language?, but even if it isn't, it is at least an interesting question.
3. Give the Programmer as Much Control as Possible.
Many languages (especially the ones designed for other people) have the attitude of a governess: they try to prevent you from doing things that they think aren't good for you. I like the opposite approach: give the programmer as much control as you can.
When I first learned Lisp, what I liked most about it was that it considered me an equal partner. In the other languages I had learned up till then, there was the language and there was my program, written in the language, and the two were very separate. But in Lisp the functions and macros I wrote were just like those that made up the language itself. I could rewrite the language if I wanted. It had the same appeal as open-source software.
4. Aim for Brevity.
Brevity is underestimated and even scorned. But if you look into the hearts of hackers, you'll see that they really love it. How many times have you heard hackers speak fondly of how in, say, APL, they could do amazing things with just a couple lines of code? I think anything that really smart people really love is worth paying attention to.
I think almost anything you can do to make programs shorter is good. There should be lots of library functions; anything that can be implicit should be; the syntax should be terse to a fault; even the names of things should be short.
And it's not only programs that should be short. The manual should be thin as well. A good part of manuals is taken up with clarifications and reservations and warnings and special cases. If you force yourself to shorten the manual, in the best case you do it by fixing the things in the language that required so much explanation.
5. Admit What Hacking Is.
A lot of people wish that hacking was mathematics, or at least something like a natural science. I think hacking is more like architecture. Architecture is related to physics, in the sense that architects have to design buildings that don't fall down, but the actual goal of architects is to make great buildings, not to make discoveries about statics.
What hackers like to do is make great programs. And I think, at least in our own minds, we have to remember that it's an admirable thing to write great programs, even when this work doesn't translate easily into the conventional intellectual currency of research papers. Intellectually, it is just as worthwhile to design a language programmers will love as it is to design a horrible one that embodies some idea you can publish a paper about.
Open Problems
1. How to Organize Big Libraries?
Libraries are becoming an increasingly important component of programming languages. They're also getting bigger, and this can be dangerous. If it takes longer to find the library function that will do what you want than it would take to write it yourself, then all that code is doing nothing but make your manual thick. (The Symbolics manuals were a case in point.) So I think we will have to work on ways to organize libraries. The ideal would be to design them so that the programmer could guess what library call would do the right thing.
2. Are People Really Scared of Prefix Syntax?
This is an open problem in the sense that I have wondered about it for years and still don't know the answer. Prefix syntax seems perfectly natural to me, except possibly for math. But it could be that a lot of Lisp's unpopularity is simply due to having an unfamiliar syntax. Whether to do anything about it, if it is true, is another question.
3. What Do You Need for Server-Based Software?
I think a lot of the most exciting new applications that get written in the next twenty years will be Web-based applications, meaning programs that sit on the server and talk to you through a Web browser. And to write these kinds of programs we may need some new things.
One thing we'll need is support for the new way that server-based apps get released. Instead of having one or two big releases a year, like desktop software, server-based apps get released as a series of small changes. You may have as many as five or ten releases a day. And as a rule everyone will always use the latest version.
You know how you can design programs to be debuggable? Well, server-based software likewise has to be designed to be changeable. You have to be able to change it easily, or at least to know what is a small change and what is a momentous one.
Another thing that might turn out to be useful for server based software, surprisingly, is continuations. In Web-based software you can use something like continuation-passing style to get the effect of subroutines in the inherently stateless world of a Web session. Maybe it would be worthwhile having actual continuations, if it was not too expensive.
4. What New Abstractions Are Left to Discover?
I'm not sure how reasonable a hope this is, but one thing I would really love to do, personally, is discover a new abstraction-- something that would make as much of a difference as having first class functions or recursion or even keyword parameters. This may be an impossible dream. These things don't get discovered that often. But I am always looking.
Little-Known Secrets
1. You Can Use Whatever Language You Want.
Writing application programs used to mean writing desktop software. And in desktop software there is a big bias toward writing the application in the same language as the operating system. And so ten years ago, writing software pretty much meant writing software in C. Eventually a tradition evolved: application programs must not be written in unusual languages. And this tradition had so long to develop that nontechnical people like managers and venture capitalists also learned it.
Server-based software blows away this whole model. With server-based software you can use any language you want. Almost nobody understands this yet (especially not managers and venture capitalists). A few hackers understand it, and that's why we even hear about new, indy languages like Perl and Python. We're not hearing about Perl and Python because people are using them to write Windows apps.
What this means for us, as people interested in designing programming languages, is that there is now potentially an actual audience for our work.
2. Speed Comes from Profilers.
Language designers, or at least language implementors, like to write compilers that generate fast code. But I don't think this is what makes languages fast for users. Knuth pointed out long ago that speed only matters in a few critical bottlenecks. And anyone who's tried it knows that you can't guess where these bottlenecks are. Profilers are the answer.
Language designers are solving the wrong problem. Users don't need benchmarks to run fast. What they need is a language that can show them what parts of their own programs need to be rewritten. That's where speed comes from in practice. So maybe it would be a net win if language implementors took half the time they would have spent doing compiler optimizations and spent it writing a good profiler instead.
3. You Need an Application to Drive the Design of a Language.
This may not be an absolute rule, but it seems like the best languages all evolved together with some application they were being used to write. C was written by people who needed it for systems programming. Lisp was developed partly to do symbolic differentiation, and McCarthy was so eager to get started that he was writing differentiation programs even in the first paper on Lisp, in 1960.
It's especially good if your application solves some new problem. That will tend to drive your language to have new features that programmers need. I personally am interested in writing a language that will be good for writing server-based applications.
[During the panel, Guy Steele also made this point, with the additional suggestion that the application should not consist of writing the compiler for your language, unless your language happens to be intended for writing compilers.]
4. A Language Has to Be Good for Writing Throwaway Programs.
You know what a throwaway program is: something you write quickly for some limited task. I think if you looked around you'd find that a lot of big, serious programs started as throwaway programs. I would not be surprised if most programs started as throwaway programs. And so if you want to make a language that's good for writing software in general, it has to be good for writing throwaway programs, because that is the larval stage of most software.
5. Syntax Is Connected to Semantics.
It's traditional to think of syntax and semantics as being completely separate. This will sound shocking, but it may be that they aren't. I think that what you want in your language may be related to how you express it.
I was talking recently to Robert Morris, and he pointed out that operator overloading is a bigger win in languages with infix syntax. In a language with prefix syntax, any function you define is effectively an operator. If you want to define a plus for a new type of number you've made up, you can just define a new function to add them. If you do that in a language with infix syntax, there's a big difference in appearance between the use of an overloaded operator and a function call.
Ideas Whose Time is Returned
1. New Programming Languages.
Back in the 1970s it was fashionable to design new programming languages. Recently it hasn't been. But I think server-based software will make new languages fashionable again. With server-based software, you can use any language you want, so if someone does design a language that actually seems better than others that are available, there will be people who take a risk and use it.
2. Time-Sharing.
Richard Kelsey gave this as an idea whose time has come again in the last panel, and I completely agree with him. My guess (and Microsoft's guess, it seems) is that much computing will move from the desktop onto remote servers. In other words, time-sharing is back. And I think there will need to be support for it at the language level. For example, I know that Richard and Jonathan Rees have done a lot of work implementing process scheduling within Scheme 48.
3. Efficiency.
Recently it was starting to seem that computers were finally fast enough. More and more we were starting to hear about byte code, which implies to me at least that we feel we have cycles to spare. But I don't think we will, with server-based software. Someone is going to have to pay for the servers that the software runs on, and the number of users they can support per machine will be the divisor of their capital cost.
So I think efficiency will matter, at least in computational bottlenecks. It will be especially important to do i/o fast, because server-based applications do a lot of i/o.
It may turn out that byte code is not a win, in the end. Sun and Microsoft seem to be facing off in a kind of a battle of the byte codes at the moment. But they're doing it because byte code is a convenient place to insert themselves into the process, not because byte code is in itself a good idea. It may turn out that this whole battleground gets bypassed. That would be kind of amusing.
Pitfalls and Gotchas
1. Clients.
This is just a guess, but my guess is that the winning model for most applications will be purely server-based. Designing software that works on the assumption that everyone will have your client is like designing a society on the assumption that everyone will just be honest. It would certainly be convenient, but you have to assume it will never happen.
I think there will be a proliferation of devices that have some kind of Web access, and all you'll be able to assume about them is that they can support simple html and forms. Will you have a browser on your cell phone? Will there be a phone in your palm pilot? Will your blackberry get a bigger screen? Will you be able to browse the Web on your gameboy? Your watch? I don't know. And I don't have to know if I bet on everything just being on the server. It's just so much more robust to have all the brains on the server.
2. Object-Oriented Programming.
I realize this is a controversial one, but I don't think object-oriented programming is such a big deal. I think it is a fine model for certain kinds of applications that need that specific kind of data structure, like window systems, simulations, and cad programs. But I don't see why it ought to be the model for all programming.
I think part of the reason people in big companies like object-oriented programming is because it yields a lot of what looks like work. Something that might naturally be represented as, say, a list of integers, can now be represented as a class with all kinds of scaffolding and hustle and bustle.
Another attraction of object-oriented programming is that methods give you some of the effect of first class functions. But this is old news to Lisp programmers. When you have actual first class functions, you can just use them in whatever way is appropriate to the task at hand, instead of forcing everything into a mold of classes and methods.
What this means for language design, I think, is that you shouldn't build object-oriented programming in too deeply. Maybe the answer is to offer more general, underlying stuff, and let people design whatever object systems they want as libraries.
3. Design by Committee.
Having your language designed by a committee is a big pitfall, and not just for the reasons everyone knows about. Everyone knows that committees tend to yield lumpy, inconsistent designs. But I think a greater danger is that they won't take risks. When one person is in charge he can take risks that a committee would never agree on.
Is it necessary to take risks to design a good language though? Many people might suspect that language design is something where you should stick fairly close to the conventional wisdom. I bet this isn't true. In everything else people do, reward is proportionate to risk. Why should language design be any different?

The Roots of Lisp

(I wrote this article to help myself understand exactly what McCarthy discovered. You don't need to know this stuff to program in Lisp, but it should be helpful to anyone who wants to understand the essence of Lisp-- both in the sense of its origins and its semantic core. The fact that it has such a core is one of Lisp's distinguishing features, and the reason why, unlike other languages, Lisp has dialects.)
In 1960, John McCarthy published a remarkable paper in which he did for programming something like what Euclid did for geometry. He showed how, given a handful of simple operators and a notation for functions, you can build a whole programming language. He called this language Lisp, for "List Processing," because one of his key ideas was to use a simple data structure called a list for both code and data.
It's worth understanding what McCarthy discovered, not just as a landmark in the history of computers, but as a model for what programming is tending to become in our own time. It seems to me that there have been two really clean, consistent models of programming so far: the C model and the Lisp model. These two seem points of high ground, with swampy lowlands between them. As computers have grown more powerful, the new languages being developed have been moving steadily toward the Lisp model. A popular recipe for new programming languages in the past 20 years has been to take the C model of computing and add to it, piecemeal, parts taken from the Lisp model, like runtime typing and garbage collection.
In this article I'm going to try to explain in the simplest possible terms what McCarthy discovered. The point is not just to learn about an interesting theoretical result someone figured out forty years ago, but to show where languages are heading. The unusual thing about Lisp-- in fact, the defining quality of Lisp-- is that it can be written in itself. To understand what McCarthy meant by this, we're going to retrace his steps, with his mathematical notation translated into running Common Lisp code.

The Other Road Ahead

(This article explains why much of the next generation of software may be server-based, what that will mean for programmers, and why this new kind of software is a great opportunity for startups. It's derived from a talk at BBN Labs.)
In the summer of 1995, my friend Robert Morris and I decided to start a startup. The PR campaign leading up to Netscape's IPO was running full blast then, and there was a lot of talk in the press about online commerce. At the time there might have been thirty actual stores on the Web, all made by hand. If there were going to be a lot of online stores, there would need to be software for making them, so we decided to write some.
For the first week or so we intended to make this an ordinary desktop application. Then one day we had the idea of making the software run on our Web server, using the browser as an interface. We tried rewriting the software to work over the Web, and it was clear that this was the way to go. If we wrote our software to run on the server, it would be a lot easier for the users and for us as well.
This turned out to be a good plan. Now, as Yahoo Store, this software is the most popular online store builder, with about 14,000 users.
When we started Viaweb, hardly anyone understood what we meant when we said that the software ran on the server. It was not until Hotmail was launched a year later that people started to get it. Now everyone knows that this is a valid approach. There is a name now for what we were: an Application Service Provider, or ASP.
I think that a lot of the next generation of software will be written on this model. Even Microsoft, who have the most to lose, seem to see the inevitablity of moving some things off the desktop. If software moves off the desktop and onto servers, it will mean a very different world for developers. This article describes the surprising things we saw, as some of the first visitors to this new world. To the extent software does move onto servers, what I'm describing here is the future.
The Next Thing?
When we look back on the desktop software era, I think we'll marvel at the inconveniences people put up with, just as we marvel now at what early car owners put up with. For the first twenty or thirty years, you had to be a car expert to own a car. But cars were such a big win that lots of people who weren't car experts wanted to have them as well.
Computers are in this phase now. When you own a desktop computer, you end up learning a lot more than you wanted to know about what's happening inside it. But more than half the households in the US own one. My mother has a computer that she uses for email and for keeping accounts. About a year ago she was alarmed to receive a letter from Apple, offering her a discount on a new version of the operating system. There's something wrong when a sixty-five year old woman who wants to use a computer for email and accounts has to think about installing new operating sytems. Ordinary users shouldn't even know the words "operating system," much less "device driver" or "patch."
There is now another way to deliver software that will save users from becoming system administrators. Web-based applications are programs that run on Web servers and use Web pages as the user interface. For the average user this new kind of software will be easier, cheaper, more mobile, more reliable, and often more powerful than desktop software.
With Web-based software, most users won't have to think about anything except the applications they use. All the messy, changing stuff will be sitting on a server somewhere, maintained by the kind of people who are good at that kind of thing. And so you won't ordinarily need a computer, per se, to use software. All you'll need will be something with a keyboard, a screen, and a Web browser. Maybe it will have wireless Internet access. Maybe it will also be your cell phone. Whatever it is, it will be consumer electronics: something that costs about $200, and that people choose mostly based on how the case looks. You'll pay more for Internet services than you do for the hardware, just as you do now with telephones. [1]
It will take about a tenth of a second for a click to get to the server and back, so users of heavily interactive software, like Photoshop, will still want to have the computations happening on the desktop. But if you look at the kind of things most people use computers for, a tenth of a second latency would not be a problem. My mother doesn't really need a desktop computer, and there are a lot of people like her.
The Win for Users
Near my house there is a car with a bumper sticker that reads "death before inconvenience." Most people, most of the time, will take whatever choice requires least work. If Web-based software wins, it will be because it's more convenient. And it looks as if it will be, for users and developers both.
To use a purely Web-based application, all you need is a browser connected to the Internet. So you can use a Web-based application anywhere. When you install software on your desktop computer, you can only use it on that computer. Worse still, your files are trapped on that computer. The inconvenience of this model becomes more and more evident as people get used to networks.
The thin end of the wedge here was Web-based email. Millions of people now realize that you should have access to email messages no matter where you are. And if you can see your email, why not your calendar? If you can discuss a document with your colleagues, why can't you edit it? Why should any of your data be trapped on some computer sitting on a faraway desk?
The whole idea of "your computer" is going away, and being replaced with "your data." You should be able to get at your data from any computer. Or rather, any client, and a client doesn't have to be a computer.
Clients shouldn't store data; they should be like telephones. In fact they may become telephones, or vice versa. And as clients get smaller, you have another reason not to keep your data on them: something you carry around with you can be lost or stolen. Leaving your PDA in a taxi is like a disk crash, except that your data is handed to someone else instead of being vaporized.
With purely Web-based software, neither your data nor the applications are kept on the client. So you don't have to install anything to use it. And when there's no installation, you don't have to worry about installation going wrong. There can't be incompatibilities between the application and your operating system, because the software doesn't run on your operating system.
Because it needs no installation, it will be easy, and common, to try Web-based software before you "buy" it. You should expect to be able to test-drive any Web-based application for free, just by going to the site where it's offered. At Viaweb our whole site was like a big arrow pointing users to the test drive.
After trying the demo, signing up for the service should require nothing more than filling out a brief form (the briefer the better). And that should be the last work the user has to do. With Web-based software, you should get new releases without paying extra, or doing any work, or possibly even knowing about it.
Upgrades won't be the big shocks they are now. Over time applications will quietly grow more powerful. This will take some effort on the part of the developers. They will have to design software so that it can be updated without confusing the users. That's a new problem, but there are ways to solve it.
With Web-based applications, everyone uses the same version, and bugs can be fixed as soon as they're discovered. So Web-based software should have far fewer bugs than desktop software. At Viaweb, I doubt we ever had ten known bugs at any one time. That's orders of magnitude better than desktop software.
Web-based applications can be used by several people at the same time. This is an obvious win for collaborative applications, but I bet users will start to want this in most applications once they realize it's possible. It will often be useful to let two people edit the same document, for example. Viaweb let multiple users edit a site simultaneously, more because that was the right way to write the software than because we expected users to want to, but it turned out that many did.
When you use a Web-based application, your data will be safer. Disk crashes won't be a thing of the past, but users won't hear about them anymore. They'll happen within server farms. And companies offering Web-based applications will actually do backups-- not only because they'll have real system administrators worrying about such things, but because an ASP that does lose people's data will be in big, big trouble. When people lose their own data in a disk crash, they can't get that mad, because they only have themselves to be mad at. When a company loses their data for them, they'll get a lot madder.
Finally, Web-based software should be less vulnerable to viruses. If the client doesn't run anything except a browser, there's less chance of running viruses, and no data locally to damage. And a program that attacked the servers themselves should find them very well defended. [2]
For users, Web-based software will be less stressful. I think if you looked inside the average Windows user you'd find a huge and pretty much untapped desire for software meeting that description. Unleashed, it could be a powerful force.
City of Code
To developers, the most conspicuous difference between Web-based and desktop software is that a Web-based application is not a single piece of code. It will be a collection of programs of different types rather than a single big binary. And so designing Web-based software is like desiging a city rather than a building: as well as buildings you need roads, street signs, utilities, police and fire departments, and plans for both growth and various kinds of disasters.
At Viaweb, software included fairly big applications that users talked to directly, programs that those programs used, programs that ran constantly in the background looking for problems, programs that tried to restart things if they broke, programs that ran occasionally to compile statistics or build indexes for searches, programs we ran explicitly to garbage-collect resources or to move or restore data, programs that pretended to be users (to measure performance or expose bugs), programs for diagnosing network troubles, programs for doing backups, interfaces to outside services, software that drove an impressive collection of dials displaying real-time server statistics (a hit with visitors, but indispensable for us too), modifications (including bug fixes) to open-source software, and a great many configuration files and settings. Trevor Blackwell wrote a spectacular program for moving stores to new servers across the country, without shutting them down, after we were bought by Yahoo. Programs paged us, sent faxes and email to users, conducted transactions with credit card processors, and talked to one another through sockets, pipes, http requests, ssh, udp packets, shared memory, and files. Some of Viaweb even consisted of the absence of programs, since one of the keys to Unix security is not to run unnecessary utilities that people might use to break into your servers.
It did not end with software. We spent a lot of time thinking about server configurations. We built the servers ourselves, from components-- partly to save money, and partly to get exactly what we wanted. We had to think about whether our upstream ISP had fast enough connections to all the backbones. We serially dated RAID suppliers.
But hardware is not just something to worry about. When you control it you can do more for users. With a desktop application, you can specify certain minimum hardware, but you can't add more. If you administer the servers, you can in one step enable all your users to page people, or send faxes, or send commands by phone, or process credit cards, etc, just by installing the relevant hardware. We always looked for new ways to add features with hardware, not just because it pleased users, but also as a way to distinguish ourselves from competitors who (either because they sold desktop software, or resold Web-based applications through ISPs) didn't have direct control over the hardware.
Because the software in a Web-based application will be a collection of programs rather than a single binary, it can be written in any number of different languages. When you're writing desktop software, you're practically forced to write the application in the same language as the underlying operating system-- meaning C and C++. And so these languages (especially among nontechnical people like managers and VCs) got to be considered as the languages for "serious" software development. But that was just an artifact of the way desktop software had to be delivered. For server-based software you can use any language you want. [3] Today a lot of the top hackers are using languages far removed from C and C++: Perl, Python, and even Lisp.
With server-based software, no one can tell you what language to use, because you control the whole system, right down to the hardware. Different languages are good for different tasks. You can use whichever is best for each. And when you have competitors, "you can" means "you must" (we'll return to this later), because if you don't take advantage of this possibility, your competitors will.
Most of our competitors used C and C++, and this made their software visibly inferior because (among other things), they had no way around the statelessness of CGI scripts. If you were going to change something, all the changes had to happen on one page, with an Update button at the bottom. As I've written elsewhere, by using Lisp, which many people still consider a research language, we could make the Viaweb editor behave more like desktop software.
Releases
One of the most important changes in this new world is the way you do releases. In the desktop software business, doing a release is a huge trauma, in which the whole company sweats and strains to push out a single, giant piece of code. Obvious comparisons suggest themselves, both to the process and the resulting product.
With server-based software, you can make changes almost as you would in a program you were writing for yourself. You release software as a series of incremental changes instead of an occasional big explosion. A typical desktop software company might do one or two releases a year. At Viaweb we often did three to five releases a day.
When you switch to this new model, you realize how much software development is affected by the way it is released. Many of the nastiest problems you see in the desktop software business are due to catastrophic nature of releases.
When you release only one new version a year, you tend to deal with bugs wholesale. Some time before the release date you assemble a new version in which half the code has been torn out and replaced, introducing countless bugs. Then a squad of QA people step in and start counting them, and the programmers work down the list, fixing them. They do not generally get to the end of the list, and indeed, no one is sure where the end is. It's like fishing rubble out of a pond. You never really know what's happening inside the software. At best you end up with a statistical sort of correctness.
With server-based software, most of the change is small and incremental. That in itself is less likely to introduce bugs. It also means you know what to test most carefully when you're about to release software: the last thing you changed. You end up with a much firmer grip on the code. As a general rule, you do know what's happening inside it. You don't have the source code memorized, of course, but when you read the source you do it like a pilot scanning the instrument panel, not like a detective trying to unravel some mystery.
Desktop software breeds a certain fatalism about bugs. You know that you're shipping something loaded with bugs, and you've even set up mechanisms to compensate for it (e.g. patch releases). So why worry about a few more? Soon you're releasing whole features you know are broken. Apple did this earlier this year. They felt under pressure to release their new OS, whose release date had already slipped four times, but some of the software (support for CDs and DVDs) wasn't ready. The solution? They released the OS without the unfinished parts, and users will have to install them later.
With Web-based software, you never have to release software before it works, and you can release it as soon as it does work.
The industry veteran may be thinking, it's a fine-sounding idea to say that you never have to release software before it works, but what happens when you've promised to deliver a new version of your software by a certain date? With Web-based software, you wouldn't make such a promise, because there are no versions. Your software changes gradually and continuously. Some changes might be bigger than others, but the idea of versions just doesn't naturally fit onto Web-based software.
If anyone remembers Viaweb this might sound odd, because we were always announcing new versions. This was done entirely for PR purposes. The trade press, we learned, thinks in version numbers. They will give you major coverage for a major release, meaning a new first digit on the version number, and generally a paragraph at most for a point release, meaning a new digit after the decimal point.
Some of our competitors were offering desktop software and actually had version numbers. And for these releases, the mere fact of which seemed to us evidence of their backwardness, they would get all kinds of publicity. We didn't want to miss out, so we started giving version numbers to our software too. When we wanted some publicity, we'd make a list of all the features we'd added since the last "release," stick a new version number on the software, and issue a press release saying that the new version was available immediately. Amazingly, no one ever called us on it.
By the time we were bought, we had done this three times, so we were on Version 4. Version 4.1 if I remember correctly. After Viaweb became Yahoo Store, there was no longer such a desperate need for publicity, so although the software continued to evolve, the whole idea of version numbers was quietly dropped.
Bugs
The other major technical advantage of Web-based software is that you can reproduce most bugs. You have the users' data right there on your disk. If someone breaks your software, you don't have to try to guess what's going on, as you would with desktop software: you should be able to reproduce the error while they're on the phone with you. You might even know about it already, if you have code for noticing errors built into your application.
Web-based software gets used round the clock, so everything you do is immediately put through the wringer. Bugs turn up quickly.
Software companies are sometimes accused of letting the users debug their software. And that is just what I'm advocating. For Web-based software it's actually a good plan, because the bugs are fewer and transient. When you release software gradually you get far fewer bugs to start with. And when you can reproduce errors and release changes instantly, you can find and fix most bugs as soon as they appear. We never had enough bugs at any one time to bother with a formal bug-tracking system.
You should test changes before you release them, of course, so no major bugs should get released. Those few that inevitably slip through will involve borderline cases and will only affect the few users that encounter them before someone calls in to complain. As long as you fix bugs right away, the net effect, for the average user, is far fewer bugs. I doubt the average Viaweb user ever saw a bug.
Fixing fresh bugs is easier than fixing old ones. It's usually fairly quick to find a bug in code you just wrote. When it turns up you often know what's wrong before you even look at the source, because you were already worrying about it subconsciously. Fixing a bug in something you wrote six months ago (the average case if you release once a year) is a lot more work. And since you don't understand the code as well, you're more likely to fix it in an ugly way, or even introduce more bugs. [4]
When you catch bugs early, you also get fewer compound bugs. Compound bugs are two separate bugs that interact: you trip going downstairs, and when you reach for the handrail it comes off in your hand. In software this kind of bug is the hardest to find, and also tends to have the worst consequences. [5] The traditional "break everything and then filter out the bugs" approach inherently yields a lot of compound bugs. And software that's released in a series of small changes inherently tends not to. The floors are constantly being swept clean of any loose objects that might later get stuck in something.
It helps if you use a technique called functional programming. Functional programming means avoiding side-effects. It's something you're more likely to see in research papers than commercial software, but for Web-based applications it turns out to be really useful. It's hard to write entire programs as purely functional code, but you can write substantial chunks this way. It makes those parts of your software easier to test, because they have no state, and that is very convenient in a situation where you are constantly making and testing small modifications. I wrote much of Viaweb's editor in this style, and we made our scripting language, RTML, a purely functional language.
People from the desktop software business will find this hard to credit, but at Viaweb bugs became almost a game. Since most released bugs involved borderline cases, the users who encountered them were likely to be advanced users, pushing the envelope. Advanced users are more forgiving about bugs, especially since you probably introduced them in the course of adding some feature they were asking for. In fact, because bugs were rare and you had to be doing sophisticated things to see them, advanced users were often proud to catch one. They would call support in a spirit more of triumph than anger, as if they had scored points off us.
Support
When you can reproduce errors, it changes your approach to customer support. At most software companies, support is offered as a way to make customers feel better. They're either calling you about a known bug, or they're just doing something wrong and you have to figure out what. In either case there's not much you can learn from them. And so you tend to view support calls as a pain in the ass that you want to isolate from your developers as much as possible.
This was not how things worked at Viaweb. At Viaweb, support was free, because we wanted to hear from customers. If someone had a problem, we wanted to know about it right away so that we could reproduce the error and release a fix.
So at Viaweb the developers were always in close contact with support. The customer support people were about thirty feet away from the programmers, and knew that they could always interrupt anything with a report of a genuine bug. We would leave a board meeting to fix a serious bug.
Our approach to support made everyone happier. The customers were delighted. Just imagine how it would feel to call a support line and be treated as someone bringing important news. The customer support people liked it because it meant they could help the users, instead of reading scripts to them. And the programmers liked it because they could reproduce bugs instead of just hearing vague second-hand reports about them.
Our policy of fixing bugs on the fly changed the relationship between customer support people and hackers. At most software companies, support people are underpaid human shields, and hackers are little copies of God the Father, creators of the world. Whatever the procedure for reporting bugs, it is likely to be one-directional: support people who hear about bugs fill out some form that eventually gets passed on (possibly via QA) to programmers, who put it on their list of things to do. It was very different at Viaweb. Within a minute of hearing about a bug from a customer, the support people could be standing next to a programmer hearing him say "Shit, you're right, it's a bug." It delighted the support people to hear that "you're right" from the hackers. They used to bring us bugs with the same expectant air as a cat bringing you a mouse it has just killed. It also made them more careful in judging the seriousness of a bug, because now their honor was on the line.
After we were bought by Yahoo, the customer support people were moved far away from the programmers. It was only then that we realized that they were effectively QA and to some extent marketing as well. In addition to catching bugs, they were the keepers of the knowledge of vaguer, buglike things, like features that confused users. [6] They were also a kind of proxy focus group; we could ask them which of two new features users wanted more, and they were always right.
Morale
Being able to release software immediately is a big motivator. Often as I was walking to work I would think of some change I wanted to make to the software, and do it that day. This worked for bigger features as well. Even if something was going to take two weeks to write (few projects took longer), I knew I could see the effect in the software as soon as it was done.
If I'd had to wait a year for the next release, I would have shelved most of these ideas, for a while at least. The thing about ideas, though, is that they lead to more ideas. Have you ever noticed that when you sit down to write something, half the ideas that end up in it are ones you thought of while writing it? The same thing happens with software. Working to implement one idea gives you more ideas. So shelving an idea costs you not only that delay in implementing it, but also all the ideas that implementing it would have led to. In fact, shelving an idea probably even inhibits new ideas: as you start to think of some new feature, you catch sight of the shelf and think "but I already have a lot of new things I want to do for the next release."
What big companies do instead of implementing features is plan them. At Viaweb we sometimes ran into trouble on this account. Investors and analysts would ask us what we had planned for the future. The truthful answer would have been, we didn't have any plans. We had general ideas about things we wanted to improve, but if we knew how we would have done it already. What were we going to do in the next six months? Whatever looked like the biggest win. I don't know if I ever dared give this answer, but that was the truth. Plans are just another word for ideas on the shelf. When we thought of good ideas, we implemented them.
At Viaweb, as at many software companies, most code had one definite owner. But when you owned something you really owned it: no one except the owner of a piece of software had to approve (or even know about) a release. There was no protection against breakage except the fear of looking like an idiot to one's peers, and that was more than enough. I may have given the impression that we just blithely plowed forward writing code. We did go fast, but we thought very carefully before we released software onto those servers. And paying attention is more important to reliability than moving slowly. Because he pays close attention, a Navy pilot can land a 40,000 lb. aircraft at 140 miles per hour on a pitching carrier deck, at night, more safely than the average teenager can cut a bagel.
This way of writing software is a double-edged sword of course. It works a lot better for a small team of good, trusted programmers than it would for a big company of mediocre ones, where bad ideas are caught by committees instead of the people that had them.
Brooks in Reverse
Fortunately, Web-based software does require fewer programmers. I once worked for a medium-sized desktop software company that had over 100 people working in engineering as a whole. Only 13 of these were in product development. All the rest were working on releases, ports, and so on. With Web-based software, all you need (at most) are the 13 people, because there are no releases, ports, and so on.
Viaweb was written by just three people. [7] I was always under pressure to hire more, because we wanted to get bought, and we knew that buyers would have a hard time paying a high price for a company with only three programmers. (Solution: we hired more, but created new projects for them.)
When you can write software with fewer programmers, it saves you more than money. As Fred Brooks pointed out in The Mythical Man-Month, adding people to a project tends to slow it down. The number of possible connections between developers grows exponentially with the size of the group. The larger the group, the more time they'll spend in meetings negotiating how their software will work together, and the more bugs they'll get from unforseen interactions. Fortunately, this process also works in reverse: as groups get smaller, software development gets exponentially more efficient. I can't remember the programmers at Viaweb ever having an actual meeting. We never had more to say at any one time than we could say as we were walking to lunch.
If there is a downside here, it is that all the programmers have to be to some degree system administrators as well. When you're hosting software, someone has to be watching the servers, and in practice the only people who can do this properly are the ones who wrote the software. At Viaweb our system had so many components and changed so frequently that there was no definite border between software and infrastructure. Arbitrarily declaring such a border would have constrained our design choices. And so although we were constantly hoping that one day ("in a couple months") everything would be stable enough that we could hire someone whose job was just to worry about the servers, it never happened.
I don't think it could be any other way, as long as you're still actively developing the product. Web-based software is never going to be something you write, check in, and go home. It's a live thing, running on your servers right now. A bad bug might not just crash one user's process; it could crash them all. If a bug in your code corrupts some data on disk, you have to fix it. And so on. We found that you don't have to watch the servers every minute (after the first year or so), but you definitely want to keep an eye on things you've changed recently. You don't release code late at night and then go home.
Watching Users
With server-based software, you're in closer touch with your code. You can also be in closer touch with your users. Intuit is famous for introducing themselves to customers at retail stores and asking to follow them home. If you've ever watched someone use your software for the first time, you know what surprises must have awaited them.
Software should do what users think it will. But you can't have any idea what users will be thinking, believe me, until you watch them. And server-based software gives you unprecedented information about their behavior. You're not limited to small, artificial focus groups. You can see every click made by every user. You have to consider carefully what you're going to look at, because you don't want to violate users' privacy, but even the most general statistical sampling can be very useful.
When you have the users on your server, you don't have to rely on benchmarks, for example. Benchmarks are simulated users. With server-based software, you can watch actual users. To decide what to optimize, just log into a server and see what's consuming all the CPU. And you know when to stop optimizing too: we eventually got the Viaweb editor to the point where it was memory-bound rather than CPU-bound, and since there was nothing we could do to decrease the size of users' data (well, nothing easy), we knew we might as well stop there.
Efficiency matters for server-based software, because you're paying for the hardware. The number of users you can support per server is the divisor of your capital cost, so if you can make your software very efficient you can undersell competitors and still make a profit. At Viaweb we got the capital cost per user down to about $5. It would be less now, probably less than the cost of sending them the first month's bill. Hardware is free now, if your software is reasonably efficient.
Watching users can guide you in design as well as optimization. Viaweb had a scripting language called RTML that let advanced users define their own page styles. We found that RTML became a kind of suggestion box, because users only used it when the predefined page styles couldn't do what they wanted. Originally the editor put button bars across the page, for example, but after a number of users used RTML to put buttons down the left side, we made that an option (in fact the default) in the predefined page styles.
Finally, by watching users you can often tell when they're in trouble. And since the customer is always right, that's a sign of something you need to fix. At Viaweb the key to getting users was the online test drive. It was not just a series of slides built by marketing people. In our test drive, users actually used the software. It took about five minutes, and at the end of it they had built a real, working store.
The test drive was the way we got nearly all our new users. I think it will be the same for most Web-based applications. If users can get through a test drive successfully, they'll like the product. If they get confused or bored, they won't. So anything we could do to get more people through the test drive would increase our growth rate.
I studied click trails of people taking the test drive and found that at a certain step they would get confused and click on the browser's Back button. (If you try writing Web-based applications, you'll find that the Back button becomes one of your most interesting philosophical problems.) So I added a message at that point, telling users that they were nearly finished, and reminding them not to click on the Back button. Another great thing about Web-based software is that you get instant feedback from changes: the number of people completing the test drive rose immediately from 60% to 90%. And since the number of new users was a function of the number of completed test drives, our revenue growth increased by 50%, just from that change.
Money
In the early 1990s I read an article in which someone said that software was a subscription business. At first this seemed a very cynical statement. But later I realized that it reflects reality: software development is an ongoing process. I think it's cleaner if you openly charge subscription fees, instead of forcing people to keep buying and installing new versions so that they'll keep paying you. And fortunately, subscriptions are the natural way to bill for Web-based applications.
Hosting applications is an area where companies will play a role that is not likely to be filled by freeware. Hosting applications is a lot of stress, and has real expenses. No one is going to want to do it for free.
For companies, Web-based applications are an ideal source of revenue. Instead of starting each quarter with a blank slate, you have a recurring revenue stream. Because your software evolves gradually, you don't have to worry that a new model will flop; there never need be a new model, per se, and if you do something to the software that users hate, you'll know right away. You have no trouble with uncollectable bills; if someone won't pay you can just turn off the service. And there is no possibility of piracy.
That last "advantage" may turn out to be a problem. Some amount of piracy is to the advantage of software companies. If some user really would not have bought your software at any price, you haven't lost anything if he uses a pirated copy. In fact you gain, because he is one more user helping to make your software the standard-- or who might buy a copy later, when he graduates from high school.
When they can, companies like to do something called price discrimination, which means charging each customer as much as they can afford. [8] Software is particularly suitable for price discrimination, because the marginal cost is close to zero. This is why some software costs more to run on Suns than on Intel boxes: a company that uses Suns is not interested in saving money and can safely be charged more. Piracy is effectively the lowest tier of price discrimination. I think that software companies understand this and deliberately turn a blind eye to some kinds of piracy. [9] With server-based software they are going to have to come up with some other solution.
Web-based software sells well, especially in comparison to desktop software, because it's easy to buy. You might think that people decide to buy something, and then buy it, as two separate steps. That's what I thought before Viaweb, to the extent I thought about the question at all. In fact the second step can propagate back into the first: if something is hard to buy, people will change their mind about whether they wanted it. And vice versa: you'll sell more of something when it's easy to buy. I buy more books because Amazon exists. Web-based software is just about the easiest thing in the world to buy, especially if you have just done an online demo. Users should not have to do much more than enter a credit card number. (Make them do more at your peril.)
Sometimes Web-based software is offered through ISPs acting as resellers. This is a bad idea. You have to be administering the servers, because you need to be constantly improving both hardware and software. If you give up direct control of the servers, you give up most of the advantages of developing Web-based applications.
Several of our competitors shot themselves in the foot this way-- usually, I think, because they were overrun by suits who were excited about this huge potential channel, and didn't realize that it would ruin the product they hoped to sell through it. Selling Web-based software through ISPs is like selling sushi through vending machines.
Customers
Who will the customers be? At Viaweb they were initially individuals and smaller companies, and I think this will be the rule with Web-based applications. These are the users who are ready to try new things, partly because they're more flexible, and partly because they want the lower costs of new technology.
Web-based applications will often be the best thing for big companies too (though they'll be slow to realize it). The best intranet is the Internet. If a company uses true Web-based applications, the software will work better, the servers will be better administered, and employees will have access to the system from anywhere.
The argument against this approach usually hinges on security: if access is easier for employees, it will be for bad guys too. Some larger merchants were reluctant to use Viaweb because they thought customers' credit card information would be safer on their own servers. It was not easy to make this point diplomatically, but in fact the data was almost certainly safer in our hands than theirs. Who can hire better people to manage security, a technology startup whose whole business is running servers, or a clothing retailer? Not only did we have better people worrying about security, we worried more about it. If someone broke into the clothing retailer's servers, it would affect at most one merchant, could probably be hushed up, and in the worst case might get one person fired. If someone broke into ours, it could affect thousands of merchants, would probably end up as news on CNet, and could put us out of business.
If you want to keep your money safe, do you keep it under your mattress at home, or put it in a bank? This argument applies to every aspect of server administration: not just security, but uptime, bandwidth, load management, backups, etc. Our existence depended on doing these things right. Server problems were the big no-no for us, like a dangerous toy would be for a toy maker, or a salmonella outbreak for a food processor.
A big company that uses Web-based applications is to that extent outsourcing IT. Drastic as it sounds, I think this is generally a good idea. Companies are likely to get better service this way than they would from in-house system administrators. System administrators can become cranky and unresponsive because they're not directly exposed to competitive pressure: a salesman has to deal with customers, and a developer has to deal with competitors' software, but a system administrator, like an old bachelor, has few external forces to keep him in line. [10] At Viaweb we had external forces in plenty to keep us in line. The people calling us were customers, not just co-workers. If a server got wedged, we jumped; just thinking about it gives me a jolt of adrenaline, years later.
So Web-based applications will ordinarily be the right answer for big companies too. They will be the last to realize it, however, just as they were with desktop computers. And partly for the same reason: it will be worth a lot of money to convince big companies that they need something more expensive.
There is always a tendency for rich customers to buy expensive solutions, even when cheap solutions are better, because the people offering expensive solutions can spend more to sell them. At Viaweb we were always up against this. We lost several high-end merchants to Web consulting firms who convinced them they'd be better off if they paid half a million dollars for a custom-made online store on their own server. They were, as a rule, not better off, as more than one discovered when Christmas shopping season came around and loads rose on their server. Viaweb was a lot more sophisticated than what most of these merchants got, but we couldn't afford to tell them. At $300 a month, we couldn't afford to send a team of well-dressed and authoritative-sounding people to make presentations to customers.
A large part of what big companies pay extra for is the cost of selling expensive things to them. (If the Defense Department pays a thousand dollars for toilet seats, it's partly because it costs a lot to sell toilet seats for a thousand dollars.) And this is one reason intranet software will continue to thrive, even though it is probably a bad idea. It's simply more expensive. There is nothing you can do about this conundrum, so the best plan is to go for the smaller customers first. The rest will come in time.
Son of Server
Running software on the server is nothing new. In fact it's the old model: mainframe applications are all server-based. If server-based software is such a good idea, why did it lose last time? Why did desktop computers eclipse mainframes?
At first desktop computers didn't look like much of a threat. The first users were all hackers-- or hobbyists, as they were called then. They liked microcomputers because they were cheap. For the first time, you could have your own computer. The phrase "personal computer" is part of the language now, but when it was first used it had a deliberately audacious sound, like the phrase "personal satellite" would today.
Why did desktop computers take over? I think it was because they had better software. And I think the reason microcomputer software was better was that it could be written by small companies.
I don't think many people realize how fragile and tentative startups are in the earliest stage. Many startups begin almost by accident-- as a couple guys, either with day jobs or in school, writing a prototype of something that might, if it looks promising, turn into a company. At this larval stage, any significant obstacle will stop the startup dead in its tracks. Writing mainframe software required too much commitment up front. Development machines were expensive, and because the customers would be big companies, you'd need an impressive-looking sales force to sell it to them. Starting a startup to write mainframe software would be a much more serious undertaking than just hacking something together on your Apple II in the evenings. And so you didn't get a lot of startups writing mainframe applications.
The arrival of desktop computers inspired a lot of new software, because writing applications for them seemed an attainable goal to larval startups. Development was cheap, and the customers would be individual people that you could reach through computer stores or even by mail-order.

The application that pushed desktop computers out into the mainstream was VisiCalc, the first spreadsheet. It was written by two guys working in an attic, and yet did things no mainframe software could do. [11] VisiCalc was such an advance, in its time, that people bought Apple IIs just to run it. And this was the beginning of a trend: desktop computers won because startups wrote software for them.
It looks as if server-based software will be good this time around, because startups will write it. Computers are so cheap now that you can get started, as we did, using a desktop computer as a server. Inexpensive processors have eaten the workstation market (you rarely even hear the word now) and are most of the way through the server market; Yahoo's servers, which deal with loads as high as any on the Internet, all have the same inexpensive Intel processors that you have in your desktop machine. And once you've written the software, all you need to sell it is a Web site. Nearly all our users came direct to our site through word of mouth and references in the press. [12]
Viaweb was a typical larval startup. We were terrified of starting a company, and for the first few months comforted ourselves by treating the whole thing as an experiment that we might call off at any moment. Fortunately, there were few obstacles except technical ones. While we were writing the software, our Web server was the same desktop machine we used for development, connected to the outside world by a dialup line. Our only expenses in that phase were food and rent.
There is all the more reason for startups to write Web-based software now, because writing desktop software has become a lot less fun. If you want to write desktop software now you do it on Microsoft's terms, calling their APIs and working around their buggy OS. And if you manage to write something that takes off, you may find that you were merely doing market research for Microsoft.
If a company wants to make a platform that startups will build on, they have to make it something that hackers themselves will want to use. That means it has to be inexpensive and well-designed. The Mac was popular with hackers when it first came out, and a lot of them wrote software for it. [13] You see this less with Windows, because hackers don't use it. The kind of people who are good at writing software tend to be running Linux or FreeBSD now.
I don't think we would have started a startup to write desktop software, because desktop software has to run on Windows, and before we could write software for Windows we'd have to use it. The Web let us do an end-run around Windows, and deliver software running on Unix direct to users through the browser. That is a liberating prospect, a lot like the arrival of PCs twenty-five years ago.
Microsoft
Back when desktop computers arrived, IBM was the giant that everyone was afraid of. It's hard to imagine now, but I remember the feeling very well. Now the frightening giant is Microsoft, and I don't think they are as blind to the threat facing them as IBM was. After all, Microsoft deliberately built their business in IBM's blind spot.
I mentioned earlier that my mother doesn't really need a desktop computer. Most users probably don't. That's a problem for Microsoft, and they know it. If applications run on remote servers, no one needs Windows. What will Microsoft do? Will they be able to use their control of the desktop to prevent, or constrain, this new generation of software?
My guess is that Microsoft will develop some kind of server/desktop hybrid, where the operating system works together with servers they control. At a minimum, files will be centrally available for users who want that. I don't expect Microsoft to go all the way to the extreme of doing the computations on the server, with only a browser for a client, if they can avoid it. If you only need a browser for a client, you don't need Microsoft on the client, and if Microsoft doesn't control the client, they can't push users towards their server-based applications.
I think Microsoft will have a hard time keeping the genie in the bottle. There will be too many different types of clients for them to control them all. And if Microsoft's applications only work with some clients, competitors will be able to trump them by offering applications that work from any client. [14]
In a world of Web-based applications, there is no automatic place for Microsoft. They may succeed in making themselves a place, but I don't think they'll dominate this new world as they did the world of desktop applications.
It's not so much that a competitor will trip them up as that they will trip over themselves. With the rise of Web-based software, they will be facing not just technical problems but their own wishful thinking. What they need to do is cannibalize their existing business, and I can't see them facing that. The same single-mindedness that has brought them this far will now be working against them. IBM was in exactly the same situation, and they could not master it. IBM made a late and half-hearted entry into the microcomputer business because they were ambivalent about threatening their cash cow, mainframe computing. Microsoft will likewise be hampered by wanting to save the desktop. A cash cow can be a damned heavy monkey on your back.
I'm not saying that no one will dominate server-based applications. Someone probably will eventually. But I think that there will be a good long period of cheerful chaos, just as there was in the early days of microcomputers. That was a good time for startups. Lots of small companies flourished, and did it by making cool things.
Startups but More So
The classic startup is fast and informal, with few people and little money. Those few people work very hard, and technology magnifies the effect of the decisions they make. If they win, they win big.
In a startup writing Web-based applications, everything you associate with startups is taken to an extreme. You can write and launch a product with even fewer people and even less money. You have to be even faster, and you can get away with being more informal. You can literally launch your product as three guys sitting in the living room of an apartment, and a server collocated at an ISP. We did.
Over time the teams have gotten smaller, faster, and more informal. In 1960, software development meant a roomful of men with horn rimmed glasses and narrow black neckties, industriously writing ten lines of code a day on IBM coding forms. In 1980, it was a team of eight to ten people wearing jeans to the office and typing into vt100s. Now it's a couple of guys sitting in a living room with laptops. (And jeans turn out not to be the last word in informality.)
Startups are stressful, and this, unfortunately, is also taken to an extreme with Web-based applications. Many software companies, especially at the beginning, have periods where the developers slept under their desks and so on. The alarming thing about Web-based software is that there is nothing to prevent this becoming the default. The stories about sleeping under desks usually end: then at last we shipped it and we all went home and slept for a week. Web-based software never ships. You can work 16-hour days for as long as you want to. And because you can, and your competitors can, you tend to be forced to. You can, so you must. It's Parkinson's Law running in reverse.
The worst thing is not the hours but the responsibility. Programmers and system administrators traditionally each have their own separate worries. Programmers have to worry about bugs, and system administrators have to worry about infrastructure. Programmers may spend a long day up to their elbows in source code, but at some point they get to go home and forget about it. System administrators never quite leave the job behind, but when they do get paged at 4:00 AM, they don't usually have to do anything very complicated. With Web-based applications, these two kinds of stress get combined. The programmers become system administrators, but without the sharply defined limits that ordinarily make the job bearable.
At Viaweb we spent the first six months just writing software. We worked the usual long hours of an early startup. In a desktop software company, this would have been the part where we were working hard, but it felt like a vacation compared to the next phase, when we took users onto our server. The second biggest benefit of selling Viaweb to Yahoo (after the money) was to be able to dump ultimate responsibility for the whole thing onto the shoulders of a big company.
Desktop software forces users to become system administrators. Web-based software forces programmers to. There is less stress in total, but more for the programmers. That's not necessarily bad news. If you're a startup competing with a big company, it's good news. [15] Web-based applications offer a straightforward way to outwork your competitors. No startup asks for more.
Just Good Enough
One thing that might deter you from writing Web-based applications is the lameness of Web pages as a UI. That is a problem, I admit. There were a few things we would have really liked to add to HTML and HTTP. What matters, though, is that Web pages are just good enough.
There is a parallel here with the first microcomputers. The processors in those machines weren't actually intended to be the CPUs of computers. They were designed to be used in things like traffic lights. But guys like Ed Roberts, who designed the Altair, realized that they were just good enough. You could combine one of these chips with some memory (256 bytes in the first Altair), and front panel switches, and you'd have a working computer. Being able to have your own computer was so exciting that there were plenty of people who wanted to buy them, however limited.
Web pages weren't designed to be a UI for applications, but they're just good enough. And for a significant number of users, software that you can use from any browser will be enough of a win in itself to outweigh any awkwardness in the UI. Maybe you can't write the best-looking spreadsheet using HTML, but you can write a spreadsheet that several people can use simultaneously from different locations without special client software, or that can incorporate live data feeds, or that can page you when certain conditions are triggered. More importantly, you can write new kinds of applications that don't even have names yet. VisiCalc was not merely a microcomputer version of a mainframe application, after all-- it was a new type of application.
Of course, server-based applications don't have to be Web-based. You could have some other kind of client. But I'm pretty sure that's a bad idea. It would be very convenient if you could assume that everyone would install your client-- so convenient that you could easily convince yourself that they all would-- but if they don't, you're hosed. Because Web-based software assumes nothing about the client, it will work anywhere the Web works. That's a big advantage already, and the advantage will grow as new Web devices proliferate. Users will like you because your software just works, and your life will be easier because you won't have to tweak it for every new client. [16]
I feel like I've watched the evolution of the Web as closely as anyone, and I can't predict what's going to happen with clients. Convergence is probably coming, but where? I can't pick a winner. One thing I can predict is conflict between AOL and Microsoft. Whatever Microsoft's .NET turns out to be, it will probably involve connecting the desktop to servers. Unless AOL fights back, they will either be pushed aside or turned into a pipe between Microsoft client and server software. If Microsoft and AOL get into a client war, the only thing sure to work on both will be browsing the Web, meaning Web-based applications will be the only kind that work everywhere.
How will it all play out? I don't know. And you don't have to know if you bet on Web-based applications. No one can break that without breaking browsing. The Web may not be the only way to deliver software, but it's one that works now and will continue to work for a long time. Web-based applications are cheap to develop, and easy for even the smallest startup to deliver. They're a lot of work, and of a particularly stressful kind, but that only makes the odds better for startups.
Why Not?
E. B. White was amused to learn from a farmer friend that many electrified fences don't have any current running through them. The cows apparently learn to stay away from them, and after that you don't need the current. "Rise up, cows!" he wrote, "Take your liberty while despots snore!"
If you're a hacker who has thought of one day starting a startup, there are probably two things keeping you from doing it. One is that you don't know anything about business. The other is that you're afraid of competition. Neither of these fences have any current in them.
There are only two things you have to know about business: build something users love, and make more than you spend. If you get these two right, you'll be ahead of most startups. You can figure out the rest as you go.
You may not at first make more than you spend, but as long as the gap is closing fast enough you'll be ok. If you start out underfunded, it will at least encourage a habit of frugality. The less you spend, the easier it is to make more than you spend. Fortunately, it can be very cheap to launch a Web-based application. We launched on under $10,000, and it would be even cheaper today. We had to spend thousands on a server, and thousands more to get SSL. (The only company selling SSL software at the time was Netscape.) Now you can rent a much more powerful server, with SSL included, for less than we paid for bandwidth alone. You could launch a Web-based application now for less than the cost of a fancy office chair.
As for building something users love, here are some general tips. Start by making something clean and simple that you would want to use yourself. Get a version 1.0 out fast, then continue to improve the software, listening closely to the users as you do. The customer is always right, but different customers are right about different things; the least sophisticated users show you what you need to simplify and clarify, and the most sophisticated tell you what features you need to add. The best thing software can be is easy, but the way to do this is to get the defaults right, not to limit users' choices. Don't get complacent if your competitors' software is lame; the standard to compare your software to is what it could be, not what your current competitors happen to have. Use your software yourself, all the time. Viaweb was supposed to be an online store builder, but we used it to make our own site too. Don't listen to marketing people or designers or product managers just because of their job titles. If they have good ideas, use them, but it's up to you to decide; software has to be designed by hackers who understand design, not designers who know a little about software. If you can't design software as well as implement it, don't start a startup.
Now let's talk about competition. What you're afraid of is not presumably groups of hackers like you, but actual companies, with offices and business plans and salesmen and so on, right? Well, they are more afraid of you than you are of them, and they're right. It's a lot easier for a couple of hackers to figure out how to rent office space or hire sales people than it is for a company of any size to get software written. I've been on both sides, and I know. When Viaweb was bought by Yahoo, I suddenly found myself working for a big company, and it was like trying to run through waist-deep water.
I don't mean to disparage Yahoo. They had some good hackers, and the top management were real butt-kickers. For a big company, they were exceptional. But they were still only about a tenth as productive as a small startup. No big company can do much better than that. What's scary about Microsoft is that a company so big can develop software at all. They're like a mountain that can walk.
Don't be intimidated. You can do as much that Microsoft can't as they can do that you can't. And no one can stop you. You don't have to ask anyone's permission to develop Web-based applications. You don't have to do licensing deals, or get shelf space in retail stores, or grovel to have your application bundled with the OS. You can deliver software right to the browser, and no one can get between you and potential users without preventing them from browsing the Web.
You may not believe it, but I promise you, Microsoft is scared of you. The complacent middle managers may not be, but Bill is, because he was you once, back in 1975, the last time a new way of delivering software appeared.
Notes
[1] Realizing that much of the money is in the services, companies building lightweight clients have usually tried to combine the hardware with an online service. This approach has not worked well, partly because you need two different kinds of companies to build consumer electronics and to run an online service, and partly because users hate the idea. Giving away the razor and making money on the blades may work for Gillette, but a razor is much smaller commitment than a Web terminal. Cell phone handset makers are satisfied to sell hardware without trying to capture the service revenue as well. That should probably be the model for Internet clients too. If someone just sold a nice-looking little box with a Web browser that you could use to connect through any ISP, every technophobe in the country would buy one.
[2] Security always depends more on not screwing up than any design decision, but the nature of server-based software will make developers pay more attention to not screwing up. Compromising a server could cause such damage that ASPs (that want to stay in business) are likely to be careful about security.
[3] In 1995, when we started Viaweb, Java applets were supposed to be the technology everyone was going to use to develop server-based applications. Applets seemed to us an old-fashioned idea. Download programs to run on the client? Simpler just to go all the way and run the programs on the server. We wasted little time on applets, but countless other startups must have been lured into this tar pit. Few can have escaped alive, or Microsoft could not have gotten away with dropping Java in the most recent version of Explorer.
[4] This point is due to Trevor Blackwell, who adds "the cost of writing software goes up more than linearly with its size. Perhaps this is mainly due to fixing old bugs, and the cost can be more linear if all bugs are found quickly."
[5] The hardest kind of bug to find may be a variant of compound bug where one bug happens to compensate for another. When you fix one bug, the other becomes visible. But it will seem as if the fix is at fault, since that was the last thing you changed.
[6] Within Viaweb we once had a contest to describe the worst thing about our software. Two customer support people tied for first prize with entries I still shiver to recall. We fixed both problems immediately.
[7] Robert Morris wrote the ordering system, which shoppers used to place orders. Trevor Blackwell wrote the image generator and the manager, which merchants used to retrieve orders, view statistics, and configure domain names etc. I wrote the editor, which merchants used to build their sites. The ordering system and image generator were written in C and C++, the manager mostly in Perl, and the editor in Lisp.
[8] Price discrimination is so pervasive (how often have you heard a retailer claim that their buying power meant lower prices for you?) that I was surprised to find it was outlawed in the U.S. by the Robinson-Patman Act of 1936. This law does not appear to be vigorously enforced.
[9] In No Logo, Naomi Klein says that clothing brands favored by "urban youth" do not try too hard to prevent shoplifting because in their target market the shoplifters are also the fashion leaders.
[10] Companies often wonder what to outsource and what not to. One possible answer: outsource any job that's not directly exposed to competitive pressure, because outsourcing it will thereby expose it to competitive pressure.
[11] The two guys were Dan Bricklin and Bob Frankston. Dan wrote a prototype in Basic in a couple days, then over the course of the next year they worked together (mostly at night) to make a more powerful version written in 6502 machine language. Dan was at Harvard Business School at the time and Bob nominally had a day job writing software. "There was no great risk in doing a business," Bob wrote, "If it failed it failed. No big deal."
[12] It's not quite as easy as I make it sound. It took a painfully long time for word of mouth to get going, and we did not start to get a lot of press coverage until we hired a PR firm (admittedly the best in the business) for $16,000 per month. However, it was true that the only significant channel was our own Web site.
[13] If the Mac was so great, why did it lose? Cost, again. Microsoft concentrated on the software business, and unleashed a swarm of cheap component suppliers on Apple hardware. It did not help, either, that suits took over during a critical period.
[14] One thing that would help Web-based applications, and help keep the next generation of software from being overshadowed by Microsoft, would be a good open-source browser. Mozilla is open-source but seems to have suffered from having been corporate software for so long. A small, fast browser that was actively maintained would be a great thing in itself, and would probably also encourage companies to build little Web appliances.
Among other things, a proper open-source browser would cause HTTP and HTML to continue to evolve (as e.g. Perl has). It would help Web-based applications greatly to be able to distinguish between selecting a link and following it; all you'd need to do this would be a trivial enhancement of HTTP, to allow multiple urls in a request. Cascading menus would also be good.
If you want to change the world, write a new Mosaic. Think it's too late? In 1998 a lot of people thought it was too late to launch a new search engine, but Google proved them wrong. There is always room for something new if the current options suck enough. Make sure it works on all the free OSes first-- new things start with their users.
[15] Trevor Blackwell, who probably knows more about this from personal experience than anyone, writes:
"I would go farther in saying that because server-based software is so hard on the programmers, it causes a fundamental economic shift away from large companies. It requires the kind of intensity and dedication from programmers that they will only be willing to provide when it's their own company. Software companies can hire skilled people to work in a not-too-demanding environment, and can hire unskilled people to endure hardships, but they can't hire highly skilled people to bust their asses. Since capital is no longer needed, big companies have little to bring to the table."
[16] In the original version of this essay, I advised avoiding Javascript. That was a good plan in 2001, but Javascript now works.
Thanks to Sarah Harlin, Trevor Blackwell, Robert Morris, Eric Raymond, Ken Anderson, and Dan Giffin for reading drafts of this paper; to Dan Bricklin and Bob Frankston for information about VisiCalc; and again to Ken Anderson for inviting me to speak at BBN.

What Made Lisp Different

(This article came about in response to some questions on the LL1 mailing list. It is now incorporated in Revenge of the Nerds.)
When McCarthy designed Lisp in the late 1950s, it was a radical departure from existing languages, the most important of which was Fortran.
Lisp embodied nine new ideas:
1. Conditionals. A conditional is an if-then-else construct. We take these for granted now. They were invented by McCarthy in the course of developing Lisp. (Fortran at that time only had a conditional goto, closely based on the branch instruction in the underlying hardware.) McCarthy, who was on the Algol committee, got conditionals into Algol, whence they spread to most other languages.
2. A function type. In Lisp, functions are first class objects-- they're a data type just like integers, strings, etc, and have a literal representation, can be stored in variables, can be passed as arguments, and so on.
3. Recursion. Recursion existed as a mathematical concept before Lisp of course, but Lisp was the first programming language to support it. (It's arguably implicit in making functions first class objects.)
4. A new concept of variables. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning or binding variables means copying pointers, not what they point to.
5. Garbage-collection.
6. Programs composed of expressions. Lisp programs are trees of expressions, each of which returns a value. (In some Lisps expressions can return multiple values.) This is in contrast to Fortran and most succeeding languages, which distinguish between expressions and statements.
It was natural to have this distinction in Fortran because (not surprisingly in a language where the input format was punched cards) the language was line-oriented. You could not nest statements. And so while you needed expressions for math to work, there was no point in making anything else return a value, because there could not be anything waiting for it.
This limitation went away with the arrival of block-structured languages, but by then it was too late. The distinction between expressions and statements was entrenched. It spread from Fortran into Algol and thence to both their descendants.
When a language is made entirely of expressions, you can compose expressions however you want. You can say either (using Arc syntax)
(if foo (= x 1) (= x 2))
or
(= x (if foo 1 2))
7. A symbol type. Symbols differ from strings in that you can test equality by comparing a pointer.
8. A notation for code using trees of symbols.
9. The whole language always available. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime.
Running code at read-time lets users reprogram Lisp's syntax; running code at compile-time is the basis of macros; compiling at runtime is the basis of Lisp's use as an extension language in programs like Emacs; and reading at runtime enables programs to communicate using s-expressions, an idea recently reinvented as XML.
When Lisp was first invented, all these ideas were far removed from ordinary programming practice, which was dictated largely by the hardware available in the late 1950s.
Over time, the default language, embodied in a succession of popular languages, has gradually evolved toward Lisp. 1-5 are now widespread. 6 is starting to appear in the mainstream. Python has a form of 7, though there doesn't seem to be any syntax for it. 8, which (with 9) is what makes Lisp macros possible, is so far still unique to Lisp, perhaps because (a) it requires those parens, or something just as bad, and (b) if you add that final increment of power, you can no longer claim to have invented a new language, but only to have designed a new dialect of Lisp ; -)
Though useful to present-day programmers, it's strange to describe Lisp in terms of its variation from the random expedients other languages adopted. That was not, probably, how McCarthy thought of it. Lisp wasn't designed to fix the mistakes in Fortran; it came about more as the byproduct of an attempt to axiomatize computation.

Why Arc Isn't Especially Object-Oriented

There is a kind of mania for object-oriented programming at the moment, but some of the smartest programmers I know are some of the least excited about it.
My own feeling is that object-oriented programming is a useful technique in some cases, but it isn't something that has to pervade every program you write. You should be able to define new types, but you shouldn't have to express every program as the definition of new types.
I think there are five reasons people like object-oriented programming, and three and a half of them are bad:
Object-oriented programming is exciting if you have a statically-typed language without lexical closures or macros. To some degree, it offers a way around these limitations. (See Greenspun's Tenth Rule.)
Object-oriented programming is popular in big companies, because it suits the way they write software. At big companies, software tends to be written by large (and frequently changing) teams of mediocre programmers. Object-oriented programming imposes a discipline on these programmers that prevents any one of them from doing too much damage. The price is that the resulting code is bloated with protocols and full of duplication. This is not too high a price for big companies, because their software is probably going to be bloated and full of duplication anyway.
Object-oriented programming generates a lot of what looks like work. Back in the days of fanfold, there was a type of programmer who would only put five or ten lines of code on a page, preceded by twenty lines of elaborately formatted comments. Object-oriented programming is like crack for these people: it lets you incorporate all this scaffolding right into your source code. Something that a Lisp hacker might handle by pushing a symbol onto a list becomes a whole file of classes and methods. So it is a good tool if you want to convince yourself, or someone else, that you are doing a lot of work.
If a language is itself an object-oriented program, it can be extended by users. Well, maybe. Or maybe you can do even better by offering the sub-concepts of object-oriented programming a la carte. Overloading, for example, is not intrinsically tied to classes. We'll see.
Object-oriented abstractions map neatly onto the domains of certain specific kinds of programs, like simulations and CAD systems.
I personally have never needed object-oriented abstractions. Common Lisp has an enormously powerful object system and I've never used it once. I've done a lot of things (e.g. making hash tables full of closures) that would have required object-oriented techniques to do in wimpier languages, but I have never had to use CLOS.
Maybe I'm just stupid, or have worked on some limited subset of applications. There is a danger in designing a language based on one's own experience of programming. But it seems more dangerous to put stuff in that you've never needed because it's thought to be a good idea.

Taste for Makers

I was talking recently to a friend who teaches at MIT. His field is hot now and every year he is inundated by applications from would-be graduate students. "A lot of them seem smart," he said. "What I can't tell is whether they have any kind of taste."
Taste. You don't hear that word much now. And yet we still need the underlying concept, whatever we call it. What my friend meant was that he wanted students who were not just good technicians, but who could use their technical knowledge to design beautiful things.
Mathematicians call good work "beautiful," and so, either now or in the past, have scientists, engineers, musicians, architects, designers, writers, and painters. Is it just a coincidence that they used the same word, or is there some overlap in what they meant? If there is an overlap, can we use one field's discoveries about beauty to help us in another?
For those of us who design things, these are not just theoretical questions. If there is such a thing as beauty, we need to be able to recognize it. We need good taste to make good things. Instead of treating beauty as an airy abstraction, to be either blathered about or avoided depending on how one feels about airy abstractions, let's try considering it as a practical question: how do you make good stuff?
If you mention taste nowadays, a lot of people will tell you that "taste is subjective." They believe this because it really feels that way to them. When they like something, they have no idea why. It could be because it's beautful, or because their mother had one, or because they saw a movie star with one in a magazine, or because they know it's expensive. Their thoughts are a tangle of unexamined impulses.
Most of us are encouraged, as children, to leave this tangle unexamined. If you make fun of your little brother for coloring people green in his coloring book, your mother is likely to tell you something like "you like to do it your way and he likes to do it his way."
Your mother at this point is not trying to teach you important truths about aesthetics. She's trying to get the two of you to stop bickering.
Like many of the half-truths adults tell us, this one contradicts other things they tell us. After dinning into you that taste is merely a matter of personal preference, they take you to the museum and tell you that you should pay attention because Leonardo is a great artist.
What goes through the kid's head at this point? What does he think "great artist" means? After having been told for years that everyone just likes to do things their own way, he is unlikely to head straight for the conclusion that a great artist is someone whose work is better than the others'. A far more likely theory, in his Ptolemaic model of the universe, is that a great artist is something that's good for you, like broccoli, because someone said so in a book.
Saying that taste is just personal preference is a good way to prevent disputes. The trouble is, it's not true. You feel this when you start to design things.
Whatever job people do, they naturally want to do better. Football players like to win games. CEOs like to increase earnings. It's a matter of pride, and a real pleasure, to get better at your job. But if your job is to design things, and there is no such thing as beauty, then there is no way to get better at your job. If taste is just personal preference, then everyone's is already perfect: you like whatever you like, and that's it.
As in any job, as you continue to design things, you'll get better at it. Your tastes will change. And, like anyone who gets better at their job, you'll know you're getting better. If so, your old tastes were not merely different, but worse. Poof goes the axiom that taste can't be wrong.
Relativism is fashionable at the moment, and that may hamper you from thinking about taste, even as yours grows. But if you come out of the closet and admit, at least to yourself, that there is such a thing as good and bad design, then you can start to study good design in detail. How has your taste changed? When you made mistakes, what caused you to make them? What have other people learned about design?
Once you start to examine the question, it's surprising how much different fields' ideas of beauty have in common. The same principles of good design crop up again and again.
Good design is simple.
You hear this from math to painting. In math it means that a shorter proof tends to be a better one. Where axioms are concerned, especially, less is more. It means much the same thing in programming. For architects and designers it means that beauty should depend on a few carefully chosen structural elements rather than a profusion of superficial ornament. (Ornament is not in itself bad, only when it's camouflage on insipid form.) Similarly, in painting, a still life of a few carefully observed and solidly modelled objects will tend to be more interesting than a stretch of flashy but mindlessly repetitive painting of, say, a lace collar. In writing it means: say what you mean and say it briefly.
It seems strange to have to emphasize simplicity. You'd think simple would be the default. Ornate is more work. But something seems to come over people when they try to be creative. Beginning writers adopt a pompous tone that doesn't sound anything like the way they speak. Designers trying to be artistic resort to swooshes and curlicues. Painters discover that they're expressionists. It's all evasion. Underneath the long words or the "expressive" brush strokes, there is not much going on, and that's frightening.
When you're forced to be simple, you're forced to face the real problem. When you can't deliver ornament, you have to deliver substance.
Good design is timeless.
In math, every proof is timeless unless it contains a mistake. So what does Hardy mean when he says there is no permanent place for ugly mathematics? He means the same thing Kelly Johnson did: if something is ugly, it can't be the best solution. There must be a better one, and eventually someone will discover it.
Aiming at timelessness is a way to make yourself find the best answer: if you can imagine someone surpassing you, you should do it yourself. Some of the greatest masters did this so well that they left little room for those who came after. Every engraver since Durer has had to live in his shadow.
Aiming at timelessness is also a way to evade the grip of fashion. Fashions almost by definition change with time, so if you can make something that will still look good far into the future, then its appeal must derive more from merit and less from fashion.
Strangely enough, if you want to make something that will appeal to future generations, one way to do it is to try to appeal to past generations. It's hard to guess what the future will be like, but we can be sure it will be like the past in caring nothing for present fashions. So if you can make something that appeals to people today and would also have appealed to people in 1500, there is a good chance it will appeal to people in 2500.
Good design solves the right problem.
The typical stove has four burners arranged in a square, and a dial to control each. How do you arrange the dials? The simplest answer is to put them in a row. But this is a simple answer to the wrong question. The dials are for humans to use, and if you put them in a row, the unlucky human will have to stop and think each time about which dial matches which burner. Better to arrange the dials in a square like the burners.
A lot of bad design is industrious, but misguided. In the mid twentieth century there was a vogue for setting text in sans-serif fonts. These fonts are closer to the pure, underlying letterforms. But in text that's not the problem you're trying to solve. For legibility it's more important that letters be easy to tell apart. It may look Victorian, but a Times Roman lowercase g is easy to tell from a lowercase y.
Problems can be improved as well as solutions. In software, an intractable problem can usually be replaced by an equivalent one that's easy to solve. Physics progressed faster as the problem became predicting observable behavior, instead of reconciling it with scripture.
Good design is suggestive.
Jane Austen's novels contain almost no description; instead of telling you how everything looks, she tells her story so well that you envision the scene for yourself. Likewise, a painting that suggests is usually more engaging than one that tells. Everyone makes up their own story about the Mona Lisa.
In architecture and design, this principle means that a building or object should let you use it how you want: a good building, for example, will serve as a backdrop for whatever life people want to lead in it, instead of making them live as if they were executing a program written by the architect.
In software, it means you should give users a few basic elements that they can combine as they wish, like Lego. In math it means a proof that becomes the basis for a lot of new work is preferable to a proof that was difficult, but doesn't lead to future discoveries; in the sciences generally, citation is considered a rough indicator of merit.
Good design is often slightly funny.
This one may not always be true. But Durer's engravings and Saarinen's womb chair and the Pantheon and the original Porsche 911 all seem to me slightly funny. Godel's incompleteness theorem seems like a practical joke.
I think it's because humor is related to strength. To have a sense of humor is to be strong: to keep one's sense of humor is to shrug off misfortunes, and to lose one's sense of humor is to be wounded by them. And so the mark-- or at least the prerogative-- of strength is not to take oneself too seriously. The confident will often, like swallows, seem to be making fun of the whole process slightly, as Hitchcock does in his films or Bruegel in his paintings-- or Shakespeare, for that matter.
Good design may not have to be funny, but it's hard to imagine something that could be called humorless also being good design.
Good design is hard.
If you look at the people who've done great work, one thing they all seem to have in common is that they worked very hard. If you're not working hard, you're probably wasting your time.
Hard problems call for great efforts. In math, difficult proofs require ingenious solutions, and those tend to be interesting. Ditto in engineering.
When you have to climb a mountain you toss everything unnecessary out of your pack. And so an architect who has to build on a difficult site, or a small budget, will find that he is forced to produce an elegant design. Fashions and flourishes get knocked aside by the difficult business of solving the problem at all.
Not every kind of hard is good. There is good pain and bad pain. You want the kind of pain you get from going running, not the kind you get from stepping on a nail. A difficult problem could be good for a designer, but a fickle client or unreliable materials would not be.
In art, the highest place has traditionally been given to paintings of people. There is something to this tradition, and not just because pictures of faces get to press buttons in our brains that other pictures don't. We are so good at looking at faces that we force anyone who draws them to work hard to satisfy us. If you draw a tree and you change the angle of a branch five degrees, no one will know. When you change the angle of someone's eye five degrees, people notice.
When Bauhaus designers adopted Sullivan's "form follows function," what they meant was, form should follow function. And if function is hard enough, form is forced to follow it, because there is no effort to spare for error. Wild animals are beautiful because they have hard lives.
Good design looks easy.
Like great athletes, great designers make it look easy. Mostly this is an illusion. The easy, conversational tone of good writing comes only on the eighth rewrite.
In science and engineering, some of the greatest discoveries seem so simple that you say to yourself, I could have thought of that. The discoverer is entitled to reply, why didn't you?
Some Leonardo heads are just a few lines. You look at them and you think, all you have to do is get eight or ten lines in the right place and you've made this beautiful portrait. Well, yes, but you have to get them in exactly the right place. The slightest error will make the whole thing collapse.
Line drawings are in fact the most difficult visual medium, because they demand near perfection. In math terms, they are a closed-form solution; lesser artists literally solve the same problems by successive approximation. One of the reasons kids give up drawing at ten or so is that they decide to start drawing like grownups, and one of the first things they try is a line drawing of a face. Smack!
In most fields the appearance of ease seems to come with practice. Perhaps what practice does is train your unconscious mind to handle tasks that used to require conscious thought. In some cases you literally train your body. An expert pianist can play notes faster than the brain can send signals to his hand. Likewise an artist, after a while, can make visual perception flow in through his eye and out through his hand as automatically as someone tapping his foot to a beat.
When people talk about being in "the zone," I think what they mean is that the spinal cord has the situation under control. Your spinal cord is less hesitant, and it frees conscious thought for the hard problems.
Good design uses symmetry.
I think symmetry may just be one way to achieve simplicity, but it's important enough to be mentioned on its own. Nature uses it a lot, which is a good sign.
There are two kinds of symmetry, repetition and recursion. Recursion means repetition in subelements, like the pattern of veins in a leaf.
Symmetry is unfashionable in some fields now, in reaction to excesses in the past. Architects started consciously making buildings asymmetric in Victorian times and by the 1920s asymmetry was an explicit premise of modernist architecture. Even these buildings only tended to be asymmetric about major axes, though; there were hundreds of minor symmetries.
In writing you find symmetry at every level, from the phrases in a sentence to the plot of a novel. You find the same in music and art. Mosaics (and some Cezannes) get extra visual punch by making the whole picture out of the same atoms. Compositional symmetry yields some of the most memorable paintings, especially when two halves react to one another, as in the Creation of Adam or American Gothic.
In math and engineering, recursion, especially, is a big win. Inductive proofs are wonderfully short. In software, a problem that can be solved by recursion is nearly always best solved that way. The Eiffel Tower looks striking partly because it is a recursive solution, a tower on a tower.
The danger of symmetry, and repetition especially, is that it can be used as a substitute for thought.
Good design resembles nature.
It's not so much that resembling nature is intrinsically good as that nature has had a long time to work on the problem. It's a good sign when your answer resembles nature's.
It's not cheating to copy. Few would deny that a story should be like life. Working from life is a valuable tool in painting too, though its role has often been misunderstood. The aim is not simply to make a record. The point of painting from life is that it gives your mind something to chew on: when your eyes are looking at something, your hand will do more interesting work.
Imitating nature also works in engineering. Boats have long had spines and ribs like an animal's ribcage. In some cases we may have to wait for better technology: early aircraft designers were mistaken to design aircraft that looked like birds, because they didn't have materials or power sources light enough (the Wrights' engine weighed 152 lbs. and generated only 12 hp.) or control systems sophisticated enough for machines that flew like birds, but I could imagine little unmanned reconnaissance planes flying like birds in fifty years.
Now that we have enough computer power, we can imitate nature's method as well as its results. Genetic algorithms may let us create things too complex to design in the ordinary sense.
Good design is redesign.
It's rare to get things right the first time. Experts expect to throw away some early work. They plan for plans to change.
It takes confidence to throw work away. You have to be able to think, there's more where that came from. When people first start drawing, for example, they're often reluctant to redo parts that aren't right; they feel they've been lucky to get that far, and if they try to redo something, it will turn out worse. Instead they convince themselves that the drawing is not that bad, really-- in fact, maybe they meant it to look that way.
Dangerous territory, that; if anything you should cultivate dissatisfaction. In Leonardo's drawings there are often five or six attempts to get a line right. The distinctive back of the Porsche 911 only appeared in the redesign of an awkward prototype. In Wright's early plans for the Guggenheim, the right half was a ziggurat; he inverted it to get the present shape.
Mistakes are natural. Instead of treating them as disasters, make them easy to acknowledge and easy to fix. Leonardo more or less invented the sketch, as a way to make drawing bear a greater weight of exploration. Open-source software has fewer bugs because it admits the possibility of bugs.
It helps to have a medium that makes change easy. When oil paint replaced tempera in the fifteenth century, it helped painters to deal with difficult subjects like the human figure because, unlike tempera, oil can be blended and overpainted.
Good design can copy.
Attitudes to copying often make a round trip. A novice imitates without knowing it; next he tries consciously to be original; finally, he decides it's more important to be right than original.
Unknowing imitation is almost a recipe for bad design. If you don't know where your ideas are coming from, you're probably imitating an imitator. Raphael so pervaded mid-nineteenth century taste that almost anyone who tried to draw was imitating him, often at several removes. It was this, more than Raphael's own work, that bothered the Pre-Raphaelites.
The ambitious are not content to imitate. The second phase in the growth of taste is a conscious attempt at originality.
I think the greatest masters go on to achieve a kind of selflessness. They just want to get the right answer, and if part of the right answer has already been discovered by someone else, that's no reason not to use it. They're confident enough to take from anyone without feeling that their own vision will be lost in the process.
Good design is often strange.
Some of the very best work has an uncanny quality: Euler's Formula, Bruegel's Hunters in the Snow, the SR-71, Lisp. They're not just beautiful, but strangely beautiful.
I'm not sure why. It may just be my own stupidity. A can-opener must seem uncanny to a dog. Maybe if I were smart enough it would seem the most natural thing in the world that ei*pi = -1. It is after all necessarily true.
Most of the qualities I've mentioned are things that can be cultivated, but I don't think it works to cultivate strangeness. The best you can do is not squash it if it starts to appear. Einstein didn't try to make relativity strange. He tried to make it true, and the truth turned out to be strange.
At an art school where I once studied, the students wanted most of all to develop a personal style. But if you just try to make good things, you'll inevitably do it in a distinctive way, just as each person walks in a distinctive way. Michelangelo was not trying to paint like Michelangelo. He was just trying to paint well; he couldn't help painting like Michelangelo.
The only style worth having is the one you can't help. And this is especially true for strangeness. There is no shortcut to it. The Northwest Passage that the Mannerists, the Romantics, and two generations of American high school students have searched for does not seem to exist. The only way to get there is to go through good and come out the other side.
Good design happens in chunks.
The inhabitants of fifteenth century Florence included Brunelleschi, Ghiberti, Donatello, Masaccio, Filippo Lippi, Fra Angelico, Verrocchio, Botticelli, Leonardo, and Michelangelo. Milan at the time was as big as Florence. How many fifteenth century Milanese artists can you name?
Something was happening in Florence in the fifteenth century. And it can't have been heredity, because it isn't happening now. You have to assume that whatever inborn ability Leonardo and Michelangelo had, there were people born in Milan with just as much. What happened to the Milanese Leonardo?
There are roughly a thousand times as many people alive in the US right now as lived in Florence during the fifteenth century. A thousand Leonardos and a thousand Michelangelos walk among us. If DNA ruled, we should be greeted daily by artistic marvels. We aren't, and the reason is that to make Leonardo you need more than his innate ability. You also need Florence in 1450.
Nothing is more powerful than a community of talented people working on related problems. Genes count for little by comparison: being a genetic Leonardo was not enough to compensate for having been born near Milan instead of Florence. Today we move around more, but great work still comes disproportionately from a few hotspots: the Bauhaus, the Manhattan Project, the New Yorker, Lockheed's Skunk Works, Xerox Parc.
At any given time there are a few hot topics and a few groups doing great work on them, and it's nearly impossible to do good work yourself if you're too far removed from one of these centers. You can push or pull these trends to some extent, but you can't break away from them. (Maybe you can, but the Milanese Leonardo couldn't.)
Good design is often daring.
At every period of history, people have believed things that were just ridiculous, and believed them so strongly that you risked ostracism or even violence by saying otherwise.
If our own time were any different, that would be remarkable. As far as I can tell it isn't.
This problem afflicts not just every era, but in some degree every field. Much Renaissance art was in its time considered shockingly secular: according to Vasari, Botticelli repented and gave up painting, and Fra Bartolommeo and Lorenzo di Credi actually burned some of their work. Einstein's theory of relativity offended many contemporary physicists, and was not fully accepted for decades-- in France, not until the 1950s.
Today's experimental error is tomorrow's new theory. If you want to discover great new things, then instead of turning a blind eye to the places where conventional wisdom and truth don't quite meet, you should pay particular attention to them.
As a practical matter, I think it's easier to see ugliness than to imagine beauty. Most of the people who've made beautiful things seem to have done it by fixing something that they thought ugly. Great work usually seems to happen because someone sees something and thinks, I could do better than that. Giotto saw traditional Byzantine madonnas painted according to a formula that had satisfied everyone for centuries, and to him they looked wooden and unnatural. Copernicus was so troubled by a hack that all his contemporaries could tolerate that he felt there must be a better solution.
Intolerance for ugliness is not in itself enough. You have to understand a field well before you develop a good nose for what needs fixing. You have to do your homework. But as you become expert in a field, you'll start to hear little voices saying, What a hack! There must be a better way. Don't ignore those voices. Cultivate them. The recipe for great work is: very exacting taste, plus the ability to gratify it.
Notes
Sullivan actually said "form ever follows function," but I think the usual misquotation is closer to what modernist architects meant.
Stephen G. Brush, "Why was Relativity Accepted?" Phys. Perspect. 1 (1999) 184-214.

What Languages Fix

Kevin Kelleher suggested an interesting way to compare programming languages: to describe each in terms of the problem it fixes. The surprising thing is how many, and how well, languages can be described this way.
Algol: Assembly language is too low-level.
Pascal: Algol doesn't have enough data types.
Modula: Pascal is too wimpy for systems programming.
Simula: Algol isn't good enough at simulations.
Smalltalk: Not everything in Simula is an object.
Fortran: Assembly language is too low-level.
Cobol: Fortran is scary.
PL/1: Fortran doesn't have enough data types.
Ada: Every existing language is missing something.
Basic: Fortran is scary.
APL: Fortran isn't good enough at manipulating arrays.
J: APL requires its own character set.
C: Assemby language is too low-level.
C++: C is too low-level.
Java: C++ is a kludge. And Microsoft is going to crush us.
C#: Java is controlled by Sun.
Lisp: Turing Machines are an awkward way to describe computation.
Scheme: MacLisp is a kludge.
T: Scheme has no libraries.
Common Lisp: There are too many dialects of Lisp.
Dylan: Scheme has no libraries, and Lisp syntax is scary.
Perl: Shell scripts/awk/sed are not enough like programming languages.
Python: Perl is a kludge.
Ruby: Perl is a kludge, and Lisp syntax is scary.
Prolog: Programming is not enough like logic.

Succinctness is Power

In the discussion about issues raised by Revenge of the Nerds on the LL1 mailing list, Paul Prescod wrote something that stuck in my mind.
Python's goal is regularity and readability, not succinctness.
On the face of it, this seems a rather damning thing to claim about a programming language. As far as I can tell, succinctness = power. If so, then substituting, we get
Python's goal is regularity and readability, not power.
and this doesn't seem a tradeoff (if it is a tradeoff) that you'd want to make. It's not far from saying that Python's goal is not to be effective as a programming language.
Does succinctness = power? This seems to me an important question, maybe the most important question for anyone interested in language design, and one that it would be useful to confront directly. I don't feel sure yet that the answer is a simple yes, but it seems a good hypothesis to begin with.
Hypothesis
My hypothesis is that succinctness is power, or is close enough that except in pathological examples you can treat them as identical.
It seems to me that succinctness is what programming languages are for. Computers would be just as happy to be told what to do directly in machine language. I think that the main reason we take the trouble to develop high-level languages is to get leverage, so that we can say (and more importantly, think) in 10 lines of a high-level language what would require 1000 lines of machine language. In other words, the main point of high-level languages is to make source code smaller.
If smaller source code is the purpose of high-level languages, and the power of something is how well it achieves its purpose, then the measure of the power of a programming language is how small it makes your programs.
Conversely, a language that doesn't make your programs small is doing a bad job of what programming languages are supposed to do, like a knife that doesn't cut well, or printing that's illegible.
Metrics
Small in what sense though? The most common measure of code size is lines of code. But I think that this metric is the most common because it is is the easiest to measure. I don't think anyone really believes it is the true test of the length of a program. Different languages have different conventions for how much you should put on a line; in C a lot of lines have nothing on them but a delimiter or two.
Another easy test is the number of characters in a program, but this is not very good either; some languages (Perl, for example) just use shorter identifiers than others.
I think a better measure of the size of a program would be the number of elements, where an element is anything that would be a distinct node if you drew a tree representing the source code. The name of a variable or function is an element; an integer or a floating-point number is an element; a segment of literal text is an element; an element of a pattern, or a format directive, is an element; a new block is an element. There are borderline cases (is -5 two elements or one?) but I think most of them are the same for every language, so they don't affect comparisons much.
This metric needs fleshing out, and it could require interpretation in the case of specific languages, but I think it tries to measure the right thing, which is the number of parts a program has. I think the tree you'd draw in this exercise is what you have to make in your head in order to conceive of the program, and so its size is proportionate to the amount of work you have to do to write or read it.
Design
This kind of metric would allow us to compare different languages, but that is not, at least for me, its main value. The main value of the succinctness test is as a guide in designing languages. The most useful comparison between languages is between two potential variants of the same language. What can I do in the language to make programs shorter?
If the conceptual load of a program is proportionate to its complexity, and a given programmer can tolerate a fixed conceptual load, then this is the same as asking, what can I do to enable programmers to get the most done? And that seems to me identical to asking, how can I design a good language?
(Incidentally, nothing makes it more patently obvious that the old chestnut "all languages are equivalent" is false than designing languages. When you are designing a new language, you're constantly comparing two languages-- the language if I did x, and if I didn't-- to decide which is better. If this were really a meaningless question, you might as well flip a coin.)
Aiming for succinctness seems a good way to find new ideas. If you can do something that makes many different programs shorter, it is probably not a coincidence: you have probably discovered a useful new abstraction. You might even be able to write a program to help by searching source code for repeated patterns. Among other languages, those with a reputation for succinctness would be the ones to look to for new ideas: Forth, Joy, Icon.
Comparison
The first person to write about these issues, as far as I know, was Fred Brooks in the Mythical Man Month. He wrote that programmers seemed to generate about the same amount of code per day regardless of the language. When I first read this in my early twenties, it was a big surprise to me and seemed to have huge implications. It meant that (a) the only way to get software written faster was to use a more succinct language, and (b) someone who took the trouble to do this could leave competitors who didn't in the dust.
Brooks' hypothesis, if it's true, seems to be at the very heart of hacking. In the years since, I've paid close attention to any evidence I could get on the question, from formal studies to anecdotes about individual projects. I have seen nothing to contradict him.
I have not yet seen evidence that seemed to me conclusive, and I don't expect to. Studies like Lutz Prechelt's comparison of programming languages, while generating the kind of results I expected, tend to use problems that are too short to be meaningful tests. A better test of a language is what happens in programs that take a month to write. And the only real test, if you believe as I do that the main purpose of a language is to be good to think in (rather than just to tell a computer what to do once you've thought of it) is what new things you can write in it. So any language comparison where you have to meet a predefined spec is testing slightly the wrong thing.
The true test of a language is how well you can discover and solve new problems, not how well you can use it to solve a problem someone else has already formulated. These two are quite different criteria. In art, mediums like embroidery and mosaic work well if you know beforehand what you want to make, but are absolutely lousy if you don't. When you want to discover the image as you make it-- as you have to do with anything as complex as an image of a person, for example-- you need to use a more fluid medium like pencil or ink wash or oil paint. And indeed, the way tapestries and mosaics are made in practice is to make a painting first, then copy it. (The word "cartoon" was originally used to describe a painting intended for this purpose).
What this means is that we are never likely to have accurate comparisons of the relative power of programming languages. We'll have precise comparisons, but not accurate ones. In particular, explicit studies for the purpose of comparing languages, because they will probably use small problems, and will necessarily use predefined problems, will tend to underestimate the power of the more powerful languages.
Reports from the field, though they will necessarily be less precise than "scientific" studies, are likely to be more meaningful. For example, Ulf Wiger of Ericsson did a study that concluded that Erlang was 4-10x more succinct than C++, and proportionately faster to develop software in:
Comparisons between Ericsson-internal development projects indicate similar line/hour productivity, including all phases of software development, rather independently of which language (Erlang, PLEX, C, C++, or Java) was used. What differentiates the different languages then becomes source code volume.
The study also deals explictly with a point that was only implicit in Brooks' book (since he measured lines of debugged code): programs written in more powerful languages tend to have fewer bugs. That becomes an end in itself, possibly more important than programmer productivity, in applications like network switches.
The Taste Test
Ultimately, I think you have to go with your gut. What does it feel like to program in the language? I think the way to find (or design) the best language is to become hypersensitive to how well a language lets you think, then choose/design the language that feels best. If some language feature is awkward or restricting, don't worry, you'll know about it.
Such hypersensitivity will come at a cost. You'll find that you can't stand programming in clumsy languages. I find it unbearably restrictive to program in languages without macros, just as someone used to dynamic typing finds it unbearably restrictive to have to go back to programming in a language where you have to declare the type of every variable, and can't make a list of objects of different types.
I'm not the only one. I know many Lisp hackers that this has happened to. In fact, the most accurate measure of the relative power of programming languages might be the percentage of people who know the language who will take any job where they get to use that language, regardless of the application domain.
Restrictiveness
I think most hackers know what it means for a language to feel restrictive. What's happening when you feel that? I think it's the same feeling you get when the street you want to take is blocked off, and you have to take a long detour to get where you wanted to go. There is something you want to say, and the language won't let you.
What's really going on here, I think, is that a restrictive language is one that isn't succinct enough. The problem is not simply that you can't say what you planned to. It's that the detour the language makes you take is longer. Try this thought experiment. Suppose there were some program you wanted to write, and the language wouldn't let you express it the way you planned to, but instead forced you to write the program in some other way that was shorter. For me at least, that wouldn't feel very restrictive. It would be like the street you wanted to take being blocked off, and the policeman at the intersection directing you to a shortcut instead of a detour. Great!
I think most (ninety percent?) of the feeling of restrictiveness comes from being forced to make the program you write in the language longer than one you have in your head. Restrictiveness is mostly lack of succinctness. So when a language feels restrictive, what that (mostly) means is that it isn't succinct enough, and when a language isn't succinct, it will feel restrictive.
Readability
The quote I began with mentions two other qualities, regularity and readability. I'm not sure what regularity is, or what advantage, if any, code that is regular and readable has over code that is merely readable. But I think I know what is meant by readability, and I think it is also related to succinctness.
We have to be careful here to distinguish between the readability of an individual line of code and the readability of the whole program. It's the second that matters. I agree that a line of Basic is likely to be more readable than a line of Lisp. But a program written in Basic is is going to have more lines than the same program written in Lisp (especially once you cross over into Greenspunland). The total effort of reading the Basic program will surely be greater.
total effort = effort per line x number of lines
I'm not as sure that readability is directly proportionate to succinctness as I am that power is, but certainly succinctness is a factor (in the mathematical sense; see equation above) in readability. So it may not even be meaningful to say that the goal of a language is readability, not succinctness; it could be like saying the goal was readability, not readability.
What readability-per-line does mean, to the user encountering the language for the first time, is that source code will look unthreatening. So readability-per-line could be a good marketing decision, even if it is a bad design decision. It's isomorphic to the very successful technique of letting people pay in installments: instead of frightening them with a high upfront price, you tell them the low monthly payment. Installment plans are a net lose for the buyer, though, as mere readability-per-line probably is for the programmer. The buyer is going to make a lot of those low, low payments; and the programmer is going to read a lot of those individually readable lines.
This tradeoff predates programming languages. If you're used to reading novels and newspaper articles, your first experience of reading a math paper can be dismaying. It could take half an hour to read a single page. And yet, I am pretty sure that the notation is not the problem, even though it may feel like it is. The math paper is hard to read because the ideas are hard. If you expressed the same ideas in prose (as mathematicians had to do before they evolved succinct notations), they wouldn't be any easier to read, because the paper would grow to the size of a book.
To What Extent?
A number of people have rejected the idea that succinctness = power. I think it would be more useful, instead of simply arguing that they are the same or aren't, to ask: to what extent does succinctness = power? Because clearly succinctness is a large part of what higher-level languages are for. If it is not all they're for, then what else are they for, and how important, relatively, are these other functions?
I'm not proposing this just to make the debate more civilized. I really want to know the answer. When, if ever, is a language too succinct for its own good?
The hypothesis I began with was that, except in pathological examples, I thought succinctness could be considered identical with power. What I meant was that in any language anyone would design, they would be identical, but that if someone wanted to design a language explicitly to disprove this hyphothesis, they could probably do it. I'm not even sure of that, actually.
Languages, not Programs
We should be clear that we are talking about the succinctness of languages, not of individual programs. It certainly is possible for individual programs to be written too densely.
I wrote about this in On Lisp. A complex macro may have to save many times its own length to be justified. If writing some hairy macro could save you ten lines of code every time you use it, and the macro is itself ten lines of code, then you get a net saving in lines if you use it more than twice. But that could still be a bad move, because macro definitions are harder to read than ordinary code. You might have to use the macro ten or twenty times before it yielded a net improvement in readability.
I'm sure every language has such tradeoffs (though I suspect the stakes get higher as the language gets more powerful). Every programmer must have seen code that some clever person has made marginally shorter by using dubious programming tricks.
So there is no argument about that-- at least, not from me. Individual programs can certainly be too succinct for their own good. The question is, can a language be? Can a language compel programmers to write code that's short (in elements) at the expense of overall readability?
One reason it's hard to imagine a language being too succinct is that if there were some excessively compact way to phrase something, there would probably also be a longer way. For example, if you felt Lisp programs using a lot of macros or higher-order functions were too dense, you could, if you preferred, write code that was isomorphic to Pascal. If you don't want to express factorial in Arc as a call to a higher-order function
(rec zero 1 * 1-)
you can also write out a recursive definition:
(rfn fact (x) (if (zero x) 1 (* x (fact (1- x)))))
Though I can't off the top of my head think of any examples, I am interested in the question of whether a language could be too succinct. Are there languages that force you to write code in a way that is crabbed and incomprehensible? If anyone has examples, I would be very interested to see them.
(Reminder: What I'm looking for are programs that are very dense according to the metric of "elements" sketched above, not merely programs that are short because delimiters can be omitted and everything has a one-character name.)

Revenge of the Nerds

In the software business there is an ongoing struggle between the pointy-headed academics, and another equally formidable force, the pointy-haired bosses. Everyone knows who the pointy-haired boss is, right? I think most people in the technology world not only recognize this cartoon character, but know the actual person in their company that he is modelled upon.
The pointy-haired boss miraculously combines two qualities that are common by themselves, but rarely seen together: (a) he knows nothing whatsoever about technology, and (b) he has very strong opinions about it.
Suppose, for example, you need to write a piece of software. The pointy-haired boss has no idea how this software has to work, and can't tell one programming language from another, and yet he knows what language you should write it in. Exactly. He thinks you should write it in Java.
Why does he think this? Let's take a look inside the brain of the pointy-haired boss. What he's thinking is something like this. Java is a standard. I know it must be, because I read about it in the press all the time. Since it is a standard, I won't get in trouble for using it. And that also means there will always be lots of Java programmers, so if the programmers working for me now quit, as programmers working for me mysteriously always do, I can easily replace them.
Well, this doesn't sound that unreasonable. But it's all based on one unspoken assumption, and that assumption turns out to be false. The pointy-haired boss believes that all programming languages are pretty much equivalent. If that were true, he would be right on target. If languages are all equivalent, sure, use whatever language everyone else is using.
But all languages are not equivalent, and I think I can prove this to you without even getting into the differences between them. If you asked the pointy-haired boss in 1992 what language software should be written in, he would have answered with as little hesitation as he does today. Software should be written in C++. But if languages are all equivalent, why should the pointy-haired boss's opinion ever change? In fact, why should the developers of Java have even bothered to create a new language?
Presumably, if you create a new language, it's because you think it's better in some way than what people already had. And in fact, Gosling makes it clear in the first Java white paper that Java was designed to fix some problems with C++. So there you have it: languages are not all equivalent. If you follow the trail through the pointy-haired boss's brain to Java and then back through Java's history to its origins, you end up holding an idea that contradicts the assumption you started with.
So, who's right? James Gosling, or the pointy-haired boss? Not surprisingly, Gosling is right. Some languages are better, for certain problems, than others. And you know, that raises some interesting questions. Java was designed to be better, for certain problems, than C++. What problems? When is Java better and when is C++? Are there situations where other languages are better than either of them?
Once you start considering this question, you have opened a real can of worms. If the pointy-haired boss had to think about the problem in its full complexity, it would make his brain explode. As long as he considers all languages equivalent, all he has to do is choose the one that seems to have the most momentum, and since that is more a question of fashion than technology, even he can probably get the right answer. But if languages vary, he suddenly has to solve two simultaneous equations, trying to find an optimal balance between two things he knows nothing about: the relative suitability of the twenty or so leading languages for the problem he needs to solve, and the odds of finding programmers, libraries, etc. for each. If that's what's on the other side of the door, it is no surprise that the pointy-haired boss doesn't want to open it.
The disadvantage of believing that all programming languages are equivalent is that it's not true. But the advantage is that it makes your life a lot simpler. And I think that's the main reason the idea is so widespread. It is a comfortable idea.
We know that Java must be pretty good, because it is the cool, new programming language. Or is it? If you look at the world of programming languages from a distance, it looks like Java is the latest thing. (From far enough away, all you can see is the large, flashing billboard paid for by Sun.) But if you look at this world up close, you find that there are degrees of coolness. Within the hacker subculture, there is another language called Perl that is considered a lot cooler than Java. Slashdot, for example, is generated by Perl. I don't think you would find those guys using Java Server Pages. But there is another, newer language, called Python, whose users tend to look down on Perl, and more waiting in the wings.
If you look at these languages in order, Java, Perl, Python, you notice an interesting pattern. At least, you notice this pattern if you are a Lisp hacker. Each one is progressively more like Lisp. Python copies even features that many Lisp hackers consider to be mistakes. You could translate simple Lisp programs into Python line for line. It's 2002, and programming languages have almost caught up with 1958.
Catching Up with Math
What I mean is that Lisp was first discovered by John McCarthy in 1958, and popular programming languages are only now catching up with the ideas he developed then.
Now, how could that be true? Isn't computer technology something that changes very rapidly? I mean, in 1958, computers were refrigerator-sized behemoths with the processing power of a wristwatch. How could any technology that old even be relevant, let alone superior to the latest developments?
I'll tell you how. It's because Lisp was not really designed to be a programming language, at least not in the sense we mean today. What we mean by a programming language is something we use to tell a computer what to do. McCarthy did eventually intend to develop a programming language in this sense, but the Lisp that we actually ended up with was based on something separate that he did as a theoretical exercise-- an effort to define a more convenient alternative to the Turing Machine. As McCarthy said later,
Another way to show that Lisp was neater than Turing machines was to write a universal Lisp function and show that it is briefer and more comprehensible than the description of a universal Turing machine. This was the Lisp function eval..., which computes the value of a Lisp expression.... Writing eval required inventing a notation representing Lisp functions as Lisp data, and such a notation was devised for the purposes of the paper with no thought that it would be used to express Lisp programs in practice.
What happened next was that, some time in late 1958, Steve Russell, one of McCarthy's grad students, looked at this definition of eval and realized that if he translated it into machine language, the result would be a Lisp interpreter.
This was a big surprise at the time. Here is what McCarthy said about it later in an interview:
Steve Russell said, look, why don't I program this eval..., and I said to him, ho, ho, you're confusing theory with practice, this eval is intended for reading, not for computing. But he went ahead and did it. That is, he compiled the eval in my paper into [IBM] 704 machine code, fixing bugs, and then advertised this as a Lisp interpreter, which it certainly was. So at that point Lisp had essentially the form that it has today....
Suddenly, in a matter of weeks I think, McCarthy found his theoretical exercise transformed into an actual programming language-- and a more powerful one than he had intended.
So the short explanation of why this 1950s language is not obsolete is that it was not technology but math, and math doesn't get stale. The right thing to compare Lisp to is not 1950s hardware, but, say, the Quicksort algorithm, which was discovered in 1960 and is still the fastest general-purpose sort.
There is one other language still surviving from the 1950s, Fortran, and it represents the opposite approach to language design. Lisp was a piece of theory that unexpectedly got turned into a programming language. Fortran was developed intentionally as a programming language, but what we would now consider a very low-level one.
Fortran I, the language that was developed in 1956, was a very different animal from present-day Fortran. Fortran I was pretty much assembly language with math. In some ways it was less powerful than more recent assembly languages; there were no subroutines, for example, only branches. Present-day Fortran is now arguably closer to Lisp than to Fortran I.
Lisp and Fortran were the trunks of two separate evolutionary trees, one rooted in math and one rooted in machine architecture. These two trees have been converging ever since. Lisp started out powerful, and over the next twenty years got fast. So-called mainstream languages started out fast, and over the next forty years gradually got more powerful, until now the most advanced of them are fairly close to Lisp. Close, but they are still missing a few things....
What Made Lisp Different
When it was first developed, Lisp embodied nine new ideas. Some of these we now take for granted, others are only seen in more advanced languages, and two are still unique to Lisp. The nine ideas are, in order of their adoption by the mainstream,
Conditionals. A conditional is an if-then-else construct. We take these for granted now, but Fortran I didn't have them. It had only a conditional goto closely based on the underlying machine instruction.
A function type. In Lisp, functions are a data type just like integers or strings. They have a literal representation, can be stored in variables, can be passed as arguments, and so on.
Recursion. Lisp was the first programming language to support it.
Dynamic typing. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning or binding variables means copying pointers, not what they point to.
Garbage-collection.
Programs composed of expressions. Lisp programs are trees of expressions, each of which returns a value. This is in contrast to Fortran and most succeeding languages, which distinguish between expressions and statements.
It was natural to have this distinction in Fortran I because you could not nest statements. And so while you needed expressions for math to work, there was no point in making anything else return a value, because there could not be anything waiting for it.
This limitation went away with the arrival of block-structured languages, but by then it was too late. The distinction between expressions and statements was entrenched. It spread from Fortran into Algol and then to both their descendants.
A symbol type. Symbols are effectively pointers to strings stored in a hash table. So you can test equality by comparing a pointer, instead of comparing each character.
A notation for code using trees of symbols and constants.
The whole language there all the time. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime.
Running code at read-time lets users reprogram Lisp's syntax; running code at compile-time is the basis of macros; compiling at runtime is the basis of Lisp's use as an extension language in programs like Emacs; and reading at runtime enables programs to communicate using s-expressions, an idea recently reinvented as XML.
When Lisp first appeared, these ideas were far removed from ordinary programming practice, which was dictated largely by the hardware available in the late 1950s. Over time, the default language, embodied in a succession of popular languages, has gradually evolved toward Lisp. Ideas 1-5 are now widespread. Number 6 is starting to appear in the mainstream. Python has a form of 7, though there doesn't seem to be any syntax for it.
As for number 8, this may be the most interesting of the lot. Ideas 8 and 9 only became part of Lisp by accident, because Steve Russell implemented something McCarthy had never intended to be implemented. And yet these ideas turn out to be responsible for both Lisp's strange appearance and its most distinctive features. Lisp looks strange not so much because it has a strange syntax as because it has no syntax; you express programs directly in the parse trees that get built behind the scenes when other languages are parsed, and these trees are made of lists, which are Lisp data structures.
Expressing the language in its own data structures turns out to be a very powerful feature. Ideas 8 and 9 together mean that you can write programs that write programs. That may sound like a bizarre idea, but it's an everyday thing in Lisp. The most common way to do it is with something called a macro.
The term "macro" does not mean in Lisp what it means in other languages. A Lisp macro can be anything from an abbreviation to a compiler for a new language. If you want to really understand Lisp, or just expand your programming horizons, I would learn more about macros.
Macros (in the Lisp sense) are still, as far as I know, unique to Lisp. This is partly because in order to have macros you probably have to make your language look as strange as Lisp. It may also be because if you do add that final increment of power, you can no longer claim to have invented a new language, but only a new dialect of Lisp.
I mention this mostly as a joke, but it is quite true. If you define a language that has car, cdr, cons, quote, cond, atom, eq, and a notation for functions expressed as lists, then you can build all the rest of Lisp out of it. That is in fact the defining quality of Lisp: it was in order to make this so that McCarthy gave Lisp the shape it has.
Where Languages Matter
So suppose Lisp does represent a kind of limit that mainstream languages are approaching asymptotically-- does that mean you should actually use it to write software? How much do you lose by using a less powerful language? Isn't it wiser, sometimes, not to be at the very edge of innovation? And isn't popularity to some extent its own justification? Isn't the pointy-haired boss right, for example, to want to use a language for which he can easily hire programmers?
There are, of course, projects where the choice of programming language doesn't matter much. As a rule, the more demanding the application, the more leverage you get from using a powerful language. But plenty of projects are not demanding at all. Most programming probably consists of writing little glue programs, and for little glue programs you can use any language that you're already familiar with and that has good libraries for whatever you need to do. If you just need to feed data from one Windows app to another, sure, use Visual Basic.
You can write little glue programs in Lisp too (I use it as a desktop calculator), but the biggest win for languages like Lisp is at the other end of the spectrum, where you need to write sophisticated programs to solve hard problems in the face of fierce competition. A good example is the airline fare search program that ITA Software licenses to Orbitz. These guys entered a market already dominated by two big, entrenched competitors, Travelocity and Expedia, and seem to have just humiliated them technologically.
The core of ITA's application is a 200,000 line Common Lisp program that searches many orders of magnitude more possibilities than their competitors, who apparently are still using mainframe-era programming techniques. (Though ITA is also in a sense using a mainframe-era programming language.) I have never seen any of ITA's code, but according to one of their top hackers they use a lot of macros, and I am not surprised to hear it.
Centripetal Forces
I'm not saying there is no cost to using uncommon technologies. The pointy-haired boss is not completely mistaken to worry about this. But because he doesn't understand the risks, he tends to magnify them.
I can think of three problems that could arise from using less common languages. Your programs might not work well with programs written in other languages. You might have fewer libraries at your disposal. And you might have trouble hiring programmers.
How much of a problem is each of these? The importance of the first varies depending on whether you have control over the whole system. If you're writing software that has to run on a remote user's machine on top of a buggy, closed operating system (I mention no names), there may be advantages to writing your application in the same language as the OS. But if you control the whole system and have the source code of all the parts, as ITA presumably does, you can use whatever languages you want. If any incompatibility arises, you can fix it yourself.
In server-based applications you can get away with using the most advanced technologies, and I think this is the main cause of what Jonathan Erickson calls the "programming language renaissance." This is why we even hear about new languages like Perl and Python. We're not hearing about these languages because people are using them to write Windows apps, but because people are using them on servers. And as software shifts off the desktop and onto servers (a future even Microsoft seems resigned to), there will be less and less pressure to use middle-of-the-road technologies.
As for libraries, their importance also depends on the application. For less demanding problems, the availability of libraries can outweigh the intrinsic power of the language. Where is the breakeven point? Hard to say exactly, but wherever it is, it is short of anything you'd be likely to call an application. If a company considers itself to be in the software business, and they're writing an application that will be one of their products, then it will probably involve several hackers and take at least six months to write. In a project of that size, powerful languages probably start to outweigh the convenience of pre-existing libraries.
The third worry of the pointy-haired boss, the difficulty of hiring programmers, I think is a red herring. How many hackers do you need to hire, after all? Surely by now we all know that software is best developed by teams of less than ten people. And you shouldn't have trouble hiring hackers on that scale for any language anyone has ever heard of. If you can't find ten Lisp hackers, then your company is probably based in the wrong city for developing software.
In fact, choosing a more powerful language probably decreases the size of the team you need, because (a) if you use a more powerful language you probably won't need as many hackers, and (b) hackers who work in more advanced languages are likely to be smarter.
I'm not saying that you won't get a lot of pressure to use what are perceived as "standard" technologies. At Viaweb (now Yahoo Store), we raised some eyebrows among VCs and potential acquirers by using Lisp. But we also raised eyebrows by using generic Intel boxes as servers instead of "industrial strength" servers like Suns, for using a then-obscure open-source Unix variant called FreeBSD instead of a real commercial OS like Windows NT, for ignoring a supposed e-commerce standard called SET that no one now even remembers, and so on.
You can't let the suits make technical decisions for you. Did it alarm some potential acquirers that we used Lisp? Some, slightly, but if we hadn't used Lisp, we wouldn't have been able to write the software that made them want to buy us. What seemed like an anomaly to them was in fact cause and effect.
If you start a startup, don't design your product to please VCs or potential acquirers. Design your product to please the users. If you win the users, everything else will follow. And if you don't, no one will care how comfortingly orthodox your technology choices were.
The Cost of Being Average
How much do you lose by using a less powerful language? There is actually some data out there about that.
The most convenient measure of power is probably code size. The point of high-level languages is to give you bigger abstractions-- bigger bricks, as it were, so you don't need as many to build a wall of a given size. So the more powerful the language, the shorter the program (not simply in characters, of course, but in distinct elements).
How does a more powerful language enable you to write shorter programs? One technique you can use, if the language will let you, is something called bottom-up programming. Instead of simply writing your application in the base language, you build on top of the base language a language for writing programs like yours, then write your program in it. The combined code can be much shorter than if you had written your whole program in the base language-- indeed, this is how most compression algorithms work. A bottom-up program should be easier to modify as well, because in many cases the language layer won't have to change at all.
Code size is important, because the time it takes to write a program depends mostly on its length. If your program would be three times as long in another language, it will take three times as long to write-- and you can't get around this by hiring more people, because beyond a certain size new hires are actually a net lose. Fred Brooks described this phenomenon in his famous book The Mythical Man-Month, and everything I've seen has tended to confirm what he said.
So how much shorter are your programs if you write them in Lisp? Most of the numbers I've heard for Lisp versus C, for example, have been around 7-10x. But a recent article about ITA in New Architect magazine said that "one line of Lisp can replace 20 lines of C," and since this article was full of quotes from ITA's president, I assume they got this number from ITA. If so then we can put some faith in it; ITA's software includes a lot of C and C++ as well as Lisp, so they are speaking from experience.
My guess is that these multiples aren't even constant. I think they increase when you face harder problems and also when you have smarter programmers. A really good hacker can squeeze more out of better tools.
As one data point on the curve, at any rate, if you were to compete with ITA and chose to write your software in C, they would be able to develop software twenty times faster than you. If you spent a year on a new feature, they'd be able to duplicate it in less than three weeks. Whereas if they spent just three months developing something new, it would be five years before you had it too.
And you know what? That's the best-case scenario. When you talk about code-size ratios, you're implicitly assuming that you can actually write the program in the weaker language. But in fact there are limits on what programmers can do. If you're trying to solve a hard problem with a language that's too low-level, you reach a point where there is just too much to keep in your head at once.
So when I say it would take ITA's imaginary competitor five years to duplicate something ITA could write in Lisp in three months, I mean five years if nothing goes wrong. In fact, the way things work in most companies, any development project that would take five years is likely never to get finished at all.
I admit this is an extreme case. ITA's hackers seem to be unusually smart, and C is a pretty low-level language. But in a competitive market, even a differential of two or three to one would be enough to guarantee that you'd always be behind.
A Recipe
This is the kind of possibility that the pointy-haired boss doesn't even want to think about. And so most of them don't. Because, you know, when it comes down to it, the pointy-haired boss doesn't mind if his company gets their ass kicked, so long as no one can prove it's his fault. The safest plan for him personally is to stick close to the center of the herd.
Within large organizations, the phrase used to describe this approach is "industry best practice." Its purpose is to shield the pointy-haired boss from responsibility: if he chooses something that is "industry best practice," and the company loses, he can't be blamed. He didn't choose, the industry did.
I believe this term was originally used to describe accounting methods and so on. What it means, roughly, is don't do anything weird. And in accounting that's probably a good idea. The terms "cutting-edge" and "accounting" do not sound good together. But when you import this criterion into decisions about technology, you start to get the wrong answers.
Technology often should be cutting-edge. In programming languages, as Erann Gat has pointed out, what "industry best practice" actually gets you is not the best, but merely the average. When a decision causes you to develop software at a fraction of the rate of more aggressive competitors, "best practice" is a misnomer.
So here we have two pieces of information that I think are very valuable. In fact, I know it from my own experience. Number 1, languages vary in power. Number 2, most managers deliberately ignore this. Between them, these two facts are literally a recipe for making money. ITA is an example of this recipe in action. If you want to win in a software business, just take on the hardest problem you can find, use the most powerful language you can get, and wait for your competitors' pointy-haired bosses to revert to the mean.
Appendix: Power
As an illustration of what I mean about the relative power of programming languages, consider the following problem. We want to write a function that generates accumulators-- a function that takes a number n, and returns a function that takes another number i and returns n incremented by i.
(That's incremented by, not plus. An accumulator has to accumulate.)
In Common Lisp this would be
(defun foo (n) (lambda (i) (incf n i)))
and in Perl 5,
sub foo { my ($n) = @_; sub {$n += shift} }
which has more elements than the Lisp version because you have to extract parameters manually in Perl.
In Smalltalk the code is slightly longer than in Lisp
foo: n |s| s := n. ^[:i| s := s+i.]
because although in general lexical variables work, you can't do an assignment to a parameter, so you have to create a new variable s.
In Javascript the example is, again, slightly longer, because Javascript retains the distinction between statements and expressions, so you need explicit return statements to return values:
function foo(n) { return function (i) { return n += i } }
(To be fair, Perl also retains this distinction, but deals with it in typical Perl fashion by letting you omit returns.)
If you try to translate the Lisp/Perl/Smalltalk/Javascript code into Python you run into some limitations. Because Python doesn't fully support lexical variables, you have to create a data structure to hold the value of n. And although Python does have a function data type, there is no literal representation for one (unless the body is only a single expression) so you need to create a named function to return. This is what you end up with:
def foo(n): s = [n] def bar(i): s[0] += i return s[0] return bar
Python users might legitimately ask why they can't just write
def foo(n): return lambda i: return n += i
or even
def foo(n): lambda i: n += i
and my guess is that they probably will, one day. (But if they don't want to wait for Python to evolve the rest of the way into Lisp, they could always just...)
In OO languages, you can, to a limited extent, simulate a closure (a function that refers to variables defined in enclosing scopes) by defining a class with one method and a field to replace each variable from an enclosing scope. This makes the programmer do the kind of code analysis that would be done by the compiler in a language with full support for lexical scope, and it won't work if more than one function refers to the same variable, but it is enough in simple cases like this.
Python experts seem to agree that this is the preferred way to solve the problem in Python, writing either
def foo(n): class acc: def __init__(self, s): self.s = s def inc(self, i): self.s += i return self.s return acc(n).inc
or
class foo: def __init__(self, n): self.n = n def __call__(self, i): self.n += i return self.n
I include these because I wouldn't want Python advocates to say I was misrepresenting the language, but both seem to me more complex than the first version. You're doing the same thing, setting up a separate place to hold the accumulator; it's just a field in an object instead of the head of a list. And the use of these special, reserved field names, especially __call__, seems a bit of a hack.
In the rivalry between Perl and Python, the claim of the Python hackers seems to be that that Python is a more elegant alternative to Perl, but what this case shows is that power is the ultimate elegance: the Perl program is simpler (has fewer elements), even if the syntax is a bit uglier.
How about other languages? In the other languages mentioned in this talk-- Fortran, C, C++, Java, and Visual Basic-- it is not clear whether you can actually solve this problem. Ken Anderson says that the following code is about as close as you can get in Java:
public interface Inttoint { public int call(int i); } public static Inttoint foo(final int n) { return new Inttoint() { int s = n; public int call(int i) { s = s + i; return s; }}; }
This falls short of the spec because it only works for integers. After many email exchanges with Java hackers, I would say that writing a properly polymorphic version that behaves like the preceding examples is somewhere between damned awkward and impossible. If anyone wants to write one I'd be very curious to see it, but I personally have timed out.
It's not literally true that you can't solve this problem in other languages, of course. The fact that all these languages are Turing-equivalent means that, strictly speaking, you can write any program in any of them. So how would you do it? In the limit case, by writing a Lisp interpreter in the less powerful language.
That sounds like a joke, but it happens so often to varying degrees in large programming projects that there is a name for the phenomenon, Greenspun's Tenth Rule:
Any sufficiently complicated C or Fortran program contains an ad hoc informally-specified bug-ridden slow implementation of half of Common Lisp.
If you try to solve a hard problem, the question is not whether you will use a powerful enough language, but whether you will (a) use a powerful language, (b) write a de facto interpreter for one, or (c) yourself become a human compiler for one. We see this already begining to happen in the Python example, where we are in effect simulating the code that a compiler would generate to implement a lexical variable.
This practice is not only common, but institutionalized. For example, in the OO world you hear a good deal about "patterns". I wonder if these patterns are not sometimes evidence of case (c), the human compiler, at work. When I see patterns in my programs, I consider it a sign of trouble. The shape of a program should reflect only the problem it needs to solve. Any other regularity in the code is a sign, to me at least, that I'm using abstractions that aren't powerful enough-- often that I'm generating by hand the expansions of some macro that I need to write.
Notes
The IBM 704 CPU was about the size of a refrigerator, but a lot heavier. The CPU weighed 3150 pounds, and the 4K of RAM was in a separate box weighing another 4000 pounds. The Sub-Zero 690, one of the largest household refrigerators, weighs 656 pounds.
Steve Russell also wrote the first (digital) computer game, Spacewar, in 1962.
If you want to trick a pointy-haired boss into letting you write software in Lisp, you could try telling him it's XML.
Here is the accumulator generator in other Lisp dialects: Scheme: (define (foo n) (lambda (i) (set! n (+ n i)) n)) Goo: (df foo (n) (op incf n _))) Arc: (def foo (n) [++ n _]) Erann Gat's sad tale about "industry best practice" at JPL inspired me to address this generally misapplied phrase.
Peter Norvig found that 16 of the 23 patterns in Design Patterns were "invisible or simpler" in Lisp.
Thanks to the many people who answered my questions about various languages and/or read drafts of this, including Ken Anderson, Trevor Blackwell, Erann Gat, Dan Giffin, Sarah Harlin, Jeremy Hylton, Robert Morris, Peter Norvig, Guy Steele, and Anton van Straaten. They bear no blame for any opinions expressed.

A Plan for Spam

(This article describes the spam-filtering techniques used in the spamproof web-based mail reader we built to exercise Arc. An improved algorithm is described in Better Bayesian Filtering.)
I think it's possible to stop spam, and that content-based filters are the way to do it. The Achilles heel of the spammers is their message. They can circumvent any other barrier you set up. They have so far, at least. But they have to deliver their message, whatever it is. If we can write software that recognizes their messages, there is no way they can get around that.
_ _ _
To the recipient, spam is easily recognizable. If you hired someone to read your mail and discard the spam, they would have little trouble doing it. How much do we have to do, short of AI, to automate this process?
I think we will be able to solve the problem with fairly simple algorithms. In fact, I've found that you can filter present-day spam acceptably well using nothing more than a Bayesian combination of the spam probabilities of individual words. Using a slightly tweaked (as described below) Bayesian filter, we now miss less than 5 per 1000 spams, with 0 false positives.
The statistical approach is not usually the first one people try when they write spam filters. Most hackers' first instinct is to try to write software that recognizes individual properties of spam. You look at spams and you think, the gall of these guys to try sending me mail that begins "Dear Friend" or has a subject line that's all uppercase and ends in eight exclamation points. I can filter out that stuff with about one line of code.
And so you do, and in the beginning it works. A few simple rules will take a big bite out of your incoming spam. Merely looking for the word "click" will catch 79.7% of the emails in my spam corpus, with only 1.2% false positives.
I spent about six months writing software that looked for individual spam features before I tried the statistical approach. What I found was that recognizing that last few percent of spams got very hard, and that as I made the filters stricter I got more false positives.
False positives are innocent emails that get mistakenly identified as spams. For most users, missing legitimate email is an order of magnitude worse than receiving spam, so a filter that yields false positives is like an acne cure that carries a risk of death to the patient.
The more spam a user gets, the less likely he'll be to notice one innocent mail sitting in his spam folder. And strangely enough, the better your spam filters get, the more dangerous false positives become, because when the filters are really good, users will be more likely to ignore everything they catch.
I don't know why I avoided trying the statistical approach for so long. I think it was because I got addicted to trying to identify spam features myself, as if I were playing some kind of competitive game with the spammers. (Nonhackers don't often realize this, but most hackers are very competitive.) When I did try statistical analysis, I found immediately that it was much cleverer than I had been. It discovered, of course, that terms like "virtumundo" and "teens" were good indicators of spam. But it also discovered that "per" and "FL" and "ff0000" are good indicators of spam. In fact, "ff0000" (html for bright red) turns out to be as good an indicator of spam as any pornographic term.
_ _ _
Here's a sketch of how I do statistical filtering. I start with one corpus of spam and one of nonspam mail. At the moment each one has about 4000 messages in it. I scan the entire text, including headers and embedded html and javascript, of each message in each corpus. I currently consider alphanumeric characters, dashes, apostrophes, and dollar signs to be part of tokens, and everything else to be a token separator. (There is probably room for improvement here.) I ignore tokens that are all digits, and I also ignore html comments, not even considering them as token separators.
I count the number of times each token (ignoring case, currently) occurs in each corpus. At this stage I end up with two large hash tables, one for each corpus, mapping tokens to number of occurrences.
Next I create a third hash table, this time mapping each token to the probability that an email containing it is a spam, which I calculate as follows [1]:
(let ((g (* 2 (or (gethash word good) 0))) (b (or (gethash word bad) 0))) (unless (< (+ g b) 5) (max .01 (min .99 (float (/ (min 1 (/ b nbad)) (+ (min 1 (/ g ngood)) (min 1 (/ b nbad)))))))))
where word is the token whose probability we're calculating, good and bad are the hash tables I created in the first step, and ngood and nbad are the number of nonspam and spam messages respectively.
I explained this as code to show a couple of important details. I want to bias the probabilities slightly to avoid false positives, and by trial and error I've found that a good way to do it is to double all the numbers in good. This helps to distinguish between words that occasionally do occur in legitimate email and words that almost never do. I only consider words that occur more than five times in total (actually, because of the doubling, occurring three times in nonspam mail would be enough). And then there is the question of what probability to assign to words that occur in one corpus but not the other. Again by trial and error I chose .01 and .99. There may be room for tuning here, but as the corpus grows such tuning will happen automatically anyway.
The especially observant will notice that while I consider each corpus to be a single long stream of text for purposes of counting occurrences, I use the number of emails in each, rather than their combined length, as the divisor in calculating spam probabilities. This adds another slight bias to protect against false positives.
When new mail arrives, it is scanned into tokens, and the most interesting fifteen tokens, where interesting is measured by how far their spam probability is from a neutral .5, are used to calculate the probability that the mail is spam. If probs is a list of the fifteen individual probabilities, you calculate the combined probability thus:
(let ((prod (apply #'* probs))) (/ prod (+ prod (apply #'* (mapcar #'(lambda (x) (- 1 x)) probs)))))
One question that arises in practice is what probability to assign to a word you've never seen, i.e. one that doesn't occur in the hash table of word probabilities. I've found, again by trial and error, that .4 is a good number to use. If you've never seen a word before, it is probably fairly innocent; spam words tend to be all too familiar.
There are examples of this algorithm being applied to actual emails in an appendix at the end.
I treat mail as spam if the algorithm above gives it a probability of more than .9 of being spam. But in practice it would not matter much where I put this threshold, because few probabilities end up in the middle of the range.
_ _ _
One great advantage of the statistical approach is that you don't have to read so many spams. Over the past six months, I've read literally thousands of spams, and it is really kind of demoralizing. Norbert Wiener said if you compete with slaves you become a slave, and there is something similarly degrading about competing with spammers. To recognize individual spam features you have to try to get into the mind of the spammer, and frankly I want to spend as little time inside the minds of spammers as possible.
But the real advantage of the Bayesian approach, of course, is that you know what you're measuring. Feature-recognizing filters like SpamAssassin assign a spam "score" to email. The Bayesian approach assigns an actual probability. The problem with a "score" is that no one knows what it means. The user doesn't know what it means, but worse still, neither does the developer of the filter. How many points should an email get for having the word "sex" in it? A probability can of course be mistaken, but there is little ambiguity about what it means, or how evidence should be combined to calculate it. Based on my corpus, "sex" indicates a .97 probability of the containing email being a spam, whereas "sexy" indicates .99 probability. And Bayes' Rule, equally unambiguous, says that an email containing both words would, in the (unlikely) absence of any other evidence, have a 99.97% chance of being a spam.
Because it is measuring probabilities, the Bayesian approach considers all the evidence in the email, both good and bad. Words that occur disproportionately rarely in spam (like "though" or "tonight" or "apparently") contribute as much to decreasing the probability as bad words like "unsubscribe" and "opt-in" do to increasing it. So an otherwise innocent email that happens to include the word "sex" is not going to get tagged as spam.
Ideally, of course, the probabilities should be calculated individually for each user. I get a lot of email containing the word "Lisp", and (so far) no spam that does. So a word like that is effectively a kind of password for sending mail to me. In my earlier spam-filtering software, the user could set up a list of such words and mail containing them would automatically get past the filters. On my list I put words like "Lisp" and also my zipcode, so that (otherwise rather spammy-sounding) receipts from online orders would get through. I thought I was being very clever, but I found that the Bayesian filter did the same thing for me, and moreover discovered of a lot of words I hadn't thought of.
When I said at the start that our filters let through less than 5 spams per 1000 with 0 false positives, I'm talking about filtering my mail based on a corpus of my mail. But these numbers are not misleading, because that is the approach I'm advocating: filter each user's mail based on the spam and nonspam mail he receives. Essentially, each user should have two delete buttons, ordinary delete and delete-as-spam. Anything deleted as spam goes into the spam corpus, and everything else goes into the nonspam corpus.
You could start users with a seed filter, but ultimately each user should have his own per-word probabilities based on the actual mail he receives. This (a) makes the filters more effective, (b) lets each user decide their own precise definition of spam, and (c) perhaps best of all makes it hard for spammers to tune mails to get through the filters. If a lot of the brain of the filter is in the individual databases, then merely tuning spams to get through the seed filters won't guarantee anything about how well they'll get through individual users' varying and much more trained filters.
Content-based spam filtering is often combined with a whitelist, a list of senders whose mail can be accepted with no filtering. One easy way to build such a whitelist is to keep a list of every address the user has ever sent mail to. If a mail reader has a delete-as-spam button then you could also add the from address of every email the user has deleted as ordinary trash.
I'm an advocate of whitelists, but more as a way to save computation than as a way to improve filtering. I used to think that whitelists would make filtering easier, because you'd only have to filter email from people you'd never heard from, and someone sending you mail for the first time is constrained by convention in what they can say to you. Someone you already know might send you an email talking about sex, but someone sending you mail for the first time would not be likely to. The problem is, people can have more than one email address, so a new from-address doesn't guarantee that the sender is writing to you for the first time. It is not unusual for an old friend (especially if he is a hacker) to suddenly send you an email with a new from-address, so you can't risk false positives by filtering mail from unknown addresses especially stringently.
In a sense, though, my filters do themselves embody a kind of whitelist (and blacklist) because they are based on entire messages, including the headers. So to that extent they "know" the email addresses of trusted senders and even the routes by which mail gets from them to me. And they know the same about spam, including the server names, mailer versions, and protocols.
_ _ _
If I thought that I could keep up current rates of spam filtering, I would consider this problem solved. But it doesn't mean much to be able to filter out most present-day spam, because spam evolves. Indeed, most antispam techniques so far have been like pesticides that do nothing more than create a new, resistant strain of bugs.
I'm more hopeful about Bayesian filters, because they evolve with the spam. So as spammers start using "c0ck" instead of "cock" to evade simple-minded spam filters based on individual words, Bayesian filters automatically notice. Indeed, "c0ck" is far more damning evidence than "cock", and Bayesian filters know precisely how much more.
Still, anyone who proposes a plan for spam filtering has to be able to answer the question: if the spammers knew exactly what you were doing, how well could they get past you? For example, I think that if checksum-based spam filtering becomes a serious obstacle, the spammers will just switch to mad-lib techniques for generating message bodies.
To beat Bayesian filters, it would not be enough for spammers to make their emails unique or to stop using individual naughty words. They'd have to make their mails indistinguishable from your ordinary mail. And this I think would severely constrain them. Spam is mostly sales pitches, so unless your regular mail is all sales pitches, spams will inevitably have a different character. And the spammers would also, of course, have to change (and keep changing) their whole infrastructure, because otherwise the headers would look as bad to the Bayesian filters as ever, no matter what they did to the message body. I don't know enough about the infrastructure that spammers use to know how hard it would be to make the headers look innocent, but my guess is that it would be even harder than making the message look innocent.
Assuming they could solve the problem of the headers, the spam of the future will probably look something like this:
Hey there. Thought you should check out the following: http://www.27meg.com/foo
because that is about as much sales pitch as content-based filtering will leave the spammer room to make. (Indeed, it will be hard even to get this past filters, because if everything else in the email is neutral, the spam probability will hinge on the url, and it will take some effort to make that look neutral.)
Spammers range from businesses running so-called opt-in lists who don't even try to conceal their identities, to guys who hijack mail servers to send out spams promoting porn sites. If we use filtering to whittle their options down to mails like the one above, that should pretty much put the spammers on the "legitimate" end of the spectrum out of business; they feel obliged by various state laws to include boilerplate about why their spam is not spam, and how to cancel your "subscription," and that kind of text is easy to recognize.
(I used to think it was naive to believe that stricter laws would decrease spam. Now I think that while stricter laws may not decrease the amount of spam that spammers send, they can certainly help filters to decrease the amount of spam that recipients actually see.)
All along the spectrum, if you restrict the sales pitches spammers can make, you will inevitably tend to put them out of business. That word business is an important one to remember. The spammers are businessmen. They send spam because it works. It works because although the response rate is abominably low (at best 15 per million, vs 3000 per million for a catalog mailing), the cost, to them, is practically nothing. The cost is enormous for the recipients, about 5 man-weeks for each million recipients who spend a second to delete the spam, but the spammer doesn't have to pay that.
Sending spam does cost the spammer something, though. [2] So the lower we can get the response rate-- whether by filtering, or by using filters to force spammers to dilute their pitches-- the fewer businesses will find it worth their while to send spam.
The reason the spammers use the kinds of sales pitches that they do is to increase response rates. This is possibly even more disgusting than getting inside the mind of a spammer, but let's take a quick look inside the mind of someone who responds to a spam. This person is either astonishingly credulous or deeply in denial about their sexual interests. In either case, repulsive or idiotic as the spam seems to us, it is exciting to them. The spammers wouldn't say these things if they didn't sound exciting. And "thought you should check out the following" is just not going to have nearly the pull with the spam recipient as the kinds of things that spammers say now. Result: if it can't contain exciting sales pitches, spam becomes less effective as a marketing vehicle, and fewer businesses want to use it.
That is the big win in the end. I started writing spam filtering software because I didn't want have to look at the stuff anymore. But if we get good enough at filtering out spam, it will stop working, and the spammers will actually stop sending it.
_ _ _
Of all the approaches to fighting spam, from software to laws, I believe Bayesian filtering will be the single most effective. But I also think that the more different kinds of antispam efforts we undertake, the better, because any measure that constrains spammers will tend to make filtering easier. And even within the world of content-based filtering, I think it will be a good thing if there are many different kinds of software being used simultaneously. The more different filters there are, the harder it will be for spammers to tune spams to get through them.
Appendix: Examples of Filtering
Here is an example of a spam that arrived while I was writing this article. The fifteen most interesting words in this spam are:
qvp0045 indira mx-05 intimail $7500 freeyankeedom cdo bluefoxmedia jpg unsecured platinum 3d0 qves 7c5 7c266675
The words are a mix of stuff from the headers and from the message body, which is typical of spam. Also typical of spam is that every one of these words has a spam probability, in my database, of .99. In fact there are more than fifteen words with probabilities of .99, and these are just the first fifteen seen.
Unfortunately that makes this email a boring example of the use of Bayes' Rule. To see an interesting variety of probabilities we have to look at this actually quite atypical spam.
The fifteen most interesting words in this spam, with their probabilities, are:
madam 0.99 promotion 0.99 republic 0.99 shortest 0.047225013 mandatory 0.047225013 standardization 0.07347802 sorry 0.08221981 supported 0.09019077 people's 0.09019077 enter 0.9075001 quality 0.8921298 organization 0.12454646 investment 0.8568143 very 0.14758544 valuable 0.82347786
This time the evidence is a mix of good and bad. A word like "shortest" is almost as much evidence for innocence as a word like "madam" or "promotion" is for guilt. But still the case for guilt is stronger. If you combine these numbers according to Bayes' Rule, the resulting probability is .9027.
"Madam" is obviously from spams beginning "Dear Sir or Madam." They're not very common, but the word "madam" never occurs in my legitimate email, and it's all about the ratio.
"Republic" scores high because it often shows up in Nigerian scam emails, and also occurs once or twice in spams referring to Korea and South Africa. You might say that it's an accident that it thus helps identify this spam. But I've found when examining spam probabilities that there are a lot of these accidents, and they have an uncanny tendency to push things in the right direction rather than the wrong one. In this case, it is not entirely a coincidence that the word "Republic" occurs in Nigerian scam emails and this spam. There is a whole class of dubious business propositions involving less developed countries, and these in turn are more likely to have names that specify explicitly (because they aren't) that they are republics.[3]
On the other hand, "enter" is a genuine miss. It occurs mostly in unsubscribe instructions, but here is used in a completely innocent way. Fortunately the statistical approach is fairly robust, and can tolerate quite a lot of misses before the results start to be thrown off.
For comparison, here is an example of that rare bird, a spam that gets through the filters. Why? Because by sheer chance it happens to be loaded with words that occur in my actual email:
perl 0.01 python 0.01 tcl 0.01 scripting 0.01 morris 0.01 graham 0.01491078 guarantee 0.9762507 cgi 0.9734398 paul 0.027040077 quite 0.030676773 pop3 0.042199217 various 0.06080265 prices 0.9359873 managed 0.06451222 difficult 0.071706355
There are a couple pieces of good news here. First, this mail probably wouldn't get through the filters of someone who didn't happen to specialize in programming languages and have a good friend called Morris. For the average user, all the top five words here would be neutral and would not contribute to the spam probability.
Second, I think filtering based on word pairs (see below) might well catch this one: "cost effective", "setup fee", "money back" -- pretty incriminating stuff. And of course if they continued to spam me (or a network I was part of), "Hostex" itself would be recognized as a spam term.
Finally, here is an innocent email. Its fifteen most interesting words are as follows:
continuation 0.01 describe 0.01 continuations 0.01 example 0.033600237 programming 0.05214485 i'm 0.055427782 examples 0.07972858 color 0.9189189 localhost 0.09883721 hi 0.116539136 california 0.84421706 same 0.15981844 spot 0.1654587 us-ascii 0.16804294 what 0.19212411
Most of the words here indicate the mail is an innocent one. There are two bad smelling words, "color" (spammers love colored fonts) and "California" (which occurs in testimonials and also in menus in forms), but they are not enough to outweigh obviously innocent words like "continuation" and "example".
It's interesting that "describe" rates as so thoroughly innocent. It hasn't occurred in a single one of my 4000 spams. The data turns out to be full of such surprises. One of the things you learn when you analyze spam texts is how narrow a subset of the language spammers operate in. It's that fact, together with the equally characteristic vocabulary of any individual user's mail, that makes Bayesian filtering a good bet.
Appendix: More Ideas
One idea that I haven't tried yet is to filter based on word pairs, or even triples, rather than individual words. This should yield a much sharper estimate of the probability. For example, in my current database, the word "offers" has a probability of .96. If you based the probabilities on word pairs, you'd end up with "special offers" and "valuable offers" having probabilities of .99 and, say, "approach offers" (as in "this approach offers") having a probability of .1 or less.
The reason I haven't done this is that filtering based on individual words already works so well. But it does mean that there is room to tighten the filters if spam gets harder to detect. (Curiously, a filter based on word pairs would be in effect a Markov-chaining text generator running in reverse.)
Specific spam features (e.g. not seeing the recipient's address in the to: field) do of course have value in recognizing spam. They can be considered in this algorithm by treating them as virtual words. I'll probably do this in future versions, at least for a handful of the most egregious spam indicators. Feature-recognizing spam filters are right in many details; what they lack is an overall discipline for combining evidence.
Recognizing nonspam features may be more important than recognizing spam features. False positives are such a worry that they demand extraordinary measures. I will probably in future versions add a second level of testing designed specifically to avoid false positives. If a mail triggers this second level of filters it will be accepted even if its spam probability is above the threshold.
I don't expect this second level of filtering to be Bayesian. It will inevitably be not only ad hoc, but based on guesses, because the number of false positives will not tend to be large enough to notice patterns. (It is just as well, anyway, if a backup system doesn't rely on the same technology as the primary system.)
Another thing I may try in the future is to focus extra attention on specific parts of the email. For example, about 95% of current spam includes the url of a site they want you to visit. (The remaining 5% want you to call a phone number, reply by email or to a US mail address, or in a few cases to buy a certain stock.) The url is in such cases practically enough by itself to determine whether the email is spam.
Domain names differ from the rest of the text in a (non-German) email in that they often consist of several words stuck together. Though computationally expensive in the general case, it might be worth trying to decompose them. If a filter has never seen the token "xxxporn" before it will have an individual spam probability of .4, whereas "xxx" and "porn" individually have probabilities (in my corpus) of .9889 and .99 respectively, and a combined probability of .9998.
I expect decomposing domain names to become more important as spammers are gradually forced to stop using incriminating words in the text of their messages. (A url with an ip address is of course an extremely incriminating sign, except in the mail of a few sysadmins.)
It might be a good idea to have a cooperatively maintained list of urls promoted by spammers. We'd need a trust metric of the type studied by Raph Levien to prevent malicious or incompetent submissions, but if we had such a thing it would provide a boost to any filtering software. It would also be a convenient basis for boycotts.
Another way to test dubious urls would be to send out a crawler to look at the site before the user looked at the email mentioning it. You could use a Bayesian filter to rate the site just as you would an email, and whatever was found on the site could be included in calculating the probability of the email being a spam. A url that led to a redirect would of course be especially suspicious.
One cooperative project that I think really would be a good idea would be to accumulate a giant corpus of spam. A large, clean corpus is the key to making Bayesian filtering work well. Bayesian filters could actually use the corpus as input. But such a corpus would be useful for other kinds of filters too, because it could be used to test them.
Creating such a corpus poses some technical problems. We'd need trust metrics to prevent malicious or incompetent submissions, of course. We'd also need ways of erasing personal information (not just to-addresses and ccs, but also e.g. the arguments to unsubscribe urls, which often encode the to-address) from mails in the corpus. If anyone wants to take on this project, it would be a good thing for the world.
Appendix: Defining Spam
I think there is a rough consensus on what spam is, but it would be useful to have an explicit definition. We'll need to do this if we want to establish a central corpus of spam, or even to compare spam filtering rates meaningfully.
To start with, spam is not unsolicited commercial email. If someone in my neighborhood heard that I was looking for an old Raleigh three-speed in good condition, and sent me an email offering to sell me one, I'd be delighted, and yet this email would be both commercial and unsolicited. The defining feature of spam (in fact, its raison d'etre) is not that it is unsolicited, but that it is automated.
It is merely incidental, too, that spam is usually commercial. If someone started sending mass email to support some political cause, for example, it would be just as much spam as email promoting a porn site.
I propose we define spam as unsolicited automated email. This definition thus includes some email that many legal definitions of spam don't. Legal definitions of spam, influenced presumably by lobbyists, tend to exclude mail sent by companies that have an "existing relationship" with the recipient. But buying something from a company, for example, does not imply that you have solicited ongoing email from them. If I order something from an online store, and they then send me a stream of spam, it's still spam.
Companies sending spam often give you a way to "unsubscribe," or ask you to go to their site and change your "account preferences" if you want to stop getting spam. This is not enough to stop the mail from being spam. Not opting out is not the same as opting in. Unless the recipient explicitly checked a clearly labelled box (whose default was no) asking to receive the email, then it is spam.
In some business relationships, you do implicitly solicit certain kinds of mail. When you order online, I think you implicitly solicit a receipt, and notification when the order ships. I don't mind when Verisign sends me mail warning that a domain name is about to expire (at least, if they are the actual registrar for it). But when Verisign sends me email offering a FREE Guide to Building My E-Commerce Web Site, that's spam.
Notes:
[1] The examples in this article are translated into Common Lisp for, believe it or not, greater accessibility. The application described here is one that we wrote in order to test a new Lisp dialect called Arc that is not yet released.
[2] Currently the lowest rate seems to be about $200 to send a million spams. That's very cheap, 1/50th of a cent per spam. But filtering out 95% of spam, for example, would increase the spammers' cost to reach a given audience by a factor of 20. Few can have margins big enough to absorb that.
[3] As a rule of thumb, the more qualifiers there are before the name of a country, the more corrupt the rulers. A country called The Socialist People's Democratic Republic of X is probably the last place in the world you'd want to live.
Thanks to Sarah Harlin for reading drafts of this; Daniel Giffin (who is also writing the production Arc interpreter) for several good ideas about filtering and for creating our mail infrastructure; Robert Morris, Trevor Blackwell and Erann Gat for many discussions about spam; Raph Levien for advice about trust metrics; and Chip Coldwell and Sam Steingold for advice about statistics.

Design and Research

(This article is derived from a keynote talk given at the fall 2002 meeting of NEPLS.)
Visitors to this country are often surprised to find that Americans like to begin a conversation by asking "what do you do?" I've never liked this question. I've rarely had a neat answer to it. But I think I have finally solved the problem. Now, when someone asks me what I do, I look them straight in the eye and say "I'm designing a new dialect of Lisp." I recommend this answer to anyone who doesn't like being asked what they do. The conversation will turn immediately to other topics.
I don't consider myself to be doing research on programming languages. I'm just designing one, in the same way that someone might design a building or a chair or a new typeface. I'm not trying to discover anything new. I just want to make a language that will be good to program in. In some ways, this assumption makes life a lot easier.
The difference between design and research seems to be a question of new versus good. Design doesn't have to be new, but it has to be good. Research doesn't have to be good, but it has to be new. I think these two paths converge at the top: the best design surpasses its predecessors by using new ideas, and the best research solves problems that are not only new, but actually worth solving. So ultimately we're aiming for the same destination, just approaching it from different directions.
What I'm going to talk about today is what your target looks like from the back. What do you do differently when you treat programming languages as a design problem instead of a research topic?
The biggest difference is that you focus more on the user. Design begins by asking, who is this for and what do they need from it? A good architect, for example, does not begin by creating a design that he then imposes on the users, but by studying the intended users and figuring out what they need.
Notice I said "what they need," not "what they want." I don't mean to give the impression that working as a designer means working as a sort of short-order cook, making whatever the client tells you to. This varies from field to field in the arts, but I don't think there is any field in which the best work is done by the people who just make exactly what the customers tell them to.
The customer is always right in the sense that the measure of good design is how well it works for the user. If you make a novel that bores everyone, or a chair that's horribly uncomfortable to sit in, then you've done a bad job, period. It's no defense to say that the novel or the chair is designed according to the most advanced theoretical principles.
And yet, making what works for the user doesn't mean simply making what the user tells you to. Users don't know what all the choices are, and are often mistaken about what they really want.
The answer to the paradox, I think, is that you have to design for the user, but you have to design what the user needs, not simply what he says he wants. It's much like being a doctor. You can't just treat a patient's symptoms. When a patient tells you his symptoms, you have to figure out what's actually wrong with him, and treat that.
This focus on the user is a kind of axiom from which most of the practice of good design can be derived, and around which most design issues center.
If good design must do what the user needs, who is the user? When I say that design must be for users, I don't mean to imply that good design aims at some kind of lowest common denominator. You can pick any group of users you want. If you're designing a tool, for example, you can design it for anyone from beginners to experts, and what's good design for one group might be bad for another. The point is, you have to pick some group of users. I don't think you can even talk about good or bad design except with reference to some intended user.
You're most likely to get good design if the intended users include the designer himself. When you design something for a group that doesn't include you, it tends to be for people you consider to be less sophisticated than you, not more sophisticated.
That's a problem, because looking down on the user, however benevolently, seems inevitably to corrupt the designer. I suspect that very few housing projects in the US were designed by architects who expected to live in them. You can see the same thing in programming languages. C, Lisp, and Smalltalk were created for their own designers to use. Cobol, Ada, and Java, were created for other people to use.
If you think you're designing something for idiots, the odds are that you're not designing something good, even for idiots.
Even if you're designing something for the most sophisticated users, though, you're still designing for humans. It's different in research. In math you don't choose abstractions because they're easy for humans to understand; you choose whichever make the proof shorter. I think this is true for the sciences generally. Scientific ideas are not meant to be ergonomic.
Over in the arts, things are very different. Design is all about people. The human body is a strange thing, but when you're designing a chair, that's what you're designing for, and there's no way around it. All the arts have to pander to the interests and limitations of humans. In painting, for example, all other things being equal a painting with people in it will be more interesting than one without. It is not merely an accident of history that the great paintings of the Renaissance are all full of people. If they hadn't been, painting as a medium wouldn't have the prestige that it does.
Like it or not, programming languages are also for people, and I suspect the human brain is just as lumpy and idiosyncratic as the human body. Some ideas are easy for people to grasp and some aren't. For example, we seem to have a very limited capacity for dealing with detail. It's this fact that makes programing languages a good idea in the first place; if we could handle the detail, we could just program in machine language.
Remember, too, that languages are not primarily a form for finished programs, but something that programs have to be developed in. Anyone in the arts could tell you that you might want different mediums for the two situations. Marble, for example, is a nice, durable medium for finished ideas, but a hopelessly inflexible one for developing new ideas.
A program, like a proof, is a pruned version of a tree that in the past has had false starts branching off all over it. So the test of a language is not simply how clean the finished program looks in it, but how clean the path to the finished program was. A design choice that gives you elegant finished programs may not give you an elegant design process. For example, I've written a few macro-defining macros full of nested backquotes that look now like little gems, but writing them took hours of the ugliest trial and error, and frankly, I'm still not entirely sure they're correct.
We often act as if the test of a language were how good finished programs look in it. It seems so convincing when you see the same program written in two languages, and one version is much shorter. When you approach the problem from the direction of the arts, you're less likely to depend on this sort of test. You don't want to end up with a programming language like marble.
For example, it is a huge win in developing software to have an interactive toplevel, what in Lisp is called a read-eval-print loop. And when you have one this has real effects on the design of the language. It would not work well for a language where you have to declare variables before using them, for example. When you're just typing expressions into the toplevel, you want to be able to set x to some value and then start doing things to x. You don't want to have to declare the type of x first. You may dispute either of the premises, but if a language has to have a toplevel to be convenient, and mandatory type declarations are incompatible with a toplevel, then no language that makes type declarations mandatory could be convenient to program in.
In practice, to get good design you have to get close, and stay close, to your users. You have to calibrate your ideas on actual users constantly, especially in the beginning. One of the reasons Jane Austen's novels are so good is that she read them out loud to her family. That's why she never sinks into self-indulgently arty descriptions of landscapes, or pretentious philosophizing. (The philosophy's there, but it's woven into the story instead of being pasted onto it like a label.) If you open an average "literary" novel and imagine reading it out loud to your friends as something you'd written, you'll feel all too keenly what an imposition that kind of thing is upon the reader.
In the software world, this idea is known as Worse is Better. Actually, there are several ideas mixed together in the concept of Worse is Better, which is why people are still arguing about whether worse is actually better or not. But one of the main ideas in that mix is that if you're building something new, you should get a prototype in front of users as soon as possible.
The alternative approach might be called the Hail Mary strategy. Instead of getting a prototype out quickly and gradually refining it, you try to create the complete, finished, product in one long touchdown pass. As far as I know, this is a recipe for disaster. Countless startups destroyed themselves this way during the Internet bubble. I've never heard of a case where it worked.
What people outside the software world may not realize is that Worse is Better is found throughout the arts. In drawing, for example, the idea was discovered during the Renaissance. Now almost every drawing teacher will tell you that the right way to get an accurate drawing is not to work your way slowly around the contour of an object, because errors will accumulate and you'll find at the end that the lines don't meet. Instead you should draw a few quick lines in roughly the right place, and then gradually refine this initial sketch.
In most fields, prototypes have traditionally been made out of different materials. Typefaces to be cut in metal were initially designed with a brush on paper. Statues to be cast in bronze were modelled in wax. Patterns to be embroidered on tapestries were drawn on paper with ink wash. Buildings to be constructed from stone were tested on a smaller scale in wood.
What made oil paint so exciting, when it first became popular in the fifteenth century, was that you could actually make the finished work from the prototype. You could make a prelimary drawing if you wanted to, but you weren't held to it; you could work out all the details, and even make major changes, as you finished the painting.
You can do this in software too. A prototype doesn't have to be just a model; you can refine it into the finished product. I think you should always do this when you can. It lets you take advantage of new insights you have along the way. But perhaps even more important, it's good for morale.
Morale is key in design. I'm surprised people don't talk more about it. One of my first drawing teachers told me: if you're bored when you're drawing something, the drawing will look boring. For example, suppose you have to draw a building, and you decide to draw each brick individually. You can do this if you want, but if you get bored halfway through and start making the bricks mechanically instead of observing each one, the drawing will look worse than if you had merely suggested the bricks.
Building something by gradually refining a prototype is good for morale because it keeps you engaged. In software, my rule is: always have working code. If you're writing something that you'll be able to test in an hour, then you have the prospect of an immediate reward to motivate you. The same is true in the arts, and particularly in oil painting. Most painters start with a blurry sketch and gradually refine it. If you work this way, then in principle you never have to end the day with something that actually looks unfinished. Indeed, there is even a saying among painters: "A painting is never finished, you just stop working on it." This idea will be familiar to anyone who has worked on software.
Morale is another reason that it's hard to design something for an unsophisticated user. It's hard to stay interested in something you don't like yourself. To make something good, you have to be thinking, "wow, this is really great," not "what a piece of shit; those fools will love it."
Design means making things for humans. But it's not just the user who's human. The designer is human too.
Notice all this time I've been talking about "the designer." Design usually has to be under the control of a single person to be any good. And yet it seems to be possible for several people to collaborate on a research project. This seems to me one of the most interesting differences between research and design.
There have been famous instances of collaboration in the arts, but most of them seem to have been cases of molecular bonding rather than nuclear fusion. In an opera it's common for one person to write the libretto and another to write the music. And during the Renaissance, journeymen from northern Europe were often employed to do the landscapes in the backgrounds of Italian paintings. But these aren't true collaborations. They're more like examples of Robert Frost's "good fences make good neighbors." You can stick instances of good design together, but within each individual project, one person has to be in control.
I'm not saying that good design requires that one person think of everything. There's nothing more valuable than the advice of someone whose judgement you trust. But after the talking is done, the decision about what to do has to rest with one person.
Why is it that research can be done by collaborators and design can't? This is an interesting question. I don't know the answer. Perhaps, if design and research converge, the best research is also good design, and in fact can't be done by collaborators. A lot of the most famous scientists seem to have worked alone. But I don't know enough to say whether there is a pattern here. It could be simply that many famous scientists worked when collaboration was less common.
Whatever the story is in the sciences, true collaboration seems to be vanishingly rare in the arts. Design by committee is a synonym for bad design. Why is that so? Is there some way to beat this limitation?
I'm inclined to think there isn't-- that good design requires a dictator. One reason is that good design has to be all of a piece. Design is not just for humans, but for individual humans. If a design represents an idea that fits in one person's head, then the idea will fit in the user's head too.

Better Bayesian Filtering

(This article was given as a talk at the 2003 Spam Conference. It describes the work I've done to improve the performance of the algorithm described in A Plan for Spam, and what I plan to do in the future.)
The first discovery I'd like to present here is an algorithm for lazy evaluation of research papers. Just write whatever you want and don't cite any previous work, and indignant readers will send you references to all the papers you should have cited. I discovered this algorithm after ``A Plan for Spam'' [1] was on Slashdot.
Spam filtering is a subset of text classification, which is a well established field, but the first papers about Bayesian spam filtering per se seem to have been two given at the same conference in 1998, one by Pantel and Lin [2], and another by a group from Microsoft Research [3].
When I heard about this work I was a bit surprised. If people had been onto Bayesian filtering four years ago, why wasn't everyone using it? When I read the papers I found out why. Pantel and Lin's filter was the more effective of the two, but it only caught 92% of spam, with 1.16% false positives.
When I tried writing a Bayesian spam filter, it caught 99.5% of spam with less than .03% false positives [4]. It's always alarming when two people trying the same experiment get widely divergent results. It's especially alarming here because those two sets of numbers might yield opposite conclusions. Different users have different requirements, but I think for many people a filtering rate of 92% with 1.16% false positives means that filtering is not an acceptable solution, whereas 99.5% with less than .03% false positives means that it is.
So why did we get such different numbers? I haven't tried to reproduce Pantel and Lin's results, but from reading the paper I see five things that probably account for the difference.
One is simply that they trained their filter on very little data: 160 spam and 466 nonspam mails. Filter performance should still be climbing with data sets that small. So their numbers may not even be an accurate measure of the performance of their algorithm, let alone of Bayesian spam filtering in general.
But I think the most important difference is probably that they ignored message headers. To anyone who has worked on spam filters, this will seem a perverse decision. And yet in the very first filters I tried writing, I ignored the headers too. Why? Because I wanted to keep the problem neat. I didn't know much about mail headers then, and they seemed to me full of random stuff. There is a lesson here for filter writers: don't ignore data. You'd think this lesson would be too obvious to mention, but I've had to learn it several times.
Third, Pantel and Lin stemmed the tokens, meaning they reduced e.g. both ``mailing'' and ``mailed'' to the root ``mail''. They may have felt they were forced to do this by the small size of their corpus, but if so this is a kind of premature optimization.
Fourth, they calculated probabilities differently. They used all the tokens, whereas I only use the 15 most significant. If you use all the tokens you'll tend to miss longer spams, the type where someone tells you their life story up to the point where they got rich from some multilevel marketing scheme. And such an algorithm would be easy for spammers to spoof: just add a big chunk of random text to counterbalance the spam terms.
Finally, they didn't bias against false positives. I think any spam filtering algorithm ought to have a convenient knob you can twist to decrease the false positive rate at the expense of the filtering rate. I do this by counting the occurrences of tokens in the nonspam corpus double.
I don't think it's a good idea to treat spam filtering as a straight text classification problem. You can use text classification techniques, but solutions can and should reflect the fact that the text is email, and spam in particular. Email is not just text; it has structure. Spam filtering is not just classification, because false positives are so much worse than false negatives that you should treat them as a different kind of error. And the source of error is not just random variation, but a live human spammer working actively to defeat your filter.
Tokens
Another project I heard about after the Slashdot article was Bill Yerazunis' CRM114 [5]. This is the counterexample to the design principle I just mentioned. It's a straight text classifier, but such a stunningly effective one that it manages to filter spam almost perfectly without even knowing that's what it's doing.
Once I understood how CRM114 worked, it seemed inevitable that I would eventually have to move from filtering based on single words to an approach like this. But first, I thought, I'll see how far I can get with single words. And the answer is, surprisingly far.
Mostly I've been working on smarter tokenization. On current spam, I've been able to achieve filtering rates that approach CRM114's. These techniques are mostly orthogonal to Bill's; an optimal solution might incorporate both.
``A Plan for Spam'' uses a very simple definition of a token. Letters, digits, dashes, apostrophes, and dollar signs are constituent characters, and everything else is a token separator. I also ignored case.
Now I have a more complicated definition of a token:
Case is preserved.
Exclamation points are constituent characters.
Periods and commas are constituents if they occur between two digits. This lets me get ip addresses and prices intact.
A price range like $20-25 yields two tokens, $20 and $25.
Tokens that occur within the To, From, Subject, and Return-Path lines, or within urls, get marked accordingly. E.g. ``foo'' in the Subject line becomes ``Subject*foo''. (The asterisk could be any character you don't allow as a constituent.)
Such measures increase the filter's vocabulary, which makes it more discriminating. For example, in the current filter, ``free'' in the Subject line has a spam probability of 98%, whereas the same token in the body has a spam probability of only 65%.
Here are some of the current probabilities [6]:
Subject*FREE 0.9999 free!! 0.9999 To*free 0.9998 Subject*free 0.9782 free! 0.9199 Free 0.9198 Url*free 0.9091 FREE 0.8747 From*free 0.7636 free 0.6546
In the Plan for Spam filter, all these tokens would have had the same probability, .7602. That filter recognized about 23,000 tokens. The current one recognizes about 187,000.
The disadvantage of having a larger universe of tokens is that there is more chance of misses. Spreading your corpus out over more tokens has the same effect as making it smaller. If you consider exclamation points as constituents, for example, then you could end up not having a spam probability for free with seven exclamation points, even though you know that free with just two exclamation points has a probability of 99.99%.
One solution to this is what I call degeneration. If you can't find an exact match for a token, treat it as if it were a less specific version. I consider terminal exclamation points, uppercase letters, and occurring in one of the five marked contexts as making a token more specific. For example, if I don't find a probability for ``Subject*free!'', I look for probabilities for ``Subject*free'', ``free!'', and ``free'', and take whichever one is farthest from .5.
Here are the alternatives [7] considered if the filter sees ``FREE!!!'' in the Subject line and doesn't have a probability for it.
Subject*Free!!! Subject*free!!! Subject*FREE! Subject*Free! Subject*free! Subject*FREE Subject*Free Subject*free FREE!!! Free!!! free!!! FREE! Free! free! FREE Free free
If you do this, be sure to consider versions with initial caps as well as all uppercase and all lowercase. Spams tend to have more sentences in imperative mood, and in those the first word is a verb. So verbs with initial caps have higher spam probabilities than they would in all lowercase. In my filter, the spam probability of ``Act'' is 98% and for ``act'' only 62%.
If you increase your filter's vocabulary, you can end up counting the same word multiple times, according to your old definition of ``same''. Logically, they're not the same token anymore. But if this still bothers you, let me add from experience that the words you seem to be counting multiple times tend to be exactly the ones you'd want to.
Another effect of a larger vocabulary is that when you look at an incoming mail you find more interesting tokens, meaning those with probabilities far from .5. I use the 15 most interesting to decide if mail is spam. But you can run into a problem when you use a fixed number like this. If you find a lot of maximally interesting tokens, the result can end up being decided by whatever random factor determines the ordering of equally interesting tokens. One way to deal with this is to treat some as more interesting than others.
For example, the token ``dalco'' occurs 3 times in my spam corpus and never in my legitimate corpus. The token ``Url*optmails'' (meaning ``optmails'' within a url) occurs 1223 times. And yet, as I used to calculate probabilities for tokens, both would have the same spam probability, the threshold of .99.
That doesn't feel right. There are theoretical arguments for giving these two tokens substantially different probabilities (Pantel and Lin do), but I haven't tried that yet. It does seem at least that if we find more than 15 tokens that only occur in one corpus or the other, we ought to give priority to the ones that occur a lot. So now there are two threshold values. For tokens that occur only in the spam corpus, the probability is .9999 if they occur more than 10 times and .9998 otherwise. Ditto at the other end of the scale for tokens found only in the legitimate corpus.
I may later scale token probabilities substantially, but this tiny amount of scaling at least ensures that tokens get sorted the right way.
Another possibility would be to consider not just 15 tokens, but all the tokens over a certain threshold of interestingness. Steven Hauser does this in his statistical spam filter [8]. If you use a threshold, make it very high, or spammers could spoof you by packing messages with more innocent words.
Finally, what should one do about html? I've tried the whole spectrum of options, from ignoring it to parsing it all. Ignoring html is a bad idea, because it's full of useful spam signs. But if you parse it all, your filter might degenerate into a mere html recognizer. The most effective approach seems to be the middle course, to notice some tokens but not others. I look at a, img, and font tags, and ignore the rest. Links and images you should certainly look at, because they contain urls.
I could probably be smarter about dealing with html, but I don't think it's worth putting a lot of time into this. Spams full of html are easy to filter. The smarter spammers already avoid it. So performance in the future should not depend much on how you deal with html.
Performance
Between December 10 2002 and January 10 2003 I got about 1750 spams. Of these, 4 got through. That's a filtering rate of about 99.75%.
Two of the four spams I missed got through because they happened to use words that occur often in my legitimate email.
The third was one of those that exploit an insecure cgi script to send mail to third parties. They're hard to filter based just on the content because the headers are innocent and they're careful about the words they use. Even so I can usually catch them. This one squeaked by with a probability of .88, just under the threshold of .9.
Of course, looking at multiple token sequences would catch it easily. ``Below is the result of your feedback form'' is an instant giveaway.
The fourth spam was what I call a spam-of-the-future, because this is what I expect spam to evolve into: some completely neutral text followed by a url. In this case it was was from someone saying they had finally finished their homepage and would I go look at it. (The page was of course an ad for a porn site.)
If the spammers are careful about the headers and use a fresh url, there is nothing in spam-of-the-future for filters to notice. We can of course counter by sending a crawler to look at the page. But that might not be necessary. The response rate for spam-of-the-future must be low, or everyone would be doing it. If it's low enough, it won't pay for spammers to send it, and we won't have to work too hard on filtering it.
Now for the really shocking news: during that same one-month period I got three false positives.
In a way it's a relief to get some false positives. When I wrote ``A Plan for Spam'' I hadn't had any, and I didn't know what they'd be like. Now that I've had a few, I'm relieved to find they're not as bad as I feared. False positives yielded by statistical filters turn out to be mails that sound a lot like spam, and these tend to be the ones you would least mind missing [9].
Two of the false positives were newsletters from companies I've bought things from. I never asked to receive them, so arguably they were spams, but I count them as false positives because I hadn't been deleting them as spams before. The reason the filters caught them was that both companies in January switched to commercial email senders instead of sending the mails from their own servers, and both the headers and the bodies became much spammier.
The third false positive was a bad one, though. It was from someone in Egypt and written in all uppercase. This was a direct result of making tokens case sensitive; the Plan for Spam filter wouldn't have caught it.
It's hard to say what the overall false positive rate is, because we're up in the noise, statistically. Anyone who has worked on filters (at least, effective filters) will be aware of this problem. With some emails it's hard to say whether they're spam or not, and these are the ones you end up looking at when you get filters really tight. For example, so far the filter has caught two emails that were sent to my address because of a typo, and one sent to me in the belief that I was someone else. Arguably, these are neither my spam nor my nonspam mail.
Another false positive was from a vice president at Virtumundo. I wrote to them pretending to be a customer, and since the reply came back through Virtumundo's mail servers it had the most incriminating headers imaginable. Arguably this isn't a real false positive either, but a sort of Heisenberg uncertainty effect: I only got it because I was writing about spam filtering.
Not counting these, I've had a total of five false positives so far, out of about 7740 legitimate emails, a rate of .06%. The other two were a notice that something I bought was back-ordered, and a party reminder from Evite.
I don't think this number can be trusted, partly because the sample is so small, and partly because I think I can fix the filter not to catch some of these.
False positives seem to me a different kind of error from false negatives. Filtering rate is a measure of performance. False positives I consider more like bugs. I approach improving the filtering rate as optimization, and decreasing false positives as debugging.
So these five false positives are my bug list. For example, the mail from Egypt got nailed because the uppercase text made it look to the filter like a Nigerian spam. This really is kind of a bug. As with html, the email being all uppercase is really conceptually one feature, not one for each word. I need to handle case in a more sophisticated way.
So what to make of this .06%? Not much, I think. You could treat it as an upper bound, bearing in mind the small sample size. But at this stage it is more a measure of the bugs in my implementation than some intrinsic false positive rate of Bayesian filtering.
Future
What next? Filtering is an optimization problem, and the key to optimization is profiling. Don't try to guess where your code is slow, because you'll guess wrong. Look at where your code is slow, and fix that. In filtering, this translates to: look at the spams you miss, and figure out what you could have done to catch them.
For example, spammers are now working aggressively to evade filters, and one of the things they're doing is breaking up and misspelling words to prevent filters from recognizing them. But working on this is not my first priority, because I still have no trouble catching these spams [10].
There are two kinds of spams I currently do have trouble with. One is the type that pretends to be an email from a woman inviting you to go chat with her or see her profile on a dating site. These get through because they're the one type of sales pitch you can make without using sales talk. They use the same vocabulary as ordinary email.
The other kind of spams I have trouble filtering are those from companies in e.g. Bulgaria offering contract programming services. These get through because I'm a programmer too, and the spams are full of the same words as my real mail.
I'll probably focus on the personal ad type first. I think if I look closer I'll be able to find statistical differences between these and my real mail. The style of writing is certainly different, though it may take multiword filtering to catch that. Also, I notice they tend to repeat the url, and someone including a url in a legitimate mail wouldn't do that [11].
The outsourcing type are going to be hard to catch. Even if you sent a crawler to the site, you wouldn't find a smoking statistical gun. Maybe the only answer is a central list of domains advertised in spams [12]. But there can't be that many of this type of mail. If the only spams left were unsolicited offers of contract programming services from Bulgaria, we could all probably move on to working on something else.
Will statistical filtering actually get us to that point? I don't know. Right now, for me personally, spam is not a problem. But spammers haven't yet made a serious effort to spoof statistical filters. What will happen when they do?
I'm not optimistic about filters that work at the network level [13]. When there is a static obstacle worth getting past, spammers are pretty efficient at getting past it. There is already a company called Assurance Systems that will run your mail through Spamassassin and tell you whether it will get filtered out.
Network-level filters won't be completely useless. They may be enough to kill all the "opt-in" spam, meaning spam from companies like Virtumundo and Equalamail who claim that they're really running opt-in lists. You can filter those based just on the headers, no matter what they say in the body. But anyone willing to falsify headers or use open relays, presumably including most porn spammers, should be able to get some message past network-level filters if they want to. (By no means the message they'd like to send though, which is something.)
The kind of filters I'm optimistic about are ones that calculate probabilities based on each individual user's mail. These can be much more effective, not only in avoiding false positives, but in filtering too: for example, finding the recipient's email address base-64 encoded anywhere in a message is a very good spam indicator.
But the real advantage of individual filters is that they'll all be different. If everyone's filters have different probabilities, it will make the spammers' optimization loop, what programmers would call their edit-compile-test cycle, appallingly slow. Instead of just tweaking a spam till it gets through a copy of some filter they have on their desktop, they'll have to do a test mailing for each tweak. It would be like programming in a language without an interactive toplevel, and I wouldn't wish that on anyone.
Notes
[1] Paul Graham. ``A Plan for Spam.'' August 2002. http://paulgraham.com/spam.html.
Probabilities in this algorithm are calculated using a degenerate case of Bayes' Rule. There are two simplifying assumptions: that the probabilities of features (i.e. words) are independent, and that we know nothing about the prior probability of an email being spam.
The first assumption is widespread in text classification. Algorithms that use it are called ``naive Bayesian.''
The second assumption I made because the proportion of spam in my incoming mail fluctuated so much from day to day (indeed, from hour to hour) that the overall prior ratio seemed worthless as a predictor. If you assume that P(spam) and P(nonspam) are both .5, they cancel out and you can remove them from the formula.
If you were doing Bayesian filtering in a situation where the ratio of spam to nonspam was consistently very high or (especially) very low, you could probably improve filter performance by incorporating prior probabilities. To do this right you'd have to track ratios by time of day, because spam and legitimate mail volume both have distinct daily patterns.
[2] Patrick Pantel and Dekang Lin. ``SpamCop-- A Spam Classification & Organization Program.'' Proceedings of AAAI-98 Workshop on Learning for Text Categorization.
[3] Mehran Sahami, Susan Dumais, David Heckerman and Eric Horvitz. ``A Bayesian Approach to Filtering Junk E-Mail.'' Proceedings of AAAI-98 Workshop on Learning for Text Categorization.
[4] At the time I had zero false positives out of about 4,000 legitimate emails. If the next legitimate email was a false positive, this would give us .03%. These false positive rates are untrustworthy, as I explain later. I quote a number here only to emphasize that whatever the false positive rate is, it is less than 1.16%.
[5] Bill Yerazunis. ``Sparse Binary Polynomial Hash Message Filtering and The CRM114 Discriminator.'' Proceedings of 2003 Spam Conference.
[6] In ``A Plan for Spam'' I used thresholds of .99 and .01. It seems justifiable to use thresholds proportionate to the size of the corpora. Since I now have on the order of 10,000 of each type of mail, I use .9999 and .0001.
[7] There is a flaw here I should probably fix. Currently, when ``Subject*foo'' degenerates to just ``foo'', what that means is you're getting the stats for occurrences of ``foo'' in the body or header lines other than those I mark. What I should do is keep track of statistics for ``foo'' overall as well as specific versions, and degenerate from ``Subject*foo'' not to ``foo'' but to ``Anywhere*foo''. Ditto for case: I should degenerate from uppercase to any-case, not lowercase.
It would probably be a win to do this with prices too, e.g. to degenerate from ``$129.99'' to ``$--9.99'', ``$--.99'', and ``$--''.
You could also degenerate from words to their stems, but this would probably only improve filtering rates early on when you had small corpora.
[8] Steven Hauser. ``Statistical Spam Filter Works for Me.'' http://www.sofbot.com.
[9] False positives are not all equal, and we should remember this when comparing techniques for stopping spam. Whereas many of the false positives caused by filters will be near-spams that you wouldn't mind missing, false positives caused by blacklists, for example, will be just mail from people who chose the wrong ISP. In both cases you catch mail that's near spam, but for blacklists nearness is physical, and for filters it's textual.
[10] If spammers get good enough at obscuring tokens for this to be a problem, we can respond by simply removing whitespace, periods, commas, etc. and using a dictionary to pick the words out of the resulting sequence. And of course finding words this way that weren't visible in the original text would in itself be evidence of spam.
Picking out the words won't be trivial. It will require more than just reconstructing word boundaries; spammers both add (``xHot nPorn cSite'') and omit (``P#rn'') letters. Vision research may be useful here, since human vision is the limit that such tricks will approach.
[11] In general, spams are more repetitive than regular email. They want to pound that message home. I currently don't allow duplicates in the top 15 tokens, because you could get a false positive if the sender happens to use some bad word multiple times. (In my current filter, ``dick'' has a spam probabilty of .9999, but it's also a name.) It seems we should at least notice duplication though, so I may try allowing up to two of each token, as Brian Burton does in SpamProbe.
[12] This is what approaches like Brightmail's will degenerate into once spammers are pushed into using mad-lib techniques to generate everything else in the message.
[13] It's sometimes argued that we should be working on filtering at the network level, because it is more efficient. What people usually mean when they say this is: we currently filter at the network level, and we don't want to start over from scratch. But you can't dictate the problem to fit your solution.
Historically, scarce-resource arguments have been the losing side in debates about software design. People only tend to use them to justify choices (inaction in particular) made for other reasons.
Thanks to Sarah Harlin, Trevor Blackwell, and Dan Giffin for reading drafts of this paper, and to Dan again for most of the infrastructure that this filter runs on.

Why Nerds are Unpopular

When we were in junior high school, my friend Rich and I made a map of the school lunch tables according to popularity. This was easy to do, because kids only ate lunch with others of about the same popularity. We graded them from A to E. A tables were full of football players and cheerleaders and so on. E tables contained the kids with mild cases of Down's Syndrome, what in the language of the time we called "retards."
We sat at a D table, as low as you could get without looking physically different. We were not being especially candid to grade ourselves as D. It would have taken a deliberate lie to say otherwise. Everyone in the school knew exactly how popular everyone else was, including us.
My stock gradually rose during high school. Puberty finally arrived; I became a decent soccer player; I started a scandalous underground newspaper. So I've seen a good part of the popularity landscape.
I know a lot of people who were nerds in school, and they all tell the same story: there is a strong correlation between being smart and being a nerd, and an even stronger inverse correlation between being a nerd and being popular. Being smart seems to make you unpopular.
Why? To someone in school now, that may seem an odd question to ask. The mere fact is so overwhelming that it may seem strange to imagine that it could be any other way. But it could. Being smart doesn't make you an outcast in elementary school. Nor does it harm you in the real world. Nor, as far as I can tell, is the problem so bad in most other countries. But in a typical American secondary school, being smart is likely to make your life difficult. Why?
The key to this mystery is to rephrase the question slightly. Why don't smart kids make themselves popular? If they're so smart, why don't they figure out how popularity works and beat the system, just as they do for standardized tests?
One argument says that this would be impossible, that the smart kids are unpopular because the other kids envy them for being smart, and nothing they could do could make them popular. I wish. If the other kids in junior high school envied me, they did a great job of concealing it. And in any case, if being smart were really an enviable quality, the girls would have broken ranks. The guys that guys envy, girls like.
In the schools I went to, being smart just didn't matter much. Kids didn't admire it or despise it. All other things being equal, they would have preferred to be on the smart side of average rather than the dumb side, but intelligence counted far less than, say, physical appearance, charisma, or athletic ability.
So if intelligence in itself is not a factor in popularity, why are smart kids so consistently unpopular? The answer, I think, is that they don't really want to be popular.
If someone had told me that at the time, I would have laughed at him. Being unpopular in school makes kids miserable, some of them so miserable that they commit suicide. Telling me that I didn't want to be popular would have seemed like telling someone dying of thirst in a desert that he didn't want a glass of water. Of course I wanted to be popular.
But in fact I didn't, not enough. There was something else I wanted more: to be smart. Not simply to do well in school, though that counted for something, but to design beautiful rockets, or to write well, or to understand how to program computers. In general, to make great things.
At the time I never tried to separate my wants and weigh them against one another. If I had, I would have seen that being smart was more important. If someone had offered me the chance to be the most popular kid in school, but only at the price of being of average intelligence (humor me here), I wouldn't have taken it.
Much as they suffer from their unpopularity, I don't think many nerds would. To them the thought of average intelligence is unbearable. But most kids would take that deal. For half of them, it would be a step up. Even for someone in the eightieth percentile (assuming, as everyone seemed to then, that intelligence is a scalar), who wouldn't drop thirty points in exchange for being loved and admired by everyone?
And that, I think, is the root of the problem. Nerds serve two masters. They want to be popular, certainly, but they want even more to be smart. And popularity is not something you can do in your spare time, not in the fiercely competitive environment of an American secondary school.
Alberti, arguably the archetype of the Renaissance Man, writes that "no art, however minor, demands less than total dedication if you want to excel in it." I wonder if anyone in the world works harder at anything than American school kids work at popularity. Navy SEALs and neurosurgery residents seem slackers by comparison. They occasionally take vacations; some even have hobbies. An American teenager may work at being popular every waking hour, 365 days a year.
I don't mean to suggest they do this consciously. Some of them truly are little Machiavellis, but what I really mean here is that teenagers are always on duty as conformists.
For example, teenage kids pay a great deal of attention to clothes. They don't consciously dress to be popular. They dress to look good. But to who? To the other kids. Other kids' opinions become their definition of right, not just for clothes, but for almost everything they do, right down to the way they walk. And so every effort they make to do things "right" is also, consciously or not, an effort to be more popular.
Nerds don't realize this. They don't realize that it takes work to be popular. In general, people outside some very demanding field don't realize the extent to which success depends on constant (though often unconscious) effort. For example, most people seem to consider the ability to draw as some kind of innate quality, like being tall. In fact, most people who "can draw" like drawing, and have spent many hours doing it; that's why they're good at it. Likewise, popular isn't just something you are or you aren't, but something you make yourself.
The main reason nerds are unpopular is that they have other things to think about. Their attention is drawn to books or the natural world, not fashions and parties. They're like someone trying to play soccer while balancing a glass of water on his head. Other players who can focus their whole attention on the game beat them effortlessly, and wonder why they seem so incapable.
Even if nerds cared as much as other kids about popularity, being popular would be more work for them. The popular kids learned to be popular, and to want to be popular, the same way the nerds learned to be smart, and to want to be smart: from their parents. While the nerds were being trained to get the right answers, the popular kids were being trained to please.
So far I've been finessing the relationship between smart and nerd, using them as if they were interchangeable. In fact it's only the context that makes them so. A nerd is someone who isn't socially adept enough. But "enough" depends on where you are. In a typical American school, standards for coolness are so high (or at least, so specific) that you don't have to be especially awkward to look awkward by comparison.
Few smart kids can spare the attention that popularity requires. Unless they also happen to be good-looking, natural athletes, or siblings of popular kids, they'll tend to become nerds. And that's why smart people's lives are worst between, say, the ages of eleven and seventeen. Life at that age revolves far more around popularity than before or after.
Before that, kids' lives are dominated by their parents, not by other kids. Kids do care what their peers think in elementary school, but this isn't their whole life, as it later becomes.
Around the age of eleven, though, kids seem to start treating their family as a day job. They create a new world among themselves, and standing in this world is what matters, not standing in their family. Indeed, being in trouble in their family can win them points in the world they care about.
The problem is, the world these kids create for themselves is at first a very crude one. If you leave a bunch of eleven-year-olds to their own devices, what you get is Lord of the Flies. Like a lot of American kids, I read this book in school. Presumably it was not a coincidence. Presumably someone wanted to point out to us that we were savages, and that we had made ourselves a cruel and stupid world. This was too subtle for me. While the book seemed entirely believable, I didn't get the additional message. I wish they had just told us outright that we were savages and our world was stupid.
Nerds would find their unpopularity more bearable if it merely caused them to be ignored. Unfortunately, to be unpopular in school is to be actively persecuted.
Why? Once again, anyone currently in school might think this a strange question to ask. How could things be any other way? But they could be. Adults don't normally persecute nerds. Why do teenage kids do it?
Partly because teenagers are still half children, and many children are just intrinsically cruel. Some torture nerds for the same reason they pull the legs off spiders. Before you develop a conscience, torture is amusing.
Another reason kids persecute nerds is to make themselves feel better. When you tread water, you lift yourself up by pushing water down. Likewise, in any social hierarchy, people unsure of their own position will try to emphasize it by maltreating those they think rank below. I've read that this is why poor whites in the United States are the group most hostile to blacks.
But I think the main reason other kids persecute nerds is that it's part of the mechanism of popularity. Popularity is only partially about individual attractiveness. It's much more about alliances. To become more popular, you need to be constantly doing things that bring you close to other popular people, and nothing brings people closer than a common enemy.
Like a politician who wants to distract voters from bad times at home, you can create an enemy if there isn't a real one. By singling out and persecuting a nerd, a group of kids from higher in the hierarchy create bonds between themselves. Attacking an outsider makes them all insiders. This is why the worst cases of bullying happen with groups. Ask any nerd: you get much worse treatment from a group of kids than from any individual bully, however sadistic.
If it's any consolation to the nerds, it's nothing personal. The group of kids who band together to pick on you are doing the same thing, and for the same reason, as a bunch of guys who get together to go hunting. They don't actually hate you. They just need something to chase.
Because they're at the bottom of the scale, nerds are a safe target for the entire school. If I remember correctly, the most popular kids don't persecute nerds; they don't need to stoop to such things. Most of the persecution comes from kids lower down, the nervous middle classes.
The trouble is, there are a lot of them. The distribution of popularity is not a pyramid, but tapers at the bottom like a pear. The least popular group is quite small. (I believe we were the only D table in our cafeteria map.) So there are more people who want to pick on nerds than there are nerds.
As well as gaining points by distancing oneself from unpopular kids, one loses points by being close to them. A woman I know says that in high school she liked nerds, but was afraid to be seen talking to them because the other girls would make fun of her. Unpopularity is a communicable disease; kids too nice to pick on nerds will still ostracize them in self-defense.
It's no wonder, then, that smart kids tend to be unhappy in middle school and high school. Their other interests leave them little attention to spare for popularity, and since popularity resembles a zero-sum game, this in turn makes them targets for the whole school. And the strange thing is, this nightmare scenario happens without any conscious malice, merely because of the shape of the situation.
For me the worst stretch was junior high, when kid culture was new and harsh, and the specialization that would later gradually separate the smarter kids had barely begun. Nearly everyone I've talked to agrees: the nadir is somewhere between eleven and fourteen.
In our school it was eighth grade, which was ages twelve and thirteen for me. There was a brief sensation that year when one of our teachers overheard a group of girls waiting for the school bus, and was so shocked that the next day she devoted the whole class to an eloquent plea not to be so cruel to one another.
It didn't have any noticeable effect. What struck me at the time was that she was surprised. You mean she doesn't know the kind of things they say to one another? You mean this isn't normal?
It's important to realize that, no, the adults don't know what the kids are doing to one another. They know, in the abstract, that kids are monstrously cruel to one another, just as we know in the abstract that people get tortured in poorer countries. But, like us, they don't like to dwell on this depressing fact, and they don't see evidence of specific abuses unless they go looking for it.
Public school teachers are in much the same position as prison wardens. Wardens' main concern is to keep the prisoners on the premises. They also need to keep them fed, and as far as possible prevent them from killing one another. Beyond that, they want to have as little to do with the prisoners as possible, so they leave them to create whatever social organization they want. From what I've read, the society that the prisoners create is warped, savage, and pervasive, and it is no fun to be at the bottom of it.
In outline, it was the same at the schools I went to. The most important thing was to stay on the premises. While there, the authorities fed you, prevented overt violence, and made some effort to teach you something. But beyond that they didn't want to have too much to do with the kids. Like prison wardens, the teachers mostly left us to ourselves. And, like prisoners, the culture we created was barbaric.
Why is the real world more hospitable to nerds? It might seem that the answer is simply that it's populated by adults, who are too mature to pick on one another. But I don't think this is true. Adults in prison certainly pick on one another. And so, apparently, do society wives; in some parts of Manhattan, life for women sounds like a continuation of high school, with all the same petty intrigues.
I think the important thing about the real world is not that it's populated by adults, but that it's very large, and the things you do have real effects. That's what school, prison, and ladies-who-lunch all lack. The inhabitants of all those worlds are trapped in little bubbles where nothing they do can have more than a local effect. Naturally these societies degenerate into savagery. They have no function for their form to follow.
When the things you do have real effects, it's no longer enough just to be pleasing. It starts to be important to get the right answers, and that's where nerds show to advantage. Bill Gates will of course come to mind. Though notoriously lacking in social skills, he gets the right answers, at least as measured in revenue.
The other thing that's different about the real world is that it's much larger. In a large enough pool, even the smallest minorities can achieve a critical mass if they clump together. Out in the real world, nerds collect in certain places and form their own societies where intelligence is the most important thing. Sometimes the current even starts to flow in the other direction: sometimes, particularly in university math and science departments, nerds deliberately exaggerate their awkwardness in order to seem smarter. John Nash so admired Norbert Wiener that he adopted his habit of touching the wall as he walked down a corridor.
As a thirteen-year-old kid, I didn't have much more experience of the world than what I saw immediately around me. The warped little world we lived in was, I thought, the world. The world seemed cruel and boring, and I'm not sure which was worse.
Because I didn't fit into this world, I thought that something must be wrong with me. I didn't realize that the reason we nerds didn't fit in was that in some ways we were a step ahead. We were already thinking about the kind of things that matter in the real world, instead of spending all our time playing an exacting but mostly pointless game like the others.
We were a bit like an adult would be if he were thrust back into middle school. He wouldn't know the right clothes to wear, the right music to like, the right slang to use. He'd seem to the kids a complete alien. The thing is, he'd know enough not to care what they thought. We had no such confidence.
A lot of people seem to think it's good for smart kids to be thrown together with "normal" kids at this stage of their lives. Perhaps. But in at least some cases the reason the nerds don't fit in really is that everyone else is crazy. I remember sitting in the audience at a "pep rally" at my high school, watching as the cheerleaders threw an effigy of an opposing player into the audience to be torn to pieces. I felt like an explorer witnessing some bizarre tribal ritual.
If I could go back and give my thirteen year old self some advice, the main thing I'd tell him would be to stick his head up and look around. I didn't really grasp it at the time, but the whole world we lived in was as fake as a Twinkie. Not just school, but the entire town. Why do people move to suburbia? To have kids! So no wonder it seemed boring and sterile. The whole place was a giant nursery, an artificial town created explicitly for the purpose of breeding children.
Where I grew up, it felt as if there was nowhere to go, and nothing to do. This was no accident. Suburbs are deliberately designed to exclude the outside world, because it contains things that could endanger children.
And as for the schools, they were just holding pens within this fake world. Officially the purpose of schools is to teach kids. In fact their primary purpose is to keep kids locked up in one place for a big chunk of the day so adults can get things done. And I have no problem with this: in a specialized industrial society, it would be a disaster to have kids running around loose.
What bothers me is not that the kids are kept in prisons, but that (a) they aren't told about it, and (b) the prisons are run mostly by the inmates. Kids are sent off to spend six years memorizing meaningless facts in a world ruled by a caste of giants who run after an oblong brown ball, as if this were the most natural thing in the world. And if they balk at this surreal cocktail, they're called misfits.
Life in this twisted world is stressful for the kids. And not just for the nerds. Like any war, it's damaging even to the winners.
Adults can't avoid seeing that teenage kids are tormented. So why don't they do something about it? Because they blame it on puberty. The reason kids are so unhappy, adults tell themselves, is that monstrous new chemicals, hormones, are now coursing through their bloodstream and messing up everything. There's nothing wrong with the system; it's just inevitable that kids will be miserable at that age.
This idea is so pervasive that even the kids believe it, which probably doesn't help. Someone who thinks his feet naturally hurt is not going to stop to consider the possibility that he is wearing the wrong size shoes.
I'm suspicious of this theory that thirteen-year-old kids are intrinsically messed up. If it's physiological, it should be universal. Are Mongol nomads all nihilists at thirteen? I've read a lot of history, and I have not seen a single reference to this supposedly universal fact before the twentieth century. Teenage apprentices in the Renaissance seem to have been cheerful and eager. They got in fights and played tricks on one another of course (Michelangelo had his nose broken by a bully), but they weren't crazy.
As far as I can tell, the concept of the hormone-crazed teenager is coeval with suburbia. I don't think this is a coincidence. I think teenagers are driven crazy by the life they're made to lead. Teenage apprentices in the Renaissance were working dogs. Teenagers now are neurotic lapdogs. Their craziness is the craziness of the idle everywhere.
When I was in school, suicide was a constant topic among the smarter kids. No one I knew did it, but several planned to, and some may have tried. Mostly this was just a pose. Like other teenagers, we loved the dramatic, and suicide seemed very dramatic. But partly it was because our lives were at times genuinely miserable.
Bullying was only part of the problem. Another problem, and possibly an even worse one, was that we never had anything real to work on. Humans like to work; in most of the world, your work is your identity. And all the work we did was pointless, or seemed so at the time.
At best it was practice for real work we might do far in the future, so far that we didn't even know at the time what we were practicing for. More often it was just an arbitrary series of hoops to jump through, words without content designed mainly for testability. (The three main causes of the Civil War were.... Test: List the three main causes of the Civil War.)
And there was no way to opt out. The adults had agreed among themselves that this was to be the route to college. The only way to escape this empty life was to submit to it.
Teenage kids used to have a more active role in society. In pre-industrial times, they were all apprentices of one sort or another, whether in shops or on farms or even on warships. They weren't left to create their own societies. They were junior members of adult societies.
Teenagers seem to have respected adults more then, because the adults were the visible experts in the skills they were trying to learn. Now most kids have little idea what their parents do in their distant offices, and see no connection (indeed, there is precious little) between schoolwork and the work they'll do as adults.
And if teenagers respected adults more, adults also had more use for teenagers. After a couple years' training, an apprentice could be a real help. Even the newest apprentice could be made to carry messages or sweep the workshop.
Now adults have no immediate use for teenagers. They would be in the way in an office. So they drop them off at school on their way to work, much as they might drop the dog off at a kennel if they were going away for the weekend.
What happened? We're up against a hard one here. The cause of this problem is the same as the cause of so many present ills: specialization. As jobs become more specialized, we have to train longer for them. Kids in pre-industrial times started working at about 14 at the latest; kids on farms, where most people lived, began far earlier. Now kids who go to college don't start working full-time till 21 or 22. With some degrees, like MDs and PhDs, you may not finish your training till 30.
Teenagers now are useless, except as cheap labor in industries like fast food, which evolved to exploit precisely this fact. In almost any other kind of work, they'd be a net loss. But they're also too young to be left unsupervised. Someone has to watch over them, and the most efficient way to do this is to collect them together in one place. Then a few adults can watch all of them.
If you stop there, what you're describing is literally a prison, albeit a part-time one. The problem is, many schools practically do stop there. The stated purpose of schools is to educate the kids. But there is no external pressure to do this well. And so most schools do such a bad job of teaching that the kids don't really take it seriously-- not even the smart kids. Much of the time we were all, students and teachers both, just going through the motions.
In my high school French class we were supposed to read Hugo's Les Miserables. I don't think any of us knew French well enough to make our way through this enormous book. Like the rest of the class, I just skimmed the Cliff's Notes. When we were given a test on the book, I noticed that the questions sounded odd. They were full of long words that our teacher wouldn't have used. Where had these questions come from? From the Cliff's Notes, it turned out. The teacher was using them too. We were all just pretending.
There are certainly great public school teachers. The energy and imagination of my fourth grade teacher, Mr. Mihalko, made that year something his students still talk about, thirty years later. But teachers like him were individuals swimming upstream. They couldn't fix the system.
In almost any group of people you'll find hierarchy. When groups of adults form in the real world, it's generally for some common purpose, and the leaders end up being those who are best at it. The problem with most schools is, they have no purpose. But hierarchy there must be. And so the kids make one out of nothing.
We have a phrase to describe what happens when rankings have to be created without any meaningful criteria. We say that the situation degenerates into a popularity contest. And that's exactly what happens in most American schools. Instead of depending on some real test, one's rank depends mostly on one's ability to increase one's rank. It's like the court of Louis XIV. There is no external opponent, so the kids become one another's opponents.
When there is some real external test of skill, it isn't painful to be at the bottom of the hierarchy. A rookie on a football team doesn't resent the skill of the veteran; he hopes to be like him one day and is happy to have the chance to learn from him. The veteran may in turn feel a sense of noblesse oblige. And most importantly, their status depends on how well they do against opponents, not on whether they can push the other down.
Court hierarchies are another thing entirely. This type of society debases anyone who enters it. There is neither admiration at the bottom, nor noblesse oblige at the top. It's kill or be killed.
This is the sort of society that gets created in American secondary schools. And it happens because these schools have no real purpose beyond keeping the kids all in one place for a certain number of hours each day. What I didn't realize at the time, and in fact didn't realize till very recently, is that the twin horrors of school life, the cruelty and the boredom, both have the same cause.
The mediocrity of American public schools has worse consequences than just making kids unhappy for six years. It breeds a rebelliousness that actively drives kids away from the things they're supposed to be learning.
Like many nerds, probably, it was years after high school before I could bring myself to read anything we'd been assigned then. And I lost more than books. I mistrusted words like "character" and "integrity" because they had been so debased by adults. As they were used then, these words all seemed to mean the same thing: obedience. The kids who got praised for these qualities tended to be at best dull-witted prize bulls, and at worst facile schmoozers. If that was what character and integrity were, I wanted no part of them.
The word I most misunderstood was "tact." As used by adults, it seemed to mean keeping your mouth shut. I assumed it was derived from the same root as "tacit" and "taciturn," and that it literally meant being quiet. I vowed that I would never be tactful; they were never going to shut me up. In fact, it's derived from the same root as "tactile," and what it means is to have a deft touch. Tactful is the opposite of clumsy. I don't think I learned this until college.
Nerds aren't the only losers in the popularity rat race. Nerds are unpopular because they're distracted. There are other kids who deliberately opt out because they're so disgusted with the whole process.
Teenage kids, even rebels, don't like to be alone, so when kids opt out of the system, they tend to do it as a group. At the schools I went to, the focus of rebellion was drug use, specifically marijuana. The kids in this tribe wore black concert t-shirts and were called "freaks."
Freaks and nerds were allies, and there was a good deal of overlap between them. Freaks were on the whole smarter than other kids, though never studying (or at least never appearing to) was an important tribal value. I was more in the nerd camp, but I was friends with a lot of freaks.
They used drugs, at least at first, for the social bonds they created. It was something to do together, and because the drugs were illegal, it was a shared badge of rebellion.
I'm not claiming that bad schools are the whole reason kids get into trouble with drugs. After a while, drugs have their own momentum. No doubt some of the freaks ultimately used drugs to escape from other problems-- trouble at home, for example. But, in my school at least, the reason most kids started using drugs was rebellion. Fourteen-year-olds didn't start smoking pot because they'd heard it would help them forget their problems. They started because they wanted to join a different tribe.
Misrule breeds rebellion; this is not a new idea. And yet the authorities still for the most part act as if drugs were themselves the cause of the problem.
The real problem is the emptiness of school life. We won't see solutions till adults realize that. The adults who may realize it first are the ones who were themselves nerds in school. Do you want your kids to be as unhappy in eighth grade as you were? I wouldn't. Well, then, is there anything we can do to fix things? Almost certainly. There is nothing inevitable about the current system. It has come about mostly by default.
Adults, though, are busy. Showing up for school plays is one thing. Taking on the educational bureaucracy is another. Perhaps a few will have the energy to try to change things. I suspect the hardest part is realizing that you can.
Nerds still in school should not hold their breath. Maybe one day a heavily armed force of adults will show up in helicopters to rescue you, but they probably won't be coming this month. Any immediate improvement in nerds' lives is probably going to have to come from the nerds themselves.
Merely understanding the situation they're in should make it less painful. Nerds aren't losers. They're just playing a different game, and a game much closer to the one played in the real world. Adults know this. It's hard to find successful adults now who don't claim to have been nerds in high school.
It's important for nerds to realize, too, that school is not life. School is a strange, artificial thing, half sterile and half feral. It's all-encompassing, like life, but it isn't the real thing. It's only temporary, and if you look, you can see beyond it even while you're still in it.
If life seems awful to kids, it's neither because hormones are turning you all into monsters (as your parents believe), nor because life actually is awful (as you believe). It's because the adults, who no longer have any economic use for you, have abandoned you to spend years cooped up together with nothing real to do. Any society of that type is awful to live in. You don't have to look any further to explain why teenage kids are unhappy.
I've said some harsh things in this essay, but really the thesis is an optimistic one-- that several problems we take for granted are in fact not insoluble after all. Teenage kids are not inherently unhappy monsters. That should be encouraging news to kids and adults both.
Thanks to Sarah Harlin, Trevor Blackwell, Robert Morris, Eric Raymond, and Jackie Weicker for reading drafts of this essay, and Maria Daniels for scanning photos.

The Hundred-Year Language

(This essay is derived from a keynote talk at PyCon 2003.)
It's hard to predict what life will be like in a hundred years. There are only a few things we can say with certainty. We know that everyone will drive flying cars, that zoning laws will be relaxed to allow buildings hundreds of stories tall, that it will be dark most of the time, and that women will all be trained in the martial arts. Here I want to zoom in on one detail of this picture. What kind of programming language will they use to write the software controlling those flying cars?
This is worth thinking about not so much because we'll actually get to use these languages as because, if we're lucky, we'll use languages on the path from this point to that.
I think that, like species, languages will form evolutionary trees, with dead-ends branching off all over. We can see this happening already. Cobol, for all its sometime popularity, does not seem to have any intellectual descendants. It is an evolutionary dead-end-- a Neanderthal language.
I predict a similar fate for Java. People sometimes send me mail saying, "How can you say that Java won't turn out to be a successful language? It's already a successful language." And I admit that it is, if you measure success by shelf space taken up by books on it (particularly individual books on it), or by the number of undergrads who believe they have to learn it to get a job. When I say Java won't turn out to be a successful language, I mean something more specific: that Java will turn out to be an evolutionary dead-end, like Cobol.
This is just a guess. I may be wrong. My point here is not to dis Java, but to raise the issue of evolutionary trees and get people asking, where on the tree is language X? The reason to ask this question isn't just so that our ghosts can say, in a hundred years, I told you so. It's because staying close to the main branches is a useful heuristic for finding languages that will be good to program in now.
At any given time, you're probably happiest on the main branches of an evolutionary tree. Even when there were still plenty of Neanderthals, it must have sucked to be one. The Cro-Magnons would have been constantly coming over and beating you up and stealing your food.
The reason I want to know what languages will be like in a hundred years is so that I know what branch of the tree to bet on now.
The evolution of languages differs from the evolution of species because branches can converge. The Fortran branch, for example, seems to be merging with the descendants of Algol. In theory this is possible for species too, but it's so unlikely that it has probably never happened.
Convergence is more likely for languages partly because the space of possibilities is smaller, and partly because mutations are not random. Language designers deliberately incorporate ideas from other languages.
It's especially useful for language designers to think about where the evolution of programming languages is likely to lead, because they can steer accordingly. In that case, "stay on a main branch" becomes more than a way to choose a good language. It becomes a heuristic for making the right decisions about language design.
Any programming language can be divided into two parts: some set of fundamental operators that play the role of axioms, and the rest of the language, which could in principle be written in terms of these fundamental operators.
I think the fundamental operators are the most important factor in a language's long term survival. The rest you can change. It's like the rule that in buying a house you should consider location first of all. Everything else you can fix later, but you can't fix the location.
I think it's important not just that the axioms be well chosen, but that there be few of them. Mathematicians have always felt this way about axioms-- the fewer, the better-- and I think they're onto something.
At the very least, it has to be a useful exercise to look closely at the core of a language to see if there are any axioms that could be weeded out. I've found in my long career as a slob that cruft breeds cruft, and I've seen this happen in software as well as under beds and in the corners of rooms.
I have a hunch that the main branches of the evolutionary tree pass through the languages that have the smallest, cleanest cores. The more of a language you can write in itself, the better.
Of course, I'm making a big assumption in even asking what programming languages will be like in a hundred years. Will we even be writing programs in a hundred years? Won't we just tell computers what we want them to do?
There hasn't been a lot of progress in that department so far. My guess is that a hundred years from now people will still tell computers what to do using programs we would recognize as such. There may be tasks that we solve now by writing programs and which in a hundred years you won't have to write programs to solve, but I think there will still be a good deal of programming of the type that we do today.
It may seem presumptuous to think anyone can predict what any technology will look like in a hundred years. But remember that we already have almost fifty years of history behind us. Looking forward a hundred years is a graspable idea when we consider how slowly languages have evolved in the past fifty.
Languages evolve slowly because they're not really technologies. Languages are notation. A program is a formal description of the problem you want a computer to solve for you. So the rate of evolution in programming languages is more like the rate of evolution in mathematical notation than, say, transportation or communications. Mathematical notation does evolve, but not with the giant leaps you see in technology.
Whatever computers are made of in a hundred years, it seems safe to predict they will be much faster than they are now. If Moore's Law continues to put out, they will be 74 quintillion (73,786,976,294,838,206,464) times faster. That's kind of hard to imagine. And indeed, the most likely prediction in the speed department may be that Moore's Law will stop working. Anything that is supposed to double every eighteen months seems likely to run up against some kind of fundamental limit eventually. But I have no trouble believing that computers will be very much faster. Even if they only end up being a paltry million times faster, that should change the ground rules for programming languages substantially. Among other things, there will be more room for what would now be considered slow languages, meaning languages that don't yield very efficient code.
And yet some applications will still demand speed. Some of the problems we want to solve with computers are created by computers; for example, the rate at which you have to process video images depends on the rate at which another computer can generate them. And there is another class of problems which inherently have an unlimited capacity to soak up cycles: image rendering, cryptography, simulations.
If some applications can be increasingly inefficient while others continue to demand all the speed the hardware can deliver, faster computers will mean that languages have to cover an ever wider range of efficiencies. We've seen this happening already. Current implementations of some popular new languages are shockingly wasteful by the standards of previous decades.
This isn't just something that happens with programming languages. It's a general historical trend. As technologies improve, each generation can do things that the previous generation would have considered wasteful. People thirty years ago would be astonished at how casually we make long distance phone calls. People a hundred years ago would be even more astonished that a package would one day travel from Boston to New York via Memphis.
I can already tell you what's going to happen to all those extra cycles that faster hardware is going to give us in the next hundred years. They're nearly all going to be wasted.
I learned to program when computer power was scarce. I can remember taking all the spaces out of my Basic programs so they would fit into the memory of a 4K TRS-80. The thought of all this stupendously inefficient software burning up cycles doing the same thing over and over seems kind of gross to me. But I think my intuitions here are wrong. I'm like someone who grew up poor, and can't bear to spend money even for something important, like going to the doctor.
Some kinds of waste really are disgusting. SUVs, for example, would arguably be gross even if they ran on a fuel which would never run out and generated no pollution. SUVs are gross because they're the solution to a gross problem. (How to make minivans look more masculine.) But not all waste is bad. Now that we have the infrastructure to support it, counting the minutes of your long-distance calls starts to seem niggling. If you have the resources, it's more elegant to think of all phone calls as one kind of thing, no matter where the other person is.
There's good waste, and bad waste. I'm interested in good waste-- the kind where, by spending more, we can get simpler designs. How will we take advantage of the opportunities to waste cycles that we'll get from new, faster hardware?
The desire for speed is so deeply engrained in us, with our puny computers, that it will take a conscious effort to overcome it. In language design, we should be consciously seeking out situations where we can trade efficiency for even the smallest increase in convenience.
Most data structures exist because of speed. For example, many languages today have both strings and lists. Semantically, strings are more or less a subset of lists in which the elements are characters. So why do you need a separate data type? You don't, really. Strings only exist for efficiency. But it's lame to clutter up the semantics of the language with hacks to make programs run faster. Having strings in a language seems to be a case of premature optimization.
If we think of the core of a language as a set of axioms, surely it's gross to have additional axioms that add no expressive power, simply for the sake of efficiency. Efficiency is important, but I don't think that's the right way to get it.
The right way to solve that problem, I think, is to separate the meaning of a program from the implementation details. Instead of having both lists and strings, have just lists, with some way to give the compiler optimization advice that will allow it to lay out strings as contiguous bytes if necessary.
Since speed doesn't matter in most of a program, you won't ordinarily need to bother with this sort of micromanagement. This will be more and more true as computers get faster.
Saying less about implementation should also make programs more flexible. Specifications change while a program is being written, and this is not only inevitable, but desirable.
The word "essay" comes from the French verb "essayer", which means "to try". An essay, in the original sense, is something you write to try to figure something out. This happens in software too. I think some of the best programs were essays, in the sense that the authors didn't know when they started exactly what they were trying to write.
Lisp hackers already know about the value of being flexible with data structures. We tend to write the first version of a program so that it does everything with lists. These initial versions can be so shockingly inefficient that it takes a conscious effort not to think about what they're doing, just as, for me at least, eating a steak requires a conscious effort not to think where it came from.
What programmers in a hundred years will be looking for, most of all, is a language where you can throw together an unbelievably inefficient version 1 of a program with the least possible effort. At least, that's how we'd describe it in present-day terms. What they'll say is that they want a language that's easy to program in.
Inefficient software isn't gross. What's gross is a language that makes programmers do needless work. Wasting programmer time is the true inefficiency, not wasting machine time. This will become ever more clear as computers get faster.
I think getting rid of strings is already something we could bear to think about. We did it in Arc, and it seems to be a win; some operations that would be awkward to describe as regular expressions can be described easily as recursive functions.
How far will this flattening of data structures go? I can think of possibilities that shock even me, with my conscientiously broadened mind. Will we get rid of arrays, for example? After all, they're just a subset of hash tables where the keys are vectors of integers. Will we replace hash tables themselves with lists?
There are more shocking prospects even than that. The Lisp that McCarthy described in 1960, for example, didn't have numbers. Logically, you don't need to have a separate notion of numbers, because you can represent them as lists: the integer n could be represented as a list of n elements. You can do math this way. It's just unbearably inefficient.
No one actually proposed implementing numbers as lists in practice. In fact, McCarthy's 1960 paper was not, at the time, intended to be implemented at all. It was a theoretical exercise, an attempt to create a more elegant alternative to the Turing Machine. When someone did, unexpectedly, take this paper and translate it into a working Lisp interpreter, numbers certainly weren't represented as lists; they were represented in binary, as in every other language.
Could a programming language go so far as to get rid of numbers as a fundamental data type? I ask this not so much as a serious question as as a way to play chicken with the future. It's like the hypothetical case of an irresistible force meeting an immovable object-- here, an unimaginably inefficient implementation meeting unimaginably great resources. I don't see why not. The future is pretty long. If there's something we can do to decrease the number of axioms in the core language, that would seem to be the side to bet on as t approaches infinity. If the idea still seems unbearable in a hundred years, maybe it won't in a thousand.
Just to be clear about this, I'm not proposing that all numerical calculations would actually be carried out using lists. I'm proposing that the core language, prior to any additional notations about implementation, be defined this way. In practice any program that wanted to do any amount of math would probably represent numbers in binary, but this would be an optimization, not part of the core language semantics.
Another way to burn up cycles is to have many layers of software between the application and the hardware. This too is a trend we see happening already: many recent languages are compiled into byte code. Bill Woods once told me that, as a rule of thumb, each layer of interpretation costs a factor of 10 in speed. This extra cost buys you flexibility.
The very first version of Arc was an extreme case of this sort of multi-level slowness, with corresponding benefits. It was a classic "metacircular" interpreter written on top of Common Lisp, with a definite family resemblance to the eval function defined in McCarthy's original Lisp paper. The whole thing was only a couple hundred lines of code, so it was very easy to understand and change. The Common Lisp we used, CLisp, itself runs on top of a byte code interpreter. So here we had two levels of interpretation, one of them (the top one) shockingly inefficient, and the language was usable. Barely usable, I admit, but usable.
Writing software as multiple layers is a powerful technique even within applications. Bottom-up programming means writing a program as a series of layers, each of which serves as a language for the one above. This approach tends to yield smaller, more flexible programs. It's also the best route to that holy grail, reusability. A language is by definition reusable. The more of your application you can push down into a language for writing that type of application, the more of your software will be reusable.
Somehow the idea of reusability got attached to object-oriented programming in the 1980s, and no amount of evidence to the contrary seems to be able to shake it free. But although some object-oriented software is reusable, what makes it reusable is its bottom-upness, not its object-orientedness. Consider libraries: they're reusable because they're language, whether they're written in an object-oriented style or not.
I don't predict the demise of object-oriented programming, by the way. Though I don't think it has much to offer good programmers, except in certain specialized domains, it is irresistible to large organizations. Object-oriented programming offers a sustainable way to write spaghetti code. It lets you accrete programs as a series of patches. Large organizations always tend to develop software this way, and I expect this to be as true in a hundred years as it is today.
As long as we're talking about the future, we had better talk about parallel computation, because that's where this idea seems to live. That is, no matter when you're talking, parallel computation seems to be something that is going to happen in the future.
Will the future ever catch up with it? People have been talking about parallel computation as something imminent for at least 20 years, and it hasn't affected programming practice much so far. Or hasn't it? Already chip designers have to think about it, and so must people trying to write systems software on multi-cpu computers.
The real question is, how far up the ladder of abstraction will parallelism go? In a hundred years will it affect even application programmers? Or will it be something that compiler writers think about, but which is usually invisible in the source code of applications?
One thing that does seem likely is that most opportunities for parallelism will be wasted. This is a special case of my more general prediction that most of the extra computer power we're given will go to waste. I expect that, as with the stupendous speed of the underlying hardware, parallelism will be something that is available if you ask for it explicitly, but ordinarily not used. This implies that the kind of parallelism we have in a hundred years will not, except in special applications, be massive parallelism. I expect for ordinary programmers it will be more like being able to fork off processes that all end up running in parallel.
And this will, like asking for specific implementations of data structures, be something that you do fairly late in the life of a program, when you try to optimize it. Version 1s will ordinarily ignore any advantages to be got from parallel computation, just as they will ignore advantages to be got from specific representations of data.
Except in special kinds of applications, parallelism won't pervade the programs that are written in a hundred years. It would be premature optimization if it did.
How many programming languages will there be in a hundred years? There seem to be a huge number of new programming languages lately. Part of the reason is that faster hardware has allowed programmers to make different tradeoffs between speed and convenience, depending on the application. If this is a real trend, the hardware we'll have in a hundred years should only increase it.
And yet there may be only a few widely-used languages in a hundred years. Part of the reason I say this is optimism: it seems that, if you did a really good job, you could make a language that was ideal for writing a slow version 1, and yet with the right optimization advice to the compiler, would also yield very fast code when necessary. So, since I'm optimistic, I'm going to predict that despite the huge gap they'll have between acceptable and maximal efficiency, programmers in a hundred years will have languages that can span most of it.
As this gap widens, profilers will become increasingly important. Little attention is paid to profiling now. Many people still seem to believe that the way to get fast applications is to write compilers that generate fast code. As the gap between acceptable and maximal performance widens, it will become increasingly clear that the way to get fast applications is to have a good guide from one to the other.
When I say there may only be a few languages, I'm not including domain-specific "little languages". I think such embedded languages are a great idea, and I expect them to proliferate. But I expect them to be written as thin enough skins that users can see the general-purpose language underneath.
Who will design the languages of the future? One of the most exciting trends in the last ten years has been the rise of open-source languages like Perl, Python, and Ruby. Language design is being taken over by hackers. The results so far are messy, but encouraging. There are some stunningly novel ideas in Perl, for example. Many are stunningly bad, but that's always true of ambitious efforts. At its current rate of mutation, God knows what Perl might evolve into in a hundred years.
It's not true that those who can't do, teach (some of the best hackers I know are professors), but it is true that there are a lot of things that those who teach can't do. Research imposes constraining caste restrictions. In any academic field there are topics that are ok to work on and others that aren't. Unfortunately the distinction between acceptable and forbidden topics is usually based on how intellectual the work sounds when described in research papers, rather than how important it is for getting good results. The extreme case is probably literature; people studying literature rarely say anything that would be of the slightest use to those producing it.
Though the situation is better in the sciences, the overlap between the kind of work you're allowed to do and the kind of work that yields good languages is distressingly small. (Olin Shivers has grumbled eloquently about this.) For example, types seem to be an inexhaustible source of research papers, despite the fact that static typing seems to preclude true macros-- without which, in my opinion, no language is worth using.
The trend is not merely toward languages being developed as open-source projects rather than "research", but toward languages being designed by the application programmers who need to use them, rather than by compiler writers. This seems a good trend and I expect it to continue.
Unlike physics in a hundred years, which is almost necessarily impossible to predict, I think it may be possible in principle to design a language now that would appeal to users in a hundred years.
One way to design a language is to just write down the program you'd like to be able to write, regardless of whether there is a compiler that can translate it or hardware that can run it. When you do this you can assume unlimited resources. It seems like we ought to be able to imagine unlimited resources as well today as in a hundred years.
What program would one like to write? Whatever is least work. Except not quite: whatever would be least work if your ideas about programming weren't already influenced by the languages you're currently used to. Such influence can be so pervasive that it takes a great effort to overcome it. You'd think it would be obvious to creatures as lazy as us how to express a program with the least effort. In fact, our ideas about what's possible tend to be so limited by whatever language we think in that easier formulations of programs seem very surprising. They're something you have to discover, not something you naturally sink into.
One helpful trick here is to use the length of the program as an approximation for how much work it is to write. Not the length in characters, of course, but the length in distinct syntactic elements-- basically, the size of the parse tree. It may not be quite true that the shortest program is the least work to write, but it's close enough that you're better off aiming for the solid target of brevity than the fuzzy, nearby one of least work. Then the algorithm for language design becomes: look at a program and ask, is there any way to write this that's shorter?
In practice, writing programs in an imaginary hundred-year language will work to varying degrees depending on how close you are to the core. Sort routines you can write now. But it would be hard to predict now what kinds of libraries might be needed in a hundred years. Presumably many libraries will be for domains that don't even exist yet. If SETI@home works, for example, we'll need libraries for communicating with aliens. Unless of course they are sufficiently advanced that they already communicate in XML.
At the other extreme, I think you might be able to design the core language today. In fact, some might argue that it was already mostly designed in 1958.
If the hundred year language were available today, would we want to program in it? One way to answer this question is to look back. If present-day programming languages had been available in 1960, would anyone have wanted to use them?
In some ways, the answer is no. Languages today assume infrastructure that didn't exist in 1960. For example, a language in which indentation is significant, like Python, would not work very well on printer terminals. But putting such problems aside-- assuming, for example, that programs were all just written on paper-- would programmers of the 1960s have liked writing programs in the languages we use now?
I think so. Some of the less imaginative ones, who had artifacts of early languages built into their ideas of what a program was, might have had trouble. (How can you manipulate data without doing pointer arithmetic? How can you implement flow charts without gotos?) But I think the smartest programmers would have had no trouble making the most of present-day languages, if they'd had them.
If we had the hundred-year language now, it would at least make a great pseudocode. What about using it to write software? Since the hundred-year language will need to generate fast code for some applications, presumably it could generate code efficient enough to run acceptably well on our hardware. We might have to give more optimization advice than users in a hundred years, but it still might be a net win.
Now we have two ideas that, if you combine them, suggest interesting possibilities: (1) the hundred-year language could, in principle, be designed today, and (2) such a language, if it existed, might be good to program in today. When you see these ideas laid out like that, it's hard not to think, why not try writing the hundred-year language now?
When you're working on language design, I think it is good to have such a target and to keep it consciously in mind. When you learn to drive, one of the principles they teach you is to align the car not by lining up the hood with the stripes painted on the road, but by aiming at some point in the distance. Even if all you care about is what happens in the next ten feet, this is the right answer. I think we can and should do the same thing with programming languages.
Notes
I believe Lisp Machine Lisp was the first language to embody the principle that declarations (except those of dynamic variables) were merely optimization advice, and would not change the meaning of a correct program. Common Lisp seems to have been the first to state this explicitly.
Thanks to Trevor Blackwell, Robert Morris, and Dan Giffin for reading drafts of this, and to Guido van Rossum, Jeremy Hylton, and the rest of the Python crew for inviting me to speak at PyCon.

If Lisp is So Great

If Lisp is so great, why don't more people use it? I was asked this question by a student in the audience at a talk I gave recently. Not for the first time, either.
In languages, as in so many things, there's not much correlation between popularity and quality. Why does John Grisham (King of Torts sales rank, 44) outsell Jane Austen (Pride and Prejudice sales rank, 6191)? Would even Grisham claim that it's because he's a better writer?
Here's the first sentence of Pride and Prejudice:
It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife.
"It is a truth universally acknowledged?" Long words for the first sentence of a love story.
Like Jane Austen, Lisp looks hard. Its syntax, or lack of syntax, makes it look completely unlike the languages most people are used to. Before I learned Lisp, I was afraid of it too. I recently came across a notebook from 1983 in which I'd written:
I suppose I should learn Lisp, but it seems so foreign.
Fortunately, I was 19 at the time and not too resistant to learning new things. I was so ignorant that learning almost anything meant learning new things.
People frightened by Lisp make up other reasons for not using it. The standard excuse, back when C was the default language, was that Lisp was too slow. Now that Lisp dialects are among the faster languages available, that excuse has gone away. Now the standard excuse is openly circular: that other languages are more popular.
(Beware of such reasoning. It gets you Windows.)
Popularity is always self-perpetuating, but it's especially so in programming languages. More libraries get written for popular languages, which makes them still more popular. Programs often have to work with existing programs, and this is easier if they're written in the same language, so languages spread from program to program like a virus. And managers prefer popular languages, because they give them more leverage over developers, who can more easily be replaced.
Indeed, if programming languages were all more or less equivalent, there would be little justification for using any but the most popular. But they aren't all equivalent, not by a long shot. And that's why less popular languages, like Jane Austen's novels, continue to survive at all. When everyone else is reading the latest John Grisham novel, there will always be a few people reading Jane Austen instead.

Hackers and Painters

(This essay is derived from a guest lecture at Harvard, which incorporated an earlier talk at Northeastern.)
When I finished grad school in computer science I went to art school to study painting. A lot of people seemed surprised that someone interested in computers would also be interested in painting. They seemed to think that hacking and painting were very different kinds of work-- that hacking was cold, precise, and methodical, and that painting was the frenzied expression of some primal urge.
Both of these images are wrong. Hacking and painting have a lot in common. In fact, of all the different types of people I've known, hackers and painters are among the most alike.
What hackers and painters have in common is that they're both makers. Along with composers, architects, and writers, what hackers and painters are trying to do is make good things. They're not doing research per se, though if in the course of trying to make good things they discover some new technique, so much the better.
I've never liked the term "computer science." The main reason I don't like it is that there's no such thing. Computer science is a grab bag of tenuously related areas thrown together by an accident of history, like Yugoslavia. At one end you have people who are really mathematicians, but call what they're doing computer science so they can get DARPA grants. In the middle you have people working on something like the natural history of computers-- studying the behavior of algorithms for routing data through networks, for example. And then at the other extreme you have the hackers, who are trying to write interesting software, and for whom computers are just a medium of expression, as concrete is for architects or paint for painters. It's as if mathematicians, physicists, and architects all had to be in the same department.
Sometimes what the hackers do is called "software engineering," but this term is just as misleading. Good software designers are no more engineers than architects are. The border between architecture and engineering is not sharply defined, but it's there. It falls between what and how: architects decide what to do, and engineers figure out how to do it.
What and how should not be kept too separate. You're asking for trouble if you try to decide what to do without understanding how to do it. But hacking can certainly be more than just deciding how to implement some spec. At its best, it's creating the spec-- though it turns out the best way to do that is to implement it.
Perhaps one day "computer science" will, like Yugoslavia, get broken up into its component parts. That might be a good thing. Especially if it meant independence for my native land, hacking.
Bundling all these different types of work together in one department may be convenient administratively, but it's confusing intellectually. That's the other reason I don't like the name "computer science." Arguably the people in the middle are doing something like an experimental science. But the people at either end, the hackers and the mathematicians, are not actually doing science.
The mathematicians don't seem bothered by this. They happily set to work proving theorems like the other mathematicians over in the math department, and probably soon stop noticing that the building they work in says ``computer science'' on the outside. But for the hackers this label is a problem. If what they're doing is called science, it makes them feel they ought to be acting scientific. So instead of doing what they really want to do, which is to design beautiful software, hackers in universities and research labs feel they ought to be writing research papers.
In the best case, the papers are just a formality. Hackers write cool software, and then write a paper about it, and the paper becomes a proxy for the achievement represented by the software. But often this mismatch causes problems. It's easy to drift away from building beautiful things toward building ugly things that make more suitable subjects for research papers.
Unfortunately, beautiful things don't always make the best subjects for papers. Number one, research must be original-- and as anyone who has written a PhD dissertation knows, the way to be sure that you're exploring virgin territory is to to stake out a piece of ground that no one wants. Number two, research must be substantial-- and awkward systems yield meatier papers, because you can write about the obstacles you have to overcome in order to get things done. Nothing yields meaty problems like starting with the wrong assumptions. Most of AI is an example of this rule; if you assume that knowledge can be represented as a list of predicate logic expressions whose arguments represent abstract concepts, you'll have a lot of papers to write about how to make this work. As Ricky Ricardo used to say, "Lucy, you got a lot of explaining to do."
The way to create something beautiful is often to make subtle tweaks to something that already exists, or to combine existing ideas in a slightly new way. This kind of work is hard to convey in a research paper.
So why do universities and research labs continue to judge hackers by publications? For the same reason that "scholastic aptitude" gets measured by simple-minded standardized tests, or the productivity of programmers gets measured in lines of code. These tests are easy to apply, and there is nothing so tempting as an easy test that kind of works.
Measuring what hackers are actually trying to do, designing beautiful software, would be much more difficult. You need a good sense of design to judge good design. And there is no correlation, except possibly a negative one, between people's ability to recognize good design and their confidence that they can.
The only external test is time. Over time, beautiful things tend to thrive, and ugly things tend to get discarded. Unfortunately, the amounts of time involved can be longer than human lifetimes. Samuel Johnson said it took a hundred years for a writer's reputation to converge. You have to wait for the writer's influential friends to die, and then for all their followers to die.
I think hackers just have to resign themselves to having a large random component in their reputations. In this they are no different from other makers. In fact, they're lucky by comparison. The influence of fashion is not nearly so great in hacking as it is in painting.
There are worse things than having people misunderstand your work. A worse danger is that you will yourself misunderstand your work. Related fields are where you go looking for ideas. If you find yourself in the computer science department, there is a natural temptation to believe, for example, that hacking is the applied version of what theoretical computer science is the theory of. All the time I was in graduate school I had an uncomfortable feeling in the back of my mind that I ought to know more theory, and that it was very remiss of me to have forgotten all that stuff within three weeks of the final exam.
Now I realize I was mistaken. Hackers need to understand the theory of computation about as much as painters need to understand paint chemistry. You need to know how to calculate time and space complexity and about Turing completeness. You might also want to remember at least the concept of a state machine, in case you have to write a parser or a regular expression library. Painters in fact have to remember a good deal more about paint chemistry than that.
I've found that the best sources of ideas are not the other fields that have the word "computer" in their names, but the other fields inhabited by makers. Painting has been a much richer source of ideas than the theory of computation.
For example, I was taught in college that one ought to figure out a program completely on paper before even going near a computer. I found that I did not program this way. I found that I liked to program sitting in front of a computer, not a piece of paper. Worse still, instead of patiently writing out a complete program and assuring myself it was correct, I tended to just spew out code that was hopelessly broken, and gradually beat it into shape. Debugging, I was taught, was a kind of final pass where you caught typos and oversights. The way I worked, it seemed like programming consisted of debugging.
For a long time I felt bad about this, just as I once felt bad that I didn't hold my pencil the way they taught me to in elementary school. If I had only looked over at the other makers, the painters or the architects, I would have realized that there was a name for what I was doing: sketching. As far as I can tell, the way they taught me to program in college was all wrong. You should figure out programs as you're writing them, just as writers and painters and architects do.
Realizing this has real implications for software design. It means that a programming language should, above all, be malleable. A programming language is for thinking of programs, not for expressing programs you've already thought of. It should be a pencil, not a pen. Static typing would be a fine idea if people actually did write programs the way they taught me to in college. But that's not how any of the hackers I know write programs. We need a language that lets us scribble and smudge and smear, not a language where you have to sit with a teacup of types balanced on your knee and make polite conversation with a strict old aunt of a compiler.
While we're on the subject of static typing, identifying with the makers will save us from another problem that afflicts the sciences: math envy. Everyone in the sciences secretly believes that mathematicians are smarter than they are. I think mathematicians also believe this. At any rate, the result is that scientists tend to make their work look as mathematical as possible. In a field like physics this probably doesn't do much harm, but the further you get from the natural sciences, the more of a problem it becomes.
A page of formulas just looks so impressive. (Tip: for extra impressiveness, use Greek variables.) And so there is a great temptation to work on problems you can treat formally, rather than problems that are, say, important.
If hackers identified with other makers, like writers and painters, they wouldn't feel tempted to do this. Writers and painters don't suffer from math envy. They feel as if they're doing something completely unrelated. So are hackers, I think.
If universities and research labs keep hackers from doing the kind of work they want to do, perhaps the place for them is in companies. Unfortunately, most companies won't let hackers do what they want either. Universities and research labs force hackers to be scientists, and companies force them to be engineers.
I only discovered this myself quite recently. When Yahoo bought Viaweb, they asked me what I wanted to do. I had never liked the business side very much, and said that I just wanted to hack. When I got to Yahoo, I found that what hacking meant to them was implementing software, not designing it. Programmers were seen as technicians who translated the visions (if that is the word) of product managers into code.
This seems to be the default plan in big companies. They do it because it decreases the standard deviation of the outcome. Only a small percentage of hackers can actually design software, and it's hard for the people running a company to pick these out. So instead of entrusting the future of the software to one brilliant hacker, most companies set things up so that it is designed by committee, and the hackers merely implement the design.
If you want to make money at some point, remember this, because this is one of the reasons startups win. Big companies want to decrease the standard deviation of design outcomes because they want to avoid disasters. But when you damp oscillations, you lose the high points as well as the low. This is not a problem for big companies, because they don't win by making great products. Big companies win by sucking less than other big companies.
So if you can figure out a way to get in a design war with a company big enough that its software is designed by product managers, they'll never be able to keep up with you. These opportunities are not easy to find, though. It's hard to engage a big company in a design war, just as it's hard to engage an opponent inside a castle in hand to hand combat. It would be pretty easy to write a better word processor than Microsoft Word, for example, but Microsoft, within the castle of their operating system monopoly, probably wouldn't even notice if you did.
The place to fight design wars is in new markets, where no one has yet managed to establish any fortifications. That's where you can win big by taking the bold approach to design, and having the same people both design and implement the product. Microsoft themselves did this at the start. So did Apple. And Hewlett-Packard. I suspect almost every successful startup has.
So one way to build great software is to start your own startup. There are two problems with this, though. One is that in a startup you have to do so much besides write software. At Viaweb I considered myself lucky if I got to hack a quarter of the time. And the things I had to do the other three quarters of the time ranged from tedious to terrifying. I have a benchmark for this, because I once had to leave a board meeting to have some cavities filled. I remember sitting back in the dentist's chair, waiting for the drill, and feeling like I was on vacation.
The other problem with startups is that there is not much overlap between the kind of software that makes money and the kind that's interesting to write. Programming languages are interesting to write, and Microsoft's first product was one, in fact, but no one will pay for programming languages now. If you want to make money, you tend to be forced to work on problems that are too nasty for anyone to solve for free.
All makers face this problem. Prices are determined by supply and demand, and there is just not as much demand for things that are fun to work on as there is for things that solve the mundane problems of individual customers. Acting in off-Broadway plays just doesn't pay as well as wearing a gorilla suit in someone's booth at a trade show. Writing novels doesn't pay as well as writing ad copy for garbage disposals. And hacking programming languages doesn't pay as well as figuring out how to connect some company's legacy database to their Web server.
I think the answer to this problem, in the case of software, is a concept known to nearly all makers: the day job. This phrase began with musicians, who perform at night. More generally, it means that you have one kind of work you do for money, and another for love.
Nearly all makers have day jobs early in their careers. Painters and writers notoriously do. If you're lucky you can get a day job that's closely related to your real work. Musicians often seem to work in record stores. A hacker working on some programming language or operating system might likewise be able to get a day job using it. [1]
When I say that the answer is for hackers to have day jobs, and work on beautiful software on the side, I'm not proposing this as a new idea. This is what open-source hacking is all about. What I'm saying is that open-source is probably the right model, because it has been independently confirmed by all the other makers.
It seems surprising to me that any employer would be reluctant to let hackers work on open-source projects. At Viaweb, we would have been reluctant to hire anyone who didn't. When we interviewed programmers, the main thing we cared about was what kind of software they wrote in their spare time. You can't do anything really well unless you love it, and if you love to hack you'll inevitably be working on projects of your own. [2]
Because hackers are makers rather than scientists, the right place to look for metaphors is not in the sciences, but among other kinds of makers. What else can painting teach us about hacking?
One thing we can learn, or at least confirm, from the example of painting is how to learn to hack. You learn to paint mostly by doing it. Ditto for hacking. Most hackers don't learn to hack by taking college courses in programming. They learn to hack by writing programs of their own at age thirteen. Even in college classes, you learn to hack mostly by hacking. [3]
Because painters leave a trail of work behind them, you can watch them learn by doing. If you look at the work of a painter in chronological order, you'll find that each painting builds on things that have been learned in previous ones. When there's something in a painting that works very well, you can usually find version 1 of it in a smaller form in some earlier painting.
I think most makers work this way. Writers and architects seem to as well. Maybe it would be good for hackers to act more like painters, and regularly start over from scratch, instead of continuing to work for years on one project, and trying to incorporate all their later ideas as revisions.
The fact that hackers learn to hack by doing it is another sign of how different hacking is from the sciences. Scientists don't learn science by doing it, but by doing labs and problem sets. Scientists start out doing work that's perfect, in the sense that they're just trying to reproduce work someone else has already done for them. Eventually, they get to the point where they can do original work. Whereas hackers, from the start, are doing original work; it's just very bad. So hackers start original, and get good, and scientists start good, and get original.
The other way makers learn is from examples. For a painter, a museum is a reference library of techniques. For hundreds of years it has been part of the traditional education of painters to copy the works of the great masters, because copying forces you to look closely at the way a painting is made.
Writers do this too. Benjamin Franklin learned to write by summarizing the points in the essays of Addison and Steele and then trying to reproduce them. Raymond Chandler did the same thing with detective stories.
Hackers, likewise, can learn to program by looking at good programs-- not just at what they do, but the source code too. One of the less publicized benefits of the open-source movement is that it has made it easier to learn to program. When I learned to program, we had to rely mostly on examples in books. The one big chunk of code available then was Unix, but even this was not open source. Most of the people who read the source read it in illicit photocopies of John Lions' book, which though written in 1977 was not allowed to be published until 1996.
Another example we can take from painting is the way that paintings are created by gradual refinement. Paintings usually begin with a sketch. Gradually the details get filled in. But it is not merely a process of filling in. Sometimes the original plans turn out to be mistaken. Countless paintings, when you look at them in xrays, turn out to have limbs that have been moved or facial features that have been readjusted.
Here's a case where we can learn from painting. I think hacking should work this way too. It's unrealistic to expect that the specifications for a program will be perfect. You're better off if you admit this up front, and write programs in a way that allows specifications to change on the fly.
(The structure of large companies makes this hard for them to do, so here is another place where startups have an advantage.)
Everyone by now presumably knows about the danger of premature optimization. I think we should be just as worried about premature design-- deciding too early what a program should do.
The right tools can help us avoid this danger. A good programming language should, like oil paint, make it easy to change your mind. Dynamic typing is a win here because you don't have to commit to specific data representations up front. But the key to flexibility, I think, is to make the language very abstract. The easiest program to change is one that's very short.
This sounds like a paradox, but a great painting has to be better than it has to be. For example, when Leonardo painted the portrait of Ginevra de Benci in the National Gallery, he put a juniper bush behind her head. In it he carefully painted each individual leaf. Many painters might have thought, this is just something to put in the background to frame her head. No one will look that closely at it.
Not Leonardo. How hard he worked on part of a painting didn't depend at all on how closely he expected anyone to look at it. He was like Michael Jordan. Relentless.
Relentlessness wins because, in the aggregate, unseen details become visible. When people walk by the portrait of Ginevra de Benci, their attention is often immediately arrested by it, even before they look at the label and notice that it says Leonardo da Vinci. All those unseen details combine to produce something that's just stunning, like a thousand barely audible voices all singing in tune.
Great software, likewise, requires a fanatical devotion to beauty. If you look inside good software, you find that parts no one is ever supposed to see are beautiful too. I'm not claiming I write great software, but I know that when it comes to code I behave in a way that would make me eligible for prescription drugs if I approached everyday life the same way. It drives me crazy to see code that's badly indented, or that uses ugly variable names.
If a hacker were a mere implementor, turning a spec into code, then he could just work his way through it from one end to the other like someone digging a ditch. But if the hacker is a creator, we have to take inspiration into account.
In hacking, like painting, work comes in cycles. Sometimes you get excited about some new project and you want to work sixteen hours a day on it. Other times nothing seems interesting.
To do good work you have to take these cycles into account, because they're affected by how you react to them. When you're driving a car with a manual transmission on a hill, you have to back off the clutch sometimes to avoid stalling. Backing off can likewise prevent ambition from stalling. In both painting and hacking there are some tasks that are terrifyingly ambitious, and others that are comfortingly routine. It's a good idea to save some easy tasks for moments when you would otherwise stall.
In hacking, this can literally mean saving up bugs. I like debugging: it's the one time that hacking is as straightforward as people think it is. You have a totally constrained problem, and all you have to do is solve it. Your program is supposed to do x. Instead it does y. Where does it go wrong? You know you're going to win in the end. It's as relaxing as painting a wall.
The example of painting can teach us not only how to manage our own work, but how to work together. A lot of the great art of the past is the work of multiple hands, though there may only be one name on the wall next to it in the museum. Leonardo was an apprentice in the workshop of Verrocchio and painted one of the angels in his Baptism of Christ. This sort of thing was the rule, not the exception. Michelangelo was considered especially dedicated for insisting on painting all the figures on the ceiling of the Sistine Chapel himself.
As far as I know, when painters worked together on a painting, they never worked on the same parts. It was common for the master to paint the principal figures and for assistants to paint the others and the background. But you never had one guy painting over the work of another.
I think this is the right model for collaboration in software too. Don't push it too far. When a piece of code is being hacked by three or four different people, no one of whom really owns it, it will end up being like a common-room. It will tend to feel bleak and abandoned, and accumulate cruft. The right way to collaborate, I think, is to divide projects into sharply defined modules, each with a definite owner, and with interfaces between them that are as carefully designed and, if possible, as articulated as programming languages.
Like painting, most software is intended for a human audience. And so hackers, like painters, must have empathy to do really great work. You have to be able to see things from the user's point of view.
When I was a kid I was always being told to look at things from someone else's point of view. What this always meant in practice was to do what someone else wanted, instead of what I wanted. This of course gave empathy a bad name, and I made a point of not cultivating it.
Boy, was I wrong. It turns out that looking at things from other people's point of view is practically the secret of success. It doesn't necessarily mean being self-sacrificing. Far from it. Understanding how someone else sees things doesn't imply that you'll act in his interest; in some situations-- in war, for example-- you want to do exactly the opposite. [4]
Most makers make things for a human audience. And to engage an audience you have to understand what they need. Nearly all the greatest paintings are paintings of people, for example, because people are what people are interested in.
Empathy is probably the single most important difference between a good hacker and a great one. Some hackers are quite smart, but when it comes to empathy are practically solipsists. It's hard for such people to design great software [5], because they can't see things from the user's point of view.
One way to tell how good people are at empathy is to watch them explain a technical question to someone without a technical background. We probably all know people who, though otherwise smart, are just comically bad at this. If someone asks them at a dinner party what a programming language is, they'll say something like ``Oh, a high-level language is what the compiler uses as input to generate object code.'' High-level language? Compiler? Object code? Someone who doesn't know what a programming language is obviously doesn't know what these things are, either.
Part of what software has to do is explain itself. So to write good software you have to understand how little users understand. They're going to walk up to the software with no preparation, and it had better do what they guess it will, because they're not going to read the manual. The best system I've ever seen in this respect was the original Macintosh, in 1985. It did what software almost never does: it just worked. [6]
Source code, too, should explain itself. If I could get people to remember just one quote about programming, it would be the one at the beginning of Structure and Interpretation of Computer Programs.
Programs should be written for people to read, and only incidentally for machines to execute.
You need to have empathy not just for your users, but for your readers. It's in your interest, because you'll be one of them. Many a hacker has written a program only to find on returning to it six months later that he has no idea how it works. I know several people who've sworn off Perl after such experiences. [7]
Lack of empathy is associated with intelligence, to the point that there is even something of a fashion for it in some places. But I don't think there's any correlation. You can do well in math and the natural sciences without having to learn empathy, and people in these fields tend to be smart, so the two qualities have come to be associated. But there are plenty of dumb people who are bad at empathy too. Just listen to the people who call in with questions on talk shows. They ask whatever it is they're asking in such a roundabout way that the hosts often have to rephrase the question for them.
So, if hacking works like painting and writing, is it as cool? After all, you only get one life. You might as well spend it working on something great.
Unfortunately, the question is hard to answer. There is always a big time lag in prestige. It's like light from a distant star. Painting has prestige now because of great work people did five hundred years ago. At the time, no one thought these paintings were as important as we do today. It would have seemed very odd to people at the time that Federico da Montefeltro, the Duke of Urbino, would one day be known mostly as the guy with the strange nose in a painting by Piero della Francesca.
So while I admit that hacking doesn't seem as cool as painting now, we should remember that painting itself didn't seem as cool in its glory days as it does now.
What we can say with some confidence is that these are the glory days of hacking. In most fields the great work is done early on. The paintings made between 1430 and 1500 are still unsurpassed. Shakespeare appeared just as professional theater was being born, and pushed the medium so far that every playwright since has had to live in his shadow. Albrecht Durer did the same thing with engraving, and Jane Austen with the novel.
Over and over we see the same pattern. A new medium appears, and people are so excited about it that they explore most of its possibilities in the first couple generations. Hacking seems to be in this phase now.
Painting was not, in Leonardo's time, as cool as his work helped make it. How cool hacking turns out to be will depend on what we can do with this new medium.
Notes
[1] The greatest damage that photography has done to painting may be the fact that it killed the best day job. Most of the great painters in history supported themselves by painting portraits.
[2] I've been told that Microsoft discourages employees from contributing to open-source projects, even in their spare time. But so many of the best hackers work on open-source projects now that the main effect of this policy may be to ensure that they won't be able to hire any first-rate programmers.
[3] What you learn about programming in college is much like what you learn about books or clothes or dating: what bad taste you had in high school.
[4] Here's an example of applied empathy. At Viaweb, if we couldn't decide between two alternatives, we'd ask, what would our competitors hate most? At one point a competitor added a feature to their software that was basically useless, but since it was one of few they had that we didn't, they made much of it in the trade press. We could have tried to explain that the feature was useless, but we decided it would annoy our competitor more if we just implemented it ourselves, so we hacked together our own version that afternoon.
[5] Except text editors and compilers. Hackers don't need empathy to design these, because they are themselves typical users.
[6] Well, almost. They overshot the available RAM somewhat, causing much inconvenient disk swapping, but this could be fixed within a few months by buying an additional disk drive.
[7] The way to make programs easy to read is not to stuff them with comments. I would take Abelson and Sussman's quote a step further. Programming languages should be designed to express algorithms, and only incidentally to tell computers how to execute them. A good programming language ought to be better for explaining software than English. You should only need comments when there is some kind of kludge you need to warn readers about, just as on a road there are only arrows on parts with unexpectedly sharp curves.
Thanks to Trevor Blackwell, Robert Morris, Dan Giffin, and Lisa Randall for reading drafts of this, and to Henry Leitner and Larry Finkelstein for inviting me to speak.

Filters that Fight Back

We may be able to improve the accuracy of Bayesian spam filters by having them follow links to see what's waiting at the other end. Richard Jowsey of death2spam now does this in borderline cases, and reports that it works well.
Why only do it in borderline cases? And why only do it once?
As I mentioned in Will Filters Kill Spam?, following all the urls in a spam would have an amusing side-effect. If popular email clients did this in order to filter spam, the spammer's servers would take a serious pounding. The more I think about this, the better an idea it seems. This isn't just amusing; it would be hard to imagine a more perfectly targeted counterattack on spammers.
So I'd like to suggest an additional feature to those working on spam filters: a "punish" mode which, if turned on, would spider every url in a suspected spam n times, where n could be set by the user. [1]
As many people have noted, one of the problems with the current email system is that it's too passive. It does whatever you tell it. So far all the suggestions for fixing the problem seem to involve new protocols. This one wouldn't.
If widely used, auto-retrieving spam filters would make the email system rebound. The huge volume of the spam, which has so far worked in the spammer's favor, would now work against him, like a branch snapping back in his face. Auto-retrieving spam filters would drive the spammer's costs up, and his sales down: his bandwidth usage would go through the roof, and his servers would grind to a halt under the load, which would make them unavailable to the people who would have responded to the spam.
Pump out a million emails an hour, get a million hits an hour on your servers.
We would want to ensure that this is only done to suspected spams. As a rule, any url sent to millions of people is likely to be a spam url, so submitting every http request in every email would work fine nearly all the time. But there are a few cases where this isn't true: the urls at the bottom of mails sent from free email services like Yahoo Mail and Hotmail, for example.
To protect such sites, and to prevent abuse, auto-retrieval should be combined with blacklists of spamvertised sites. Only sites on a blacklist would get crawled, and sites would be blacklisted only after being inspected by humans. The lifetime of a spam must be several hours at least, so it should be easy to update such a list in time to interfere with a spam promoting a new site. [2]
High-volume auto-retrieval would only be practical for users on high-bandwidth connections, but there are enough of those to cause spammers serious trouble. Indeed, this solution neatly mirrors the problem. The problem with spam is that in order to reach a few gullible people the spammer sends mail to everyone. The non-gullible recipients are merely collateral damage. But the non-gullible majority won't stop getting spam until they can stop (or threaten to stop) the gullible from responding to it. Auto-retrieving spam filters offer them a way to do this.
Would that kill spam? Not quite. The biggest spammers could probably protect their servers against auto-retrieving filters. However, the easiest and cheapest way for them to do it would be to include working unsubscribe links in their mails. And this would be a necessity for smaller fry, and for "legitimate" sites that hired spammers to promote them. So if auto-retrieving filters became widespread, they'd become auto-unsubscribing filters.
In this scenario, spam would, like OS crashes, viruses, and popups, become one of those plagues that only afflict people who don't bother to use the right software.
Notes
[1] Auto-retrieving filters will have to follow redirects, and should in some cases (e.g. a page that just says "click here") follow more than one level of links. Make sure too that the http requests are indistinguishable from those of popular Web browsers, including the order and referrer.
If the response doesn't come back within x amount of time, default to some fairly high spam probability.
Instead of making n constant, it might be a good idea to make it a function of the number of spams that have been seen mentioning the site. This would add a further level of protection against abuse and accidents.
[2] The original version of this article used the term "whitelist" instead of "blacklist". Though they were to work like blacklists, I preferred to call them whitelists because it might make them less vulnerable to legal attack. This just seems to have confused readers, though.
There should probably be multiple blacklists. A single point of failure would be vulnerable both to attack and abuse.
Thanks to Brian Burton, Bill Yerazunis, Dan Giffin, Eric Raymond, and Richard Jowsey for reading drafts of this.

What You Can't Say

Have you ever seen an old photo of yourself and been embarrassed at the way you looked? Did we actually dress like that? We did. And we had no idea how silly we looked. It's the nature of fashion to be invisible, in the same way the movement of the earth is invisible to all of us riding on it.
What scares me is that there are moral fashions too. They're just as arbitrary, and just as invisible to most people. But they're much more dangerous. Fashion is mistaken for good design; moral fashion is mistaken for good. Dressing oddly gets you laughed at. Violating moral fashions can get you fired, ostracized, imprisoned, or even killed.
If you could travel back in a time machine, one thing would be true no matter where you went: you'd have to watch what you said. Opinions we consider harmless could have gotten you in big trouble. I've already said at least one thing that would have gotten me in big trouble in most of Europe in the seventeenth century, and did get Galileo in big trouble when he said it-- that the earth moves. [1]
Nerds are always getting in trouble. They say improper things for the same reason they dress unfashionably and have good ideas: convention has less hold over them.
It seems to be a constant throughout history: In every period, people believed things that were just ridiculous, and believed them so strongly that you would have gotten in terrible trouble for saying otherwise.
Is our time any different? To anyone who has read any amount of history, the answer is almost certainly no. It would be a remarkable coincidence if ours were the first era to get everything just right.
It's tantalizing to think we believe things that people in the future will find ridiculous. What would someone coming back to visit us in a time machine have to be careful not to say? That's what I want to study here. But I want to do more than just shock everyone with the heresy du jour. I want to find general recipes for discovering what you can't say, in any era.
The Conformist Test
Let's start with a test: Do you have any opinions that you would be reluctant to express in front of a group of your peers?
If the answer is no, you might want to stop and think about that. If everything you believe is something you're supposed to believe, could that possibly be a coincidence? Odds are it isn't. Odds are you just think whatever you're told.
The other alternative would be that you independently considered every question and came up with the exact same answers that are now considered acceptable. That seems unlikely, because you'd also have to make the same mistakes. Mapmakers deliberately put slight mistakes in their maps so they can tell when someone copies them. If another map has the same mistake, that's very convincing evidence.
Like every other era in history, our moral map almost certainly contains a few mistakes. And anyone who makes the same mistakes probably didn't do it by accident. It would be like someone claiming they had independently decided in 1972 that bell-bottom jeans were a good idea.
If you believe everything you're supposed to now, how can you be sure you wouldn't also have believed everything you were supposed to if you had grown up among the plantation owners of the pre-Civil War South, or in Germany in the 1930s-- or among the Mongols in 1200, for that matter? Odds are you would have.
Back in the era of terms like "well-adjusted," the idea seemed to be that there was something wrong with you if you thought things you didn't dare say out loud. This seems backward. Almost certainly, there is something wrong with you if you don't think things you don't dare say out loud.
Trouble
What can't we say? One way to find these ideas is simply to look at things people do say, and get in trouble for. [2]
Of course, we're not just looking for things we can't say. We're looking for things we can't say that are true, or at least have enough chance of being true that the question should remain open. But many of the things people get in trouble for saying probably do make it over this second, lower threshold. No one gets in trouble for saying that 2 + 2 is 5, or that people in Pittsburgh are ten feet tall. Such obviously false statements might be treated as jokes, or at worst as evidence of insanity, but they are not likely to make anyone mad. The statements that make people mad are the ones they worry might be believed. I suspect the statements that make people maddest are those they worry might be true.
If Galileo had said that people in Padua were ten feet tall, he would have been regarded as a harmless eccentric. Saying the earth orbited the sun was another matter. The church knew this would set people thinking.
Certainly, as we look back on the past, this rule of thumb works well. A lot of the statements people got in trouble for seem harmless now. So it's likely that visitors from the future would agree with at least some of the statements that get people in trouble today. Do we have no Galileos? Not likely.
To find them, keep track of opinions that get people in trouble, and start asking, could this be true? Ok, it may be heretical (or whatever modern equivalent), but might it also be true?
Heresy
This won't get us all the answers, though. What if no one happens to have gotten in trouble for a particular idea yet? What if some idea would be so radioactively controversial that no one would dare express it in public? How can we find these too?
Another approach is to follow that word, heresy. In every period of history, there seem to have been labels that got applied to statements to shoot them down before anyone had a chance to ask if they were true or not. "Blasphemy", "sacrilege", and "heresy" were such labels for a good part of western history, as in more recent times "indecent", "improper", and "unamerican" have been. By now these labels have lost their sting. They always do. By now they're mostly used ironically. But in their time, they had real force.
The word "defeatist", for example, has no particular political connotations now. But in Germany in 1917 it was a weapon, used by Ludendorff in a purge of those who favored a negotiated peace. At the start of World War II it was used extensively by Churchill and his supporters to silence their opponents. In 1940, any argument against Churchill's aggressive policy was "defeatist". Was it right or wrong? Ideally, no one got far enough to ask that.
We have such labels today, of course, quite a lot of them, from the all-purpose "inappropriate" to the dreaded "divisive." In any period, it should be easy to figure out what such labels are, simply by looking at what people call ideas they disagree with besides untrue. When a politician says his opponent is mistaken, that's a straightforward criticism, but when he attacks a statement as "divisive" or "racially insensitive" instead of arguing that it's false, we should start paying attention.
So another way to figure out which of our taboos future generations will laugh at is to start with the labels. Take a label-- "sexist", for example-- and try to think of some ideas that would be called that. Then for each ask, might this be true?
Just start listing ideas at random? Yes, because they won't really be random. The ideas that come to mind first will be the most plausible ones. They'll be things you've already noticed but didn't let yourself think.
In 1989 some clever researchers tracked the eye movements of radiologists as they scanned chest images for signs of lung cancer. [3] They found that even when the radiologists missed a cancerous lesion, their eyes had usually paused at the site of it. Part of their brain knew there was something there; it just didn't percolate all the way up into conscious knowledge. I think many interesting heretical thoughts are already mostly formed in our minds. If we turn off our self-censorship temporarily, those will be the first to emerge.
Time and Space
If we could look into the future it would be obvious which of our taboos they'd laugh at. We can't do that, but we can do something almost as good: we can look into the past. Another way to figure out what we're getting wrong is to look at what used to be acceptable and is now unthinkable.
Changes between the past and the present sometimes do represent progress. In a field like physics, if we disagree with past generations it's because we're right and they're wrong. But this becomes rapidly less true as you move away from the certainty of the hard sciences. By the time you get to social questions, many changes are just fashion. The age of consent fluctuates like hemlines.
We may imagine that we are a great deal smarter and more virtuous than past generations, but the more history you read, the less likely this seems. People in past times were much like us. Not heroes, not barbarians. Whatever their ideas were, they were ideas reasonable people could believe.
So here is another source of interesting heresies. Diff present ideas against those of various past cultures, and see what you get. [4] Some will be shocking by present standards. Ok, fine; but which might also be true?
You don't have to look into the past to find big differences. In our own time, different societies have wildly varying ideas of what's ok and what isn't. So you can try diffing other cultures' ideas against ours as well. (The best way to do that is to visit them.)
You might find contradictory taboos. In one culture it might seem shocking to think x, while in another it was shocking not to. But I think usually the shock is on one side. In one culture x is ok, and in another it's considered shocking. My hypothesis is that the side that's shocked is most likely to be the mistaken one. [5]
I suspect the only taboos that are more than taboos are the ones that are universal, or nearly so. Murder for example. But any idea that's considered harmless in a significant percentage of times and places, and yet is taboo in ours, is a good candidate for something we're mistaken about.
For example, at the high water mark of political correctness in the early 1990s, Harvard distributed to its faculty and staff a brochure saying, among other things, that it was inappropriate to compliment a colleague or student's clothes. No more "nice shirt." I think this principle is rare among the world's cultures, past or present. There are probably more where it's considered especially polite to compliment someone's clothing than where it's considered improper. So odds are this is, in a mild form, an example of one of the taboos a visitor from the future would have to be careful to avoid if he happened to set his time machine for Cambridge, Massachusetts, 1992.
Prigs
Of course, if they have time machines in the future they'll probably have a separate reference manual just for Cambridge. This has always been a fussy place, a town of i dotters and t crossers, where you're liable to get both your grammar and your ideas corrected in the same conversation. And that suggests another way to find taboos. Look for prigs, and see what's inside their heads.
Kids' heads are repositories of all our taboos. It seems fitting to us that kids' ideas should be bright and clean. The picture we give them of the world is not merely simplified, to suit their developing minds, but sanitized as well, to suit our ideas of what kids ought to think. [6]
You can see this on a small scale in the matter of dirty words. A lot of my friends are starting to have children now, and they're all trying not to use words like "fuck" and "shit" within baby's hearing, lest baby start using these words too. But these words are part of the language, and adults use them all the time. So parents are giving their kids an inaccurate idea of the language by not using them. Why do they do this? Because they don't think it's fitting that kids should use the whole language. We like children to seem innocent. [7]
Most adults, likewise, deliberately give kids a misleading view of the world. One of the most obvious examples is Santa Claus. We think it's cute for little kids to believe in Santa Claus. I myself think it's cute for little kids to believe in Santa Claus. But one wonders, do we tell them this stuff for their sake, or for ours?
I'm not arguing for or against this idea here. It is probably inevitable that parents should want to dress up their kids' minds in cute little baby outfits. I'll probably do it myself. The important thing for our purposes is that, as a result, a well brought-up teenage kid's brain is a more or less complete collection of all our taboos-- and in mint condition, because they're untainted by experience. Whatever we think that will later turn out to be ridiculous, it's almost certainly inside that head.
How do we get at these ideas? By the following thought experiment. Imagine a kind of latter-day Conrad character who has worked for a time as a mercenary in Africa, for a time as a doctor in Nepal, for a time as the manager of a nightclub in Miami. The specifics don't matter-- just someone who has seen a lot. Now imagine comparing what's inside this guy's head with what's inside the head of a well-behaved sixteen year old girl from the suburbs. What does he think that would shock her? He knows the world; she knows, or at least embodies, present taboos. Subtract one from the other, and the result is what we can't say.
Mechanism
I can think of one more way to figure out what we can't say: to look at how taboos are created. How do moral fashions arise, and why are they adopted? If we can understand this mechanism, we may be able to see it at work in our own time.
Moral fashions don't seem to be created the way ordinary fashions are. Ordinary fashions seem to arise by accident when everyone imitates the whim of some influential person. The fashion for broad-toed shoes in late fifteenth century Europe began because Charles VIII of France had six toes on one foot. The fashion for the name Gary began when the actor Frank Cooper adopted the name of a tough mill town in Indiana. Moral fashions more often seem to be created deliberately. When there's something we can't say, it's often because some group doesn't want us to.
The prohibition will be strongest when the group is nervous. The irony of Galileo's situation was that he got in trouble for repeating Copernicus's ideas. Copernicus himself didn't. In fact, Copernicus was a canon of a cathedral, and dedicated his book to the pope. But by Galileo's time the church was in the throes of the Counter-Reformation and was much more worried about unorthodox ideas.
To launch a taboo, a group has to be poised halfway between weakness and power. A confident group doesn't need taboos to protect it. It's not considered improper to make disparaging remarks about Americans, or the English. And yet a group has to be powerful enough to enforce a taboo. Coprophiles, as of this writing, don't seem to be numerous or energetic enough to have had their interests promoted to a lifestyle.
I suspect the biggest source of moral taboos will turn out to be power struggles in which one side only barely has the upper hand. That's where you'll find a group powerful enough to enforce taboos, but weak enough to need them.
Most struggles, whatever they're really about, will be cast as struggles between competing ideas. The English Reformation was at bottom a struggle for wealth and power, but it ended up being cast as a struggle to preserve the souls of Englishmen from the corrupting influence of Rome. It's easier to get people to fight for an idea. And whichever side wins, their ideas will also be considered to have triumphed, as if God wanted to signal his agreement by selecting that side as the victor.
We often like to think of World War II as a triumph of freedom over totalitarianism. We conveniently forget that the Soviet Union was also one of the winners.
I'm not saying that struggles are never about ideas, just that they will always be made to seem to be about ideas, whether they are or not. And just as there is nothing so unfashionable as the last, discarded fashion, there is nothing so wrong as the principles of the most recently defeated opponent. Representational art is only now recovering from the approval of both Hitler and Stalin. [8]
Although moral fashions tend to arise from different sources than fashions in clothing, the mechanism of their adoption seems much the same. The early adopters will be driven by ambition: self-consciously cool people who want to distinguish themselves from the common herd. As the fashion becomes established they'll be joined by a second, much larger group, driven by fear. [9] This second group adopt the fashion not because they want to stand out but because they are afraid of standing out.
So if you want to figure out what we can't say, look at the machinery of fashion and try to predict what it would make unsayable. What groups are powerful but nervous, and what ideas would they like to suppress? What ideas were tarnished by association when they ended up on the losing side of a recent struggle? If a self-consciously cool person wanted to differentiate himself from preceding fashions (e.g. from his parents), which of their ideas would he tend to reject? What are conventional-minded people afraid of saying?
This technique won't find us all the things we can't say. I can think of some that aren't the result of any recent struggle. Many of our taboos are rooted deep in the past. But this approach, combined with the preceding four, will turn up a good number of unthinkable ideas.
Why
Some would ask, why would one want to do this? Why deliberately go poking around among nasty, disreputable ideas? Why look under rocks?
I do it, first of all, for the same reason I did look under rocks as a kid: plain curiosity. And I'm especially curious about anything that's forbidden. Let me see and decide for myself.
Second, I do it because I don't like the idea of being mistaken. If, like other eras, we believe things that will later seem ridiculous, I want to know what they are so that I, at least, can avoid believing them.
Third, I do it because it's good for the brain. To do good work you need a brain that can go anywhere. And you especially need a brain that's in the habit of going where it's not supposed to.
Great work tends to grow out of ideas that others have overlooked, and no idea is so overlooked as one that's unthinkable. Natural selection, for example. It's so simple. Why didn't anyone think of it before? Well, that is all too obvious. Darwin himself was careful to tiptoe around the implications of his theory. He wanted to spend his time thinking about biology, not arguing with people who accused him of being an atheist.
In the sciences, especially, it's a great advantage to be able to question assumptions. The m.o. of scientists, or at least of the good ones, is precisely that: look for places where conventional wisdom is broken, and then try to pry apart the cracks and see what's underneath. That's where new theories come from.
A good scientist, in other words, does not merely ignore conventional wisdom, but makes a special effort to break it. Scientists go looking for trouble. This should be the m.o. of any scholar, but scientists seem much more willing to look under rocks. [10]
Why? It could be that the scientists are simply smarter; most physicists could, if necessary, make it through a PhD program in French literature, but few professors of French literature could make it through a PhD program in physics. Or it could be because it's clearer in the sciences whether theories are true or false, and this makes scientists bolder. (Or it could be that, because it's clearer in the sciences whether theories are true or false, you have to be smart to get jobs as a scientist, rather than just a good politician.)
Whatever the reason, there seems a clear correlation between intelligence and willingness to consider shocking ideas. This isn't just because smart people actively work to find holes in conventional thinking. I think conventions also have less hold over them to start with. You can see that in the way they dress.
It's not only in the sciences that heresy pays off. In any competitive field, you can win big by seeing things that others daren't. And in every field there are probably heresies few dare utter. Within the US car industry there is a lot of hand-wringing now about declining market share. Yet the cause is so obvious that any observant outsider could explain it in a second: they make bad cars. And they have for so long that by now the US car brands are antibrands-- something you'd buy a car despite, not because of. Cadillac stopped being the Cadillac of cars in about 1970. And yet I suspect no one dares say this. [11] Otherwise these companies would have tried to fix the problem.
Training yourself to think unthinkable thoughts has advantages beyond the thoughts themselves. It's like stretching. When you stretch before running, you put your body into positions much more extreme than any it will assume during the run. If you can think things so outside the box that they'd make people's hair stand on end, you'll have no trouble with the small trips outside the box that people call innovative.
Pensieri Stretti
When you find something you can't say, what do you do with it? My advice is, don't say it. Or at least, pick your battles.
Suppose in the future there is a movement to ban the color yellow. Proposals to paint anything yellow are denounced as "yellowist", as is anyone suspected of liking the color. People who like orange are tolerated but viewed with suspicion. Suppose you realize there is nothing wrong with yellow. If you go around saying this, you'll be denounced as a yellowist too, and you'll find yourself having a lot of arguments with anti-yellowists. If your aim in life is to rehabilitate the color yellow, that may be what you want. But if you're mostly interested in other questions, being labelled as a yellowist will just be a distraction. Argue with idiots, and you become an idiot.
The most important thing is to be able to think what you want, not to say what you want. And if you feel you have to say everything you think, it may inhibit you from thinking improper thoughts. I think it's better to follow the opposite policy. Draw a sharp line between your thoughts and your speech. Inside your head, anything is allowed. Within my head I make a point of encouraging the most outrageous thoughts I can imagine. But, as in a secret society, nothing that happens within the building should be told to outsiders. The first rule of Fight Club is, you do not talk about Fight Club.
When Milton was going to visit Italy in the 1630s, Sir Henry Wootton, who had been ambassador to Venice, told him his motto should be "i pensieri stretti & il viso sciolto." Closed thoughts and an open face. Smile at everyone, and don't tell them what you're thinking. This was wise advice. Milton was an argumentative fellow, and the Inquisition was a bit restive at that time. But I think the difference between Milton's situation and ours is only a matter of degree. Every era has its heresies, and if you don't get imprisoned for them you will at least get in enough trouble that it becomes a complete distraction.
I admit it seems cowardly to keep quiet. When I read about the harassment to which the Scientologists subject their critics [12], or that pro-Israel groups are "compiling dossiers" on those who speak out against Israeli human rights abuses [13], or about people being sued for violating the DMCA [14], part of me wants to say, "All right, you bastards, bring it on." The problem is, there are so many things you can't say. If you said them all you'd have no time left for your real work. You'd have to turn into Noam Chomsky. [15]
The trouble with keeping your thoughts secret, though, is that you lose the advantages of discussion. Talking about an idea leads to more ideas. So the optimal plan, if you can manage it, is to have a few trusted friends you can speak openly to. This is not just a way to develop ideas; it's also a good rule of thumb for choosing friends. The people you can say heretical things to without getting jumped on are also the most interesting to know.
Viso Sciolto?
I don't think we need the viso sciolto so much as the pensieri stretti. Perhaps the best policy is to make it plain that you don't agree with whatever zealotry is current in your time, but not to be too specific about what you disagree with. Zealots will try to draw you out, but you don't have to answer them. If they try to force you to treat a question on their terms by asking "are you with us or against us?" you can always just answer "neither".
Better still, answer "I haven't decided." That's what Larry Summers did when a group tried to put him in this position. Explaining himself later, he said "I don't do litmus tests." [16] A lot of the questions people get hot about are actually quite complicated. There is no prize for getting the answer quickly.
If the anti-yellowists seem to be getting out of hand and you want to fight back, there are ways to do it without getting yourself accused of being a yellowist. Like skirmishers in an ancient army, you want to avoid directly engaging the main body of the enemy's troops. Better to harass them with arrows from a distance.
One way to do this is to ratchet the debate up one level of abstraction. If you argue against censorship in general, you can avoid being accused of whatever heresy is contained in the book or film that someone is trying to censor. You can attack labels with meta-labels: labels that refer to the use of labels to prevent discussion. The spread of the term "political correctness" meant the beginning of the end of political correctness, because it enabled one to attack the phenomenon as a whole without being accused of any of the specific heresies it sought to suppress.
Another way to counterattack is with metaphor. Arthur Miller undermined the House Un-American Activities Committee by writing a play, "The Crucible," about the Salem witch trials. He never referred directly to the committee and so gave them no way to reply. What could HUAC do, defend the Salem witch trials? And yet Miller's metaphor stuck so well that to this day the activities of the committee are often described as a "witch-hunt."
Best of all, probably, is humor. Zealots, whatever their cause, invariably lack a sense of humor. They can't reply in kind to jokes. They're as unhappy on the territory of humor as a mounted knight on a skating rink. Victorian prudishness, for example, seems to have been defeated mainly by treating it as a joke. Likewise its reincarnation as political correctness. "I am glad that I managed to write 'The Crucible,'" Arthur Miller wrote, "but looking back I have often wished I'd had the temperament to do an absurd comedy, which is what the situation deserved." [17]
ABQ
A Dutch friend says I should use Holland as an example of a tolerant society. It's true they have a long tradition of comparative open-mindedness. For centuries the low countries were the place to go to say things you couldn't say anywhere else, and this helped to make the region a center of scholarship and industry (which have been closely tied for longer than most people realize). Descartes, though claimed by the French, did much of his thinking in Holland.
And yet, I wonder. The Dutch seem to live their lives up to their necks in rules and regulations. There's so much you can't do there; is there really nothing you can't say?
Certainly the fact that they value open-mindedness is no guarantee. Who thinks they're not open-minded? Our hypothetical prim miss from the suburbs thinks she's open-minded. Hasn't she been taught to be? Ask anyone, and they'll say the same thing: they're pretty open-minded, though they draw the line at things that are really wrong. (Some tribes may avoid "wrong" as judgemental, and may instead use a more neutral sounding euphemism like "negative" or "destructive".)
When people are bad at math, they know it, because they get the wrong answers on tests. But when people are bad at open-mindedness they don't know it. In fact they tend to think the opposite. Remember, it's the nature of fashion to be invisible. It wouldn't work otherwise. Fashion doesn't seem like fashion to someone in the grip of it. It just seems like the right thing to do. It's only by looking from a distance that we see oscillations in people's idea of the right thing to do, and can identify them as fashions.
Time gives us such distance for free. Indeed, the arrival of new fashions makes old fashions easy to see, because they seem so ridiculous by contrast. From one end of a pendulum's swing, the other end seems especially far away.
To see fashion in your own time, though, requires a conscious effort. Without time to give you distance, you have to create distance yourself. Instead of being part of the mob, stand as far away from it as you can and watch what it's doing. And pay especially close attention whenever an idea is being suppressed. Web filters for children and employees often ban sites containing pornography, violence, and hate speech. What counts as pornography and violence? And what, exactly, is "hate speech?" This sounds like a phrase out of 1984.
Labels like that are probably the biggest external clue. If a statement is false, that's the worst thing you can say about it. You don't need to say that it's heretical. And if it isn't false, it shouldn't be suppressed. So when you see statements being attacked as x-ist or y-ic (substitute your current values of x and y), whether in 1630 or 2030, that's a sure sign that something is wrong. When you hear such labels being used, ask why.
Especially if you hear yourself using them. It's not just the mob you need to learn to watch from a distance. You need to be able to watch your own thoughts from a distance. That's not a radical idea, by the way; it's the main difference between children and adults. When a child gets angry because he's tired, he doesn't know what's happening. An adult can distance himself enough from the situation to say "never mind, I'm just tired." I don't see why one couldn't, by a similar process, learn to recognize and discount the effects of moral fashions.
You have to take that extra step if you want to think clearly. But it's harder, because now you're working against social customs instead of with them. Everyone encourages you to grow up to the point where you can discount your own bad moods. Few encourage you to continue to the point where you can discount society's bad moods.
How can you see the wave, when you're the water? Always be questioning. That's the only defence. What can't you say? And why?
Thanks to Sarah Harlin, Trevor Blackwell, Jessica Livingston, Robert Morris, Eric Raymond and Bob van der Zwaan for reading drafts of this essay, and to Lisa Randall, Jackie McDonough, Ryan Stanley and Joel Rainey for conversations about heresy. Needless to say they bear no blame for opinions expressed in it, and especially for opinions not expressed in it.

The Word "Hacker"

To the popular press, "hacker" means someone who breaks into computers. Among programmers it means a good programmer. But the two meanings are connected. To programmers, "hacker" connotes mastery in the most literal sense: someone who can make a computer do what he wants-- whether the computer wants to or not.
To add to the confusion, the noun "hack" also has two senses. It can be either a compliment or an insult. It's called a hack when you do something in an ugly way. But when you do something so clever that you somehow beat the system, that's also called a hack. The word is used more often in the former than the latter sense, probably because ugly solutions are more common than brilliant ones.
Believe it or not, the two senses of "hack" are also connected. Ugly and imaginative solutions have something in common: they both break the rules. And there is a gradual continuum between rule breaking that's merely ugly (using duct tape to attach something to your bike) and rule breaking that is brilliantly imaginative (discarding Euclidean space).
Hacking predates computers. When he was working on the Manhattan Project, Richard Feynman used to amuse himself by breaking into safes containing secret documents. This tradition continues today. When we were in grad school, a hacker friend of mine who spent too much time around MIT had his own lock picking kit. (He now runs a hedge fund, a not unrelated enterprise.)
It is sometimes hard to explain to authorities why one would want to do such things. Another friend of mine once got in trouble with the government for breaking into computers. This had only recently been declared a crime, and the FBI found that their usual investigative technique didn't work. Police investigation apparently begins with a motive. The usual motives are few: drugs, money, sex, revenge. Intellectual curiosity was not one of the motives on the FBI's list. Indeed, the whole concept seemed foreign to them.
Those in authority tend to be annoyed by hackers' general attitude of disobedience. But that disobedience is a byproduct of the qualities that make them good programmers. They may laugh at the CEO when he talks in generic corporate newspeech, but they also laugh at someone who tells them a certain problem can't be solved. Suppress one, and you suppress the other.
This attitude is sometimes affected. Sometimes young programmers notice the eccentricities of eminent hackers and decide to adopt some of their own in order to seem smarter. The fake version is not merely annoying; the prickly attitude of these posers can actually slow the process of innovation.
But even factoring in their annoying eccentricities, the disobedient attitude of hackers is a net win. I wish its advantages were better understood.
For example, I suspect people in Hollywood are simply mystified by hackers' attitudes toward copyrights. They are a perennial topic of heated discussion on Slashdot. But why should people who program computers be so concerned about copyrights, of all things?
Partly because some companies use mechanisms to prevent copying. Show any hacker a lock and his first thought is how to pick it. But there is a deeper reason that hackers are alarmed by measures like copyrights and patents. They see increasingly aggressive measures to protect "intellectual property" as a threat to the intellectual freedom they need to do their job. And they are right.
It is by poking about inside current technology that hackers get ideas for the next generation. No thanks, intellectual homeowners may say, we don't need any outside help. But they're wrong. The next generation of computer technology has often-- perhaps more often than not-- been developed by outsiders.
In 1977 there was no doubt some group within IBM developing what they expected to be the next generation of business computer. They were mistaken. The next generation of business computer was being developed on entirely different lines by two long-haired guys called Steve in a garage in Los Altos. At about the same time, the powers that be were cooperating to develop the official next generation operating system, Multics. But two guys who thought Multics excessively complex went off and wrote their own. They gave it a name that was a joking reference to Multics: Unix.
The latest intellectual property laws impose unprecedented restrictions on the sort of poking around that leads to new ideas. In the past, a competitor might use patents to prevent you from selling a copy of something they made, but they couldn't prevent you from taking one apart to see how it worked. The latest laws make this a crime. How are we to develop new technology if we can't study current technology to figure out how to improve it?
Ironically, hackers have brought this on themselves. Computers are responsible for the problem. The control systems inside machines used to be physical: gears and levers and cams. Increasingly, the brains (and thus the value) of products is in software. And by this I mean software in the general sense: i.e. data. A song on an LP is physically stamped into the plastic. A song on an iPod's disk is merely stored on it.
Data is by definition easy to copy. And the Internet makes copies easy to distribute. So it is no wonder companies are afraid. But, as so often happens, fear has clouded their judgement. The government has responded with draconian laws to protect intellectual property. They probably mean well. But they may not realize that such laws will do more harm than good.
Why are programmers so violently opposed to these laws? If I were a legislator, I'd be interested in this mystery-- for the same reason that, if I were a farmer and suddenly heard a lot of squawking coming from my hen house one night, I'd want to go out and investigate. Hackers are not stupid, and unanimity is very rare in this world. So if they're all squawking, perhaps there is something amiss.
Could it be that such laws, though intended to protect America, will actually harm it? Think about it. There is something very American about Feynman breaking into safes during the Manhattan Project. It's hard to imagine the authorities having a sense of humor about such things over in Germany at that time. Maybe it's not a coincidence.
Hackers are unruly. That is the essence of hacking. And it is also the essence of American-ness. It is no accident that Silicon Valley is in America, and not France, or Germany, or England, or Japan. In those countries, people color inside the lines.
I lived for a while in Florence. But after I'd been there a few months I realized that what I'd been unconsciously hoping to find there was back in the place I'd just left. The reason Florence is famous is that in 1450, it was New York. In 1450 it was filled with the kind of turbulent and ambitious people you find now in America. (So I went back to America.)
It is greatly to America's advantage that it is a congenial atmosphere for the right sort of unruliness-- that it is a home not just for the smart, but for smart-alecks. And hackers are invariably smart-alecks. If we had a national holiday, it would be April 1st. It says a great deal about our work that we use the same word for a brilliant or a horribly cheesy solution. When we cook one up we're not always 100% sure which kind it is. But as long as it has the right sort of wrongness, that's a promising sign. It's odd that people think of programming as precise and methodical. Computers are precise and methodical. Hacking is something you do with a gleeful laugh.
In our world some of the most characteristic solutions are not far removed from practical jokes. IBM was no doubt rather surprised by the consequences of the licensing deal for DOS, just as the hypothetical "adversary" must be when Michael Rabin solves a problem by redefining it as one that's easier to solve.
Smart-alecks have to develop a keen sense of how much they can get away with. And lately hackers have sensed a change in the atmosphere. Lately hackerliness seems rather frowned upon.
To hackers the recent contraction in civil liberties seems especially ominous. That must also mystify outsiders. Why should we care especially about civil liberties? Why programmers, more than dentists or salesmen or landscapers?
Let me put the case in terms a government official would appreciate. Civil liberties are not just an ornament, or a quaint American tradition. Civil liberties make countries rich. If you made a graph of GNP per capita vs. civil liberties, you'd notice a definite trend. Could civil liberties really be a cause, rather than just an effect? I think so. I think a society in which people can do and say what they want will also tend to be one in which the most efficient solutions win, rather than those sponsored by the most influential people. Authoritarian countries become corrupt; corrupt countries become poor; and poor countries are weak. It seems to me there is a Laffer curve for government power, just as for tax revenues. At least, it seems likely enough that it would be stupid to try the experiment and find out. Unlike high tax rates, you can't repeal totalitarianism if it turns out to be a mistake.
This is why hackers worry. The government spying on people doesn't literally make programmers write worse code. It just leads eventually to a world in which bad ideas will win. And because this is so important to hackers, they're especially sensitive to it. They can sense totalitarianism approaching from a distance, as animals can sense an approaching thunderstorm.
It would be ironic if, as hackers fear, recent measures intended to protect national security and intellectual property turned out to be a missile aimed right at what makes America successful. But it would not be the first time that measures taken in an atmosphere of panic had the opposite of the intended effect.
There is such a thing as American-ness. There's nothing like living abroad to teach you that. And if you want to know whether something will nurture or squash this quality, it would be hard to find a better focus group than hackers, because they come closest of any group I know to embodying it. Closer, probably, than the men running our government, who for all their talk of patriotism remind me more of Richelieu or Mazarin than Thomas Jefferson or George Washington.
When you read what the founding fathers had to say for themselves, they sound more like hackers. "The spirit of resistance to government," Jefferson wrote, "is so valuable on certain occasions, that I wish it always to be kept alive."
Imagine an American president saying that today. Like the remarks of an outspoken old grandmother, the sayings of the founding fathers have embarrassed generations of their less confident successors. They remind us where we come from. They remind us that it is the people who break rules that are the source of America's wealth and power.
Those in a position to impose rules naturally want them to be obeyed. But be careful what you ask for. You might get it.
Thanks to Ken Anderson, Trevor Blackwell, Daniel Giffin, Sarah Harlin, Shiro Kawai, Jessica Livingston, Matz, Jackie McDonough, Robert Morris, Eric Raymond, Guido van Rossum, David Weinberger, and Steven Wolfram for reading drafts of this essay.
This was previously called "Good Bad Attitude," but I reverted to its original title when I found I kept having trouble remembering this cute new title.
(The image shows Steves Jobs and Wozniak with a "blue box." Photo by Margret Wozniak. Reproduced by permission of Steve Wozniak.)

The Python Paradox

In a recent talk I said something that upset a lot of people: that you could get smarter programmers to work on a Python project than you could to work on a Java project.
I didn't mean by this that Java programmers are dumb. I meant that Python programmers are smart. It's a lot of work to learn a new programming language. And people don't learn Python because it will get them a job; they learn it because they genuinely like to program and aren't satisfied with the languages they already know.
Which makes them exactly the kind of programmers companies should want to hire. Hence what, for lack of a better name, I'll call the Python paradox: if a company chooses to write its software in a comparatively esoteric language, they'll be able to hire better programmers, because they'll attract only those who cared enough to learn it. And for programmers the paradox is even more pronounced: the language to learn, if you want to get a good job, is a language that people don't learn merely to get a job.
Only a few companies have been smart enough to realize this so far. But there is a kind of selection going on here too: they're exactly the companies programmers would most like to work for. Google, for example. When they advertise Java programming jobs, they also want Python experience.
A friend of mine who knows nearly all the widely used languages uses Python for most of his projects. He says the main reason is that he likes the way source code looks. That may seem a frivolous reason to choose one language over another. But it is not so frivolous as it sounds: when you program, you spend more time reading code than writing it. You push blobs of source code around the way a sculptor does blobs of clay. So a language that makes source code ugly is maddening to an exacting programmer, as clay full of lumps would be to a sculptor.
At the mention of ugly source code, people will of course think of Perl. But the superficial ugliness of Perl is not the sort I mean. Real ugliness is not harsh-looking syntax, but having to build programs out of the wrong concepts. Perl may look like a cartoon character swearing, but there are cases where it surpasses Python conceptually.
So far, anyway. Both languages are of course moving targets. But they share, along with Ruby (and Icon, and Joy, and J, and Lisp, and Smalltalk) the fact that they're created by, and used by, people who really care about programming. And those tend to be the ones who do it well.

Great Hackers

(This essay is derived from a talk at Oscon 2004.)
A few months ago I finished a new book, and in reviews I keep noticing words like "provocative'' and "controversial.'' To say nothing of "idiotic.''
I didn't mean to make the book controversial. I was trying to make it efficient. I didn't want to waste people's time telling them things they already knew. It's more efficient just to give them the diffs. But I suppose that's bound to yield an alarming book.
Edisons
There's no controversy about which idea is most controversial: the suggestion that variation in wealth might not be as big a problem as we think.
I didn't say in the book that variation in wealth was in itself a good thing. I said in some situations it might be a sign of good things. A throbbing headache is not a good thing, but it can be a sign of a good thing-- for example, that you're recovering consciousness after being hit on the head.
Variation in wealth can be a sign of variation in productivity. (In a society of one, they're identical.) And that is almost certainly a good thing: if your society has no variation in productivity, it's probably not because everyone is Thomas Edison. It's probably because you have no Thomas Edisons.
In a low-tech society you don't see much variation in productivity. If you have a tribe of nomads collecting sticks for a fire, how much more productive is the best stick gatherer going to be than the worst? A factor of two? Whereas when you hand people a complex tool like a computer, the variation in what they can do with it is enormous.
That's not a new idea. Fred Brooks wrote about it in 1974, and the study he quoted was published in 1968. But I think he underestimated the variation between programmers. He wrote about productivity in lines of code: the best programmers can solve a given problem in a tenth the time. But what if the problem isn't given? In programming, as in many fields, the hard part isn't solving problems, but deciding what problems to solve. Imagination is hard to measure, but in practice it dominates the kind of productivity that's measured in lines of code.
Productivity varies in any field, but there are few in which it varies so much. The variation between programmers is so great that it becomes a difference in kind. I don't think this is something intrinsic to programming, though. In every field, technology magnifies differences in productivity. I think what's happening in programming is just that we have a lot of technological leverage. But in every field the lever is getting longer, so the variation we see is something that more and more fields will see as time goes on. And the success of companies, and countries, will depend increasingly on how they deal with it.
If variation in productivity increases with technology, then the contribution of the most productive individuals will not only be disproportionately large, but will actually grow with time. When you reach the point where 90% of a group's output is created by 1% of its members, you lose big if something (whether Viking raids, or central planning) drags their productivity down to the average.
If we want to get the most out of them, we need to understand these especially productive people. What motivates them? What do they need to do their jobs? How do you recognize them? How do you get them to come and work for you? And then of course there's the question, how do you become one?
More than Money
I know a handful of super-hackers, so I sat down and thought about what they have in common. Their defining quality is probably that they really love to program. Ordinary programmers write code to pay the bills. Great hackers think of it as something they do for fun, and which they're delighted to find people will pay them for.
Great programmers are sometimes said to be indifferent to money. This isn't quite true. It is true that all they really care about is doing interesting work. But if you make enough money, you get to work on whatever you want, and for that reason hackers are attracted by the idea of making really large amounts of money. But as long as they still have to show up for work every day, they care more about what they do there than how much they get paid for it.
Economically, this is a fact of the greatest importance, because it means you don't have to pay great hackers anything like what they're worth. A great programmer might be ten or a hundred times as productive as an ordinary one, but he'll consider himself lucky to get paid three times as much. As I'll explain later, this is partly because great hackers don't know how good they are. But it's also because money is not the main thing they want.
What do hackers want? Like all craftsmen, hackers like good tools. In fact, that's an understatement. Good hackers find it unbearable to use bad tools. They'll simply refuse to work on projects with the wrong infrastructure.
At a startup I once worked for, one of the things pinned up on our bulletin board was an ad from IBM. It was a picture of an AS400, and the headline read, I think, "hackers despise it.'' [1]
When you decide what infrastructure to use for a project, you're not just making a technical decision. You're also making a social decision, and this may be the more important of the two. For example, if your company wants to write some software, it might seem a prudent choice to write it in Java. But when you choose a language, you're also choosing a community. The programmers you'll be able to hire to work on a Java project won't be as smart as the ones you could get to work on a project written in Python. And the quality of your hackers probably matters more than the language you choose. Though, frankly, the fact that good hackers prefer Python to Java should tell you something about the relative merits of those languages.
Business types prefer the most popular languages because they view languages as standards. They don't want to bet the company on Betamax. The thing about languages, though, is that they're not just standards. If you have to move bits over a network, by all means use TCP/IP. But a programming language isn't just a format. A programming language is a medium of expression.
I've read that Java has just overtaken Cobol as the most popular language. As a standard, you couldn't wish for more. But as a medium of expression, you could do a lot better. Of all the great programmers I can think of, I know of only one who would voluntarily program in Java. And of all the great programmers I can think of who don't work for Sun, on Java, I know of zero.
Great hackers also generally insist on using open source software. Not just because it's better, but because it gives them more control. Good hackers insist on control. This is part of what makes them good hackers: when something's broken, they need to fix it. You want them to feel this way about the software they're writing for you. You shouldn't be surprised when they feel the same way about the operating system.
A couple years ago a venture capitalist friend told me about a new startup he was involved with. It sounded promising. But the next time I talked to him, he said they'd decided to build their software on Windows NT, and had just hired a very experienced NT developer to be their chief technical officer. When I heard this, I thought, these guys are doomed. One, the CTO couldn't be a first rate hacker, because to become an eminent NT developer he would have had to use NT voluntarily, multiple times, and I couldn't imagine a great hacker doing that; and two, even if he was good, he'd have a hard time hiring anyone good to work for him if the project had to be built on NT. [2]
The Final Frontier
After software, the most important tool to a hacker is probably his office. Big companies think the function of office space is to express rank. But hackers use their offices for more than that: they use their office as a place to think in. And if you're a technology company, their thoughts are your product. So making hackers work in a noisy, distracting environment is like having a paint factory where the air is full of soot.
The cartoon strip Dilbert has a lot to say about cubicles, and with good reason. All the hackers I know despise them. The mere prospect of being interrupted is enough to prevent hackers from working on hard problems. If you want to get real work done in an office with
cubicles, you have two options: work at home, or come in early or late or on a weekend, when no one else is there. Don't companies realize this is a sign that something is broken? An office environment is supposed to be something that helps you work, not something you work despite.
Companies like Cisco are proud that everyone there has a cubicle, even the CEO. But they're not so advanced as they think; obviously they still view office space as a badge of rank. Note too that Cisco is famous for doing very little product development in house. They get new technology by buying the startups that created it-- where presumably the hackers did have somewhere quiet to work.
One big company that understands what hackers need is Microsoft. I once saw a recruiting ad for Microsoft with a big picture of a door. Work for us, the premise was, and we'll give you a place to work where you can actually get work done. And you know, Microsoft is remarkable among big companies in that they are able to develop software in house. Not well, perhaps, but well enough.
If companies want hackers to be productive, they should look at what they do at home. At home, hackers can arrange things themselves so they can get the most done. And when they work at home, hackers don't work in noisy, open spaces; they work in rooms with doors. They work in cosy, neighborhoody places with people around and somewhere to walk when they need to mull something over, instead of in glass boxes set in acres of parking lots. They have a sofa they can take a nap on when they feel tired, instead of sitting in a coma at their desk, pretending to work. There's no crew of people with vacuum cleaners that roars through every evening during the prime hacking hours. There are no meetings or, God forbid, corporate retreats or team-building exercises. And when you look at what they're doing on that computer, you'll find it reinforces what I said earlier about tools. They may have to use Java and Windows at work, but at home, where they can choose for themselves, you're more likely to find them using Perl and Linux.
Indeed, these statistics about Cobol or Java being the most popular language can be misleading. What we ought to look at, if we want to know what tools are best, is what hackers choose when they can choose freely-- that is, in projects of their own. When you ask that question, you find that open source operating systems already have a dominant market share, and the number one language is probably Perl.
Interesting
Along with good tools, hackers want interesting projects. What makes a project interesting? Well, obviously overtly sexy applications like stealth planes or special effects software would be interesting to work on. But any application can be interesting if it poses novel technical challenges. So it's hard to predict which problems hackers will like, because some become interesting only when the people working on them discover a new kind of solution. Before ITA (who wrote the software inside Orbitz), the people working on airline fare searches probably thought it was one of the most boring applications imaginable. But ITA made it interesting by redefining the problem in a more ambitious way.
I think the same thing happened at Google. When Google was founded, the conventional wisdom among the so-called portals was that search was boring and unimportant. But the guys at Google didn't think search was boring, and that's why they do it so well.
This is an area where managers can make a difference. Like a parent saying to a child, I bet you can't clean up your whole room in ten minutes, a good manager can sometimes redefine a problem as a more interesting one. Steve Jobs seems to be particularly good at this, in part simply by having high standards. There were a lot of small, inexpensive computers before the Mac. He redefined the problem as: make one that's beautiful. And that probably drove the developers harder than any carrot or stick could.
They certainly delivered. When the Mac first appeared, you didn't even have to turn it on to know it would be good; you could tell from the case. A few weeks ago I was walking along the street in Cambridge, and in someone's trash I saw what appeared to be a Mac carrying case. I looked inside, and there was a Mac SE. I carried it home and plugged it in, and it booted. The happy Macintosh face, and then the finder. My God, it was so simple. It was just like ... Google.
Hackers like to work for people with high standards. But it's not enough just to be exacting. You have to insist on the right things. Which usually means that you have to be a hacker yourself. I've seen occasional articles about how to manage programmers. Really there should be two articles: one about what to do if you are yourself a programmer, and one about what to do if you're not. And the second could probably be condensed into two words: give up.
The problem is not so much the day to day management. Really good hackers are practically self-managing. The problem is, if you're not a hacker, you can't tell who the good hackers are. A similar problem explains why American cars are so ugly. I call it the design paradox. You might think that you could make your products beautiful just by hiring a great designer to design them. But if you yourself don't have good taste, how are you going to recognize a good designer? By definition you can't tell from his portfolio. And you can't go by the awards he's won or the jobs he's had, because in design, as in most fields, those tend to be driven by fashion and schmoozing, with actual ability a distant third. There's no way around it: you can't manage a process intended to produce beautiful things without knowing what beautiful is. American cars are ugly because American car companies are run by people with bad taste.
Many people in this country think of taste as something elusive, or even frivolous. It is neither. To drive design, a manager must be the most demanding user of a company's products. And if you have really good taste, you can, as Steve Jobs does, make satisfying you the kind of problem that good people like to work on.
Nasty Little Problems
It's pretty easy to say what kinds of problems are not interesting: those where instead of solving a few big, clear, problems, you have to solve a lot of nasty little ones. One of the worst kinds of projects is writing an interface to a piece of software that's full of bugs. Another is when you have to customize something for an individual client's complex and ill-defined needs. To hackers these kinds of projects are the death of a thousand cuts.
The distinguishing feature of nasty little problems is that you don't learn anything from them. Writing a compiler is interesting because it teaches you what a compiler is. But writing an interface to a buggy piece of software doesn't teach you anything, because the bugs are random. [3] So it's not just fastidiousness that makes good hackers avoid nasty little problems. It's more a question of self-preservation. Working on nasty little problems makes you stupid. Good hackers avoid it for the same reason models avoid cheeseburgers.
Of course some problems inherently have this character. And because of supply and demand, they pay especially well. So a company that found a way to get great hackers to work on tedious problems would be very successful. How would you do it?
One place this happens is in startups. At our startup we had Robert Morris working as a system administrator. That's like having the Rolling Stones play at a bar mitzvah. You can't hire that kind of talent. But people will do any amount of drudgery for companies of which they're the founders. [4]
Bigger companies solve the problem by partitioning the company. They get smart people to work for them by establishing a separate R&D department where employees don't have to work directly on customers' nasty little problems. [5] In this model, the research department functions like a mine. They produce new ideas; maybe the rest of the company will be able to use them.
You may not have to go to this extreme. Bottom-up programming suggests another way to partition the company: have the smart people work as toolmakers. If your company makes software to do x, have one group that builds tools for writing software of that type, and another that uses these tools to write the applications. This way you might be able to get smart people to write 99% of your code, but still keep them almost as insulated from users as they would be in a traditional research department. The toolmakers would have users, but they'd only be the company's own developers. [6]
If Microsoft used this approach, their software wouldn't be so full of security holes, because the less smart people writing the actual applications wouldn't be doing low-level stuff like allocating memory. Instead of writing Word directly in C, they'd be plugging together big Lego blocks of Word-language. (Duplo, I believe, is the technical term.)
Clumping
Along with interesting problems, what good hackers like is other good hackers. Great hackers tend to clump together-- sometimes spectacularly so, as at Xerox Parc. So you won't attract good hackers in linear proportion to how good an environment you create for them. The tendency to clump means it's more like the square of the environment. So it's winner take all. At any given time, there are only about ten or twenty places where hackers most want to work, and if you aren't one of them, you won't just have fewer great hackers, you'll have zero.
Having great hackers is not, by itself, enough to make a company successful. It works well for Google and ITA, which are two of the hot spots right now, but it didn't help Thinking Machines or Xerox. Sun had a good run for a while, but their business model is a down elevator. In that situation, even the best hackers can't save you.
I think, though, that all other things being equal, a company that can attract great hackers will have a huge advantage. There are people who would disagree with this. When we were making the rounds of venture capital firms in the 1990s, several told us that software companies didn't win by writing great software, but through brand, and dominating channels, and doing the right deals.
They really seemed to believe this, and I think I know why. I think what a lot of VCs are looking for, at least unconsciously, is the next Microsoft. And of course if Microsoft is your model, you shouldn't be looking for companies that hope to win by writing great software. But VCs are mistaken to look for the next Microsoft, because no startup can be the next Microsoft unless some other company is prepared to bend over at just the right moment and be the next IBM.
It's a mistake to use Microsoft as a model, because their whole culture derives from that one lucky break. Microsoft is a bad data point. If you throw them out, you find that good products do tend to win in the market. What VCs should be looking for is the next Apple, or the next Google.
I think Bill Gates knows this. What worries him about Google is not the power of their brand, but the fact that they have better hackers. [7]
Recognition
So who are the great hackers? How do you know when you meet one? That turns out to be very hard. Even hackers can't tell. I'm pretty sure now that my friend Trevor Blackwell is a great hacker. You may have read on Slashdot how he made his own Segway. The remarkable thing about this project was that he wrote all the software in one day (in Python, incidentally).
For Trevor, that's par for the course. But when I first met him, I thought he was a complete idiot. He was standing in Robert Morris's office babbling at him about something or other, and I remember standing behind him making frantic gestures at Robert to shoo this nut out of his office so we could go to lunch. Robert says he misjudged Trevor at first too. Apparently when Robert first met him, Trevor had just begun a new scheme that involved writing down everything about every aspect of his life on a stack of index cards, which he carried with him everywhere. He'd also just arrived from Canada, and had a strong Canadian accent and a mullet.
The problem is compounded by the fact that hackers, despite their reputation for social obliviousness, sometimes put a good deal of effort into seeming smart. When I was in grad school I used to hang around the MIT AI Lab occasionally. It was kind of intimidating at first. Everyone there spoke so fast. But after a while I learned the trick of speaking fast. You don't have to think any faster; just use twice as many words to say everything.
With this amount of noise in the signal, it's hard to tell good hackers when you meet them. I can't tell, even now. You also can't tell from their resumes. It seems like the only way to judge a hacker is to work with him on something.
And this is the reason that high-tech areas only happen around universities. The active ingredient here is not so much the professors as the students. Startups grow up around universities because universities bring together promising young people and make them work on the same projects. The smart ones learn who the other smart ones are, and together they cook up new projects of their own.
Because you can't tell a great hacker except by working with him, hackers themselves can't tell how good they are. This is true to a degree in most fields. I've found that people who are great at something are not so much convinced of their own greatness as mystified at why everyone else seems so incompetent.
But it's particularly hard for hackers to know how good they are, because it's hard to compare their work. This is easier in most other fields. In the hundred meters, you know in 10 seconds who's fastest. Even in math there seems to be a general consensus about which problems are hard to solve, and what constitutes a good solution. But hacking is like writing. Who can say which of two novels is better? Certainly not the authors.
With hackers, at least, other hackers can tell. That's because, unlike novelists, hackers collaborate on projects. When you get to hit a few difficult problems over the net at someone, you learn pretty quickly how hard they hit them back. But hackers can't watch themselves at work. So if you ask a great hacker how good he is, he's almost certain to reply, I don't know. He's not just being modest. He really doesn't know.
And none of us know, except about people we've actually worked with. Which puts us in a weird situation: we don't know who our heroes should be. The hackers who become famous tend to become famous by random accidents of PR. Occasionally I need to give an example of a great hacker, and I never know who to use. The first names that come to mind always tend to be people I know personally, but it seems lame to use them. So, I think, maybe I should say Richard Stallman, or Linus Torvalds, or Alan Kay, or someone famous like that. But I have no idea if these guys are great hackers. I've never worked with them on anything.
If there is a Michael Jordan of hacking, no one knows, including him.
Cultivation
Finally, the question the hackers have all been wondering about: how do you become a great hacker? I don't know if it's possible to make yourself into one. But it's certainly possible to do things that make you stupid, and if you can make yourself stupid, you can probably make yourself smart too.
The key to being a good hacker may be to work on what you like. When I think about the great hackers I know, one thing they have in common is the extreme difficulty of making them work on anything they don't want to. I don't know if this is cause or effect; it may be both.
To do something well you have to love it. So to the extent you can preserve hacking as something you love, you're likely to do it well. Try to keep the sense of wonder you had about programming at age 14. If you're worried that your current job is rotting your brain, it probably is.
The best hackers tend to be smart, of course, but that's true in a lot of fields. Is there some quality that's unique to hackers? I asked some friends, and the number one thing they mentioned was curiosity. I'd always supposed that all smart people were curious-- that curiosity was simply the first derivative of knowledge. But apparently hackers are particularly curious, especially about how things work. That makes sense, because programs are in effect giant descriptions of how things work.
Several friends mentioned hackers' ability to concentrate-- their ability, as one put it, to "tune out everything outside their own heads.'' I've certainly noticed this. And I've heard several hackers say that after drinking even half a beer they can't program at all. So maybe hacking does require some special ability to focus. Perhaps great hackers can load a large amount of context into their head, so that when they look at a line of code, they see not just that line but the whole program around it. John McPhee wrote that Bill Bradley's success as a basketball player was due partly to his extraordinary peripheral vision. "Perfect'' eyesight means about 47 degrees of vertical peripheral vision. Bill Bradley had 70; he could see the basket when he was looking at the floor. Maybe great hackers have some similar inborn ability. (I cheat by using a very dense language, which shrinks the court.)
This could explain the disconnect over cubicles. Maybe the people in charge of facilities, not having any concentration to shatter, have no idea that working in a cubicle feels to a hacker like having one's brain in a blender. (Whereas Bill, if the rumors of autism are true, knows all too well.)
One difference I've noticed between great hackers and smart people in general is that hackers are more politically incorrect. To the extent there is a secret handshake among good hackers, it's when they know one another well enough to express opinions that would get them stoned to death by the general public. And I can see why political incorrectness would be a useful quality in programming. Programs are very complex and, at least in the hands of good programmers, very fluid. In such situations it's helpful to have a habit of questioning assumptions.
Can you cultivate these qualities? I don't know. But you can at least not repress them. So here is my best shot at a recipe. If it is possible to make yourself into a great hacker, the way to do it may be to make the following deal with yourself: you never have to work on boring projects (unless your family will starve otherwise), and in return, you'll never allow yourself to do a half-assed job. All the great hackers I know seem to have made that deal, though perhaps none of them had any choice in the matter.
Notes
[1] In fairness, I have to say that IBM makes decent hardware. I wrote this on an IBM laptop.
[2] They did turn out to be doomed. They shut down a few months later.
[3] I think this is what people mean when they talk about the "meaning of life." On the face of it, this seems an odd idea. Life isn't an expression; how could it have meaning? But it can have a quality that feels a lot like meaning. In a project like a compiler, you have to solve a lot of problems, but the problems all fall into a pattern, as in a signal. Whereas when the problems you have to solve are random, they seem like noise.
[4] Einstein at one point worked designing refrigerators. (He had equity.)
[5] It's hard to say exactly what constitutes research in the computer world, but as a first approximation, it's software that doesn't have users.
I don't think it's publication that makes the best hackers want to work in research departments. I think it's mainly not having to have a three hour meeting with a product manager about problems integrating the Korean version of Word 13.27 with the talking paperclip.
[6] Something similar has been happening for a long time in the construction industry. When you had a house built a couple hundred years ago, the local builders built everything in it. But increasingly what builders do is assemble components designed and manufactured by someone else. This has, like the arrival of desktop publishing, given people the freedom to experiment in disastrous ways, but it is certainly more efficient.
[7] Google is much more dangerous to Microsoft than Netscape was. Probably more dangerous than any other company has ever been. Not least because they're determined to fight. On their job listing page, they say that one of their "core values'' is "Don't be evil.'' From a company selling soybean oil or mining equipment, such a statement would merely be eccentric. But I think all of us in the computer world recognize who that is a declaration of war on.
Thanks to Jessica Livingston, Robert Morris, and Sarah Harlin for reading earlier versions of this talk.

The Age of the Essay

Remember the essays you had to write in high school? Topic sentence, introductory paragraph, supporting paragraphs, conclusion. The conclusion being, say, that Ahab in Moby Dick was a Christ-like figure.
Oy. So I'm going to try to give the other side of the story: what an essay really is, and how you write one. Or at least, how I write one.
Mods
The most obvious difference between real essays and the things one has to write in school is that real essays are not exclusively about English literature. Certainly schools should teach students how to write. But due to a series of historical accidents the teaching of writing has gotten mixed together with the study of literature. And so all over the country students are writing not about how a baseball team with a small budget might compete with the Yankees, or the role of color in fashion, or what constitutes a good dessert, but about symbolism in Dickens.
With the result that writing is made to seem boring and pointless. Who cares about symbolism in Dickens? Dickens himself would be more interested in an essay about color or baseball.
How did things get this way? To answer that we have to go back almost a thousand years. Around 1100, Europe at last began to catch its breath after centuries of chaos, and once they had the luxury of curiosity they rediscovered what we call "the classics." The effect was rather as if we were visited by beings from another solar system. These earlier civilizations were so much more sophisticated that for the next several centuries the main work of European scholars, in almost every field, was to assimilate what they knew.
During this period the study of ancient texts acquired great prestige. It seemed the essence of what scholars did. As European scholarship gained momentum it became less and less important; by 1350 someone who wanted to learn about science could find better teachers than Aristotle in his own era. [1] But schools change slower than scholarship. In the 19th century the study of ancient texts was still the backbone of the curriculum.
The time was then ripe for the question: if the study of ancient texts is a valid field for scholarship, why not modern texts? The answer, of course, is that the original raison d'etre of classical scholarship was a kind of intellectual archaeology that does not need to be done in the case of contemporary authors. But for obvious reasons no one wanted to give that answer. The archaeological work being mostly done, it implied that those studying the classics were, if not wasting their time, at least working on problems of minor importance.
And so began the study of modern literature. There was a good deal of resistance at first. The first courses in English literature seem to have been offered by the newer colleges, particularly American ones. Dartmouth, the University of Vermont, Amherst, and University College, London taught English literature in the 1820s. But Harvard didn't have a professor of English literature until 1876, and Oxford not till 1885. (Oxford had a chair of Chinese before it had one of English.) [2]
What tipped the scales, at least in the US, seems to have been the idea that professors should do research as well as teach. This idea (along with the PhD, the department, and indeed the whole concept of the modern university) was imported from Germany in the late 19th century. Beginning at Johns Hopkins in 1876, the new model spread rapidly.
Writing was one of the casualties. Colleges had long taught English composition. But how do you do research on composition? The professors who taught math could be required to do original math, the professors who taught history could be required to write scholarly articles about history, but what about the professors who taught rhetoric or composition? What should they do research on? The closest thing seemed to be English literature. [3]
And so in the late 19th century the teaching of writing was inherited by English professors. This had two drawbacks: (a) an expert on literature need not himself be a good writer, any more than an art historian has to be a good painter, and (b) the subject of writing now tends to be literature, since that's what the professor is interested in.
High schools imitate universities. The seeds of our miserable high school experiences were sown in 1892, when the National Education Association "formally recommended that literature and composition be unified in the high school course." [4] The 'riting component of the 3 Rs then morphed into English, with the bizarre consequence that high school students now had to write about English literature-- to write, without even realizing it, imitations of whatever English professors had been publishing in their journals a few decades before.
It's no wonder if this seems to the student a pointless exercise, because we're now three steps removed from real work: the students are imitating English professors, who are imitating classical scholars, who are merely the inheritors of a tradition growing out of what was, 700 years ago, fascinating and urgently needed work.
No Defense
The other big difference between a real essay and the things they make you write in school is that a real essay doesn't take a position and then defend it. That principle, like the idea that we ought to be writing about literature, turns out to be another intellectual hangover of long forgotten origins.
It's often mistakenly believed that medieval universities were mostly seminaries. In fact they were more law schools. And at least in our tradition lawyers are advocates, trained to take either side of an argument and make as good a case for it as they can. Whether cause or effect, this spirit pervaded early universities. The study of rhetoric, the art of arguing persuasively, was a third of the undergraduate curriculum. [5] And after the lecture the most common form of discussion was the disputation. This is at least nominally preserved in our present-day thesis defense: most people treat the words thesis and dissertation as interchangeable, but originally, at least, a thesis was a position one took and the dissertation was the argument by which one defended it.
Defending a position may be a necessary evil in a legal dispute, but it's not the best way to get at the truth, as I think lawyers would be the first to admit. It's not just that you miss subtleties this way. The real problem is that you can't change the question.
And yet this principle is built into the very structure of the things they teach you to write in high school. The topic sentence is your thesis, chosen in advance, the supporting paragraphs the blows you strike in the conflict, and the conclusion-- uh, what is the conclusion? I was never sure about that in high school. It seemed as if we were just supposed to restate what we said in the first paragraph, but in different enough words that no one could tell. Why bother? But when you understand the origins of this sort of "essay," you can see where the conclusion comes from. It's the concluding remarks to the jury.
Good writing should be convincing, certainly, but it should be convincing because you got the right answers, not because you did a good job of arguing. When I give a draft of an essay to friends, there are two things I want to know: which parts bore them, and which seem unconvincing. The boring bits can usually be fixed by cutting. But I don't try to fix the unconvincing bits by arguing more cleverly. I need to talk the matter over.
At the very least I must have explained something badly. In that case, in the course of the conversation I'll be forced to come up a with a clearer explanation, which I can just incorporate in the essay. More often than not I have to change what I was saying as well. But the aim is never to be convincing per se. As the reader gets smarter, convincing and true become identical, so if I can convince smart readers I must be near the truth.
The sort of writing that attempts to persuade may be a valid (or at least inevitable) form, but it's historically inaccurate to call it an essay. An essay is something else.
Trying
To understand what a real essay is, we have to reach back into history again, though this time not so far. To Michel de Montaigne, who in 1580 published a book of what he called "essais." He was doing something quite different from what lawyers do, and the difference is embodied in the name. Essayer is the French verb meaning "to try" and an essai is an attempt. An essay is something you write to try to figure something out.
Figure out what? You don't know yet. And so you can't begin with a thesis, because you don't have one, and may never have one. An essay doesn't begin with a statement, but with a question. In a real essay, you don't take a position and defend it. You notice a door that's ajar, and you open it and walk in to see what's inside.
If all you want to do is figure things out, why do you need to write anything, though? Why not just sit and think? Well, there precisely is Montaigne's great discovery. Expressing ideas helps to form them. Indeed, helps is far too weak a word. Most of what ends up in my essays I only thought of when I sat down to write them. That's why I write them.
In the things you write in school you are, in theory, merely explaining yourself to the reader. In a real essay you're writing for yourself. You're thinking out loud.
But not quite. Just as inviting people over forces you to clean up your apartment, writing something that other people will read forces you to think well. So it does matter to have an audience. The things I've written just for myself are no good. They tend to peter out. When I run into difficulties, I find I conclude with a few vague questions and then drift off to get a cup of tea.
Many published essays peter out in the same way. Particularly the sort written by the staff writers of newsmagazines. Outside writers tend to supply editorials of the defend-a-position variety, which make a beeline toward a rousing (and foreordained) conclusion. But the staff writers feel obliged to write something "balanced." Since they're writing for a popular magazine, they start with the most radioactively controversial questions, from which-- because they're writing for a popular magazine-- they then proceed to recoil in terror. Abortion, for or against? This group says one thing. That group says another. One thing is certain: the question is a complex one. (But don't get mad at us. We didn't draw any conclusions.)
The River
Questions aren't enough. An essay has to come up with answers. They don't always, of course. Sometimes you start with a promising question and get nowhere. But those you don't publish. Those are like experiments that get inconclusive results. An essay you publish ought to tell the reader something he didn't already know.
But what you tell him doesn't matter, so long as it's interesting. I'm sometimes accused of meandering. In defend-a-position writing that would be a flaw. There you're not concerned with truth. You already know where you're going, and you want to go straight there, blustering through obstacles, and hand-waving your way across swampy ground. But that's not what you're trying to do in an essay. An essay is supposed to be a search for truth. It would be suspicious if it didn't meander.
The Meander (aka Menderes) is a river in Turkey. As you might expect, it winds all over the place. But it doesn't do this out of frivolity. The path it has discovered is the most economical route to the sea. [6]
The river's algorithm is simple. At each step, flow down. For the essayist this translates to: flow interesting. Of all the places to go next, choose the most interesting. One can't have quite as little foresight as a river. I always know generally what I want to write about. But not the specific conclusions I want to reach; from paragraph to paragraph I let the ideas take their course.
This doesn't always work. Sometimes, like a river, one runs up against a wall. Then I do the same thing the river does: backtrack. At one point in this essay I found that after following a certain thread I ran out of ideas. I had to go back seven paragraphs and start over in another direction.
Fundamentally an essay is a train of thought-- but a cleaned-up train of thought, as dialogue is cleaned-up conversation. Real thought, like real conversation, is full of false starts. It would be exhausting to read. You need to cut and fill to emphasize the central thread, like an illustrator inking over a pencil drawing. But don't change so much that you lose the spontaneity of the original.
Err on the side of the river. An essay is not a reference work. It's not something you read looking for a specific answer, and feel cheated if you don't find it. I'd much rather read an essay that went off in an unexpected but interesting direction than one that plodded dutifully along a prescribed course.
Surprise
So what's interesting? For me, interesting means surprise. Interfaces, as Geoffrey James has said, should follow the principle of least astonishment. A button that looks like it will make a machine stop should make it stop, not speed up. Essays should do the opposite. Essays should aim for maximum surprise.
I was afraid of flying for a long time and could only travel vicariously. When friends came back from faraway places, it wasn't just out of politeness that I asked what they saw. I really wanted to know. And I found the best way to get information out of them was to ask what surprised them. How was the place different from what they expected? This is an extremely useful question. You can ask it of the most unobservant people, and it will extract information they didn't even know they were recording.
Surprises are things that you not only didn't know, but that contradict things you thought you knew. And so they're the most valuable sort of fact you can get. They're like a food that's not merely healthy, but counteracts the unhealthy effects of things you've already eaten.
How do you find surprises? Well, therein lies half the work of essay writing. (The other half is expressing yourself well.) The trick is to use yourself as a proxy for the reader. You should only write about things you've thought about a lot. And anything you come across that surprises you, who've thought about the topic a lot, will probably surprise most readers.
For example, in a recent essay I pointed out that because you can only judge computer programmers by working with them, no one knows who the best programmers are overall. I didn't realize this when I began that essay, and even now I find it kind of weird. That's what you're looking for.
So if you want to write essays, you need two ingredients: a few topics you've thought about a lot, and some ability to ferret out the unexpected.
What should you think about? My guess is that it doesn't matter-- that anything can be interesting if you get deeply enough into it. One possible exception might be things that have deliberately had all the variation sucked out of them, like working in fast food. In retrospect, was there anything interesting about working at Baskin-Robbins? Well, it was interesting how important color was to the customers. Kids a certain age would point into the case and say that they wanted yellow. Did they want French Vanilla or Lemon? They would just look at you blankly. They wanted yellow. And then there was the mystery of why the perennial favorite Pralines 'n' Cream was so appealing. (I think now it was the salt.) And the difference in the way fathers and mothers bought ice cream for their kids: the fathers like benevolent kings bestowing largesse, the mothers harried, giving in to pressure. So, yes, there does seem to be some material even in fast food.
I didn't notice those things at the time, though. At sixteen I was about as observant as a lump of rock. I can see more now in the fragments of memory I preserve of that age than I could see at the time from having it all happening live, right in front of me.
Observation
So the ability to ferret out the unexpected must not merely be an inborn one. It must be something you can learn. How do you learn it?
To some extent it's like learning history. When you first read history, it's just a whirl of names and dates. Nothing seems to stick. But the more you learn, the more hooks you have for new facts to stick onto-- which means you accumulate knowledge at what's colloquially called an exponential rate. Once you remember that Normans conquered England in 1066, it will catch your attention when you hear that other Normans conquered southern Italy at about the same time. Which will make you wonder about Normandy, and take note when a third book mentions that Normans were not, like most of what is now called France, tribes that flowed in as the Roman empire collapsed, but Vikings (norman = north man) who arrived four centuries later in 911. Which makes it easier to remember that Dublin was also established by Vikings in the 840s. Etc, etc squared.
Collecting surprises is a similar process. The more anomalies you've seen, the more easily you'll notice new ones. Which means, oddly enough, that as you grow older, life should become more and more surprising. When I was a kid, I used to think adults had it all figured out. I had it backwards. Kids are the ones who have it all figured out. They're just mistaken.
When it comes to surprises, the rich get richer. But (as with wealth) there may be habits of mind that will help the process along. It's good to have a habit of asking questions, especially questions beginning with Why. But not in the random way that three year olds ask why. There are an infinite number of questions. How do you find the fruitful ones?
I find it especially useful to ask why about things that seem wrong. For example, why should there be a connection between humor and misfortune? Why do we find it funny when a character, even one we like, slips on a banana peel? There's a whole essay's worth of surprises there for sure.
If you want to notice things that seem wrong, you'll find a degree of skepticism helpful. I take it as an axiom that we're only achieving 1% of what we could. This helps counteract the rule that gets beaten into our heads as children: that things are the way they are because that is how things have to be. For example, everyone I've talked to while writing this essay felt the same about English classes-- that the whole process seemed pointless. But none of us had the balls at the time to hypothesize that it was, in fact, all a mistake. We all thought there was just something we weren't getting.
I have a hunch you want to pay attention not just to things that seem wrong, but things that seem wrong in a humorous way. I'm always pleased when I see someone laugh as they read a draft of an essay. But why should I be? I'm aiming for good ideas. Why should good ideas be funny? The connection may be surprise. Surprises make us laugh, and surprises are what one wants to deliver.
I write down things that surprise me in notebooks. I never actually get around to reading them and using what I've written, but I do tend to reproduce the same thoughts later. So the main value of notebooks may be what writing things down leaves in your head.
People trying to be cool will find themselves at a disadvantage when collecting surprises. To be surprised is to be mistaken. And the essence of cool, as any fourteen year old could tell you, is nil admirari. When you're mistaken, don't dwell on it; just act like nothing's wrong and maybe no one will notice.
One of the keys to coolness is to avoid situations where inexperience may make you look foolish. If you want to find surprises you should do the opposite. Study lots of different things, because some of the most interesting surprises are unexpected connections between different fields. For example, jam, bacon, pickles, and cheese, which are among the most pleasing of foods, were all originally intended as methods of preservation. And so were books and paintings.
Whatever you study, include history-- but social and economic history, not political history. History seems to me so important that it's misleading to treat it as a mere field of study. Another way to describe it is all the data we have so far.
Among other things, studying history gives one confidence that there are good ideas waiting to be discovered right under our noses. Swords evolved during the Bronze Age out of daggers, which (like their flint predecessors) had a hilt separate from the blade. Because swords are longer the hilts kept breaking off. But it took five hundred years before someone thought of casting hilt and blade as one piece.
Disobedience
Above all, make a habit of paying attention to things you're not supposed to, either because they're "inappropriate," or not important, or not what you're supposed to be working on. If you're curious about something, trust your instincts. Follow the threads that attract your attention. If there's something you're really interested in, you'll find they have an uncanny way of leading back to it anyway, just as the conversation of people who are especially proud of something always tends to lead back to it.
For example, I've always been fascinated by comb-overs, especially the extreme sort that make a man look as if he's wearing a beret made of his own hair. Surely this is a lowly sort of thing to be interested in-- the sort of superficial quizzing best left to teenage girls. And yet there is something underneath. The key question, I realized, is how does the comber-over not see how odd he looks? And the answer is that he got to look that way incrementally. What began as combing his hair a little carefully over a thin patch has gradually, over 20 years, grown into a monstrosity. Gradualness is very powerful. And that power can be used for constructive purposes too: just as you can trick yourself into looking like a freak, you can trick yourself into creating something so grand that you would never have dared to plan such a thing. Indeed, this is just how most good software gets created. You start by writing a stripped-down kernel (how hard can it be?) and gradually it grows into a complete operating system. Hence the next leap: could you do the same thing in painting, or in a novel?
See what you can extract from a frivolous question? If there's one piece of advice I would give about writing essays, it would be: don't do as you're told. Don't believe what you're supposed to. Don't write the essay readers expect; one learns nothing from what one expects. And don't write the way they taught you to in school.
The most important sort of disobedience is to write essays at all. Fortunately, this sort of disobedience shows signs of becoming rampant. It used to be that only a tiny number of officially approved writers were allowed to write essays. Magazines published few of them, and judged them less by what they said than who wrote them; a magazine might publish a story by an unknown writer if it was good enough, but if they published an essay on x it had to be by someone who was at least forty and whose job title had x in it. Which is a problem, because there are a lot of things insiders can't say precisely because they're insiders.
The Internet is changing that. Anyone can publish an essay on the Web, and it gets judged, as any writing should, by what it says, not who wrote it. Who are you to write about x? You are whatever you wrote.
Popular magazines made the period between the spread of literacy and the arrival of TV the golden age of the short story. The Web may well make this the golden age of the essay. And that's certainly not something I realized when I started writing this.
Notes
[1] I'm thinking of Oresme (c. 1323-82). But it's hard to pick a date, because there was a sudden drop-off in scholarship just as Europeans finished assimilating classical science. The cause may have been the plague of 1347; the trend in scientific progress matches the population curve.
[2] Parker, William R. "Where Do College English Departments Come From?" College English 28 (1966-67), pp. 339-351. Reprinted in Gray, Donald J. (ed). The Department of English at Indiana University Bloomington 1868-1970. Indiana University Publications.
Daniels, Robert V. The University of Vermont: The First Two Hundred Years. University of Vermont, 1991.
Mueller, Friedrich M. Letter to the Pall Mall Gazette. 1886/87. Reprinted in Bacon, Alan (ed). The Nineteenth-Century History of English Studies. Ashgate, 1998.
[3] I'm compressing the story a bit. At first literature took a back seat to philology, which (a) seemed more serious and (b) was popular in Germany, where many of the leading scholars of that generation had been trained.
In some cases the writing teachers were transformed in situ into English professors. Francis James Child, who had been Boylston Professor of Rhetoric at Harvard since 1851, became in 1876 the university's first professor of English.
[4] Parker, op. cit., p. 25.
[5] The undergraduate curriculum or trivium (whence "trivial") consisted of Latin grammar, rhetoric, and logic. Candidates for masters' degrees went on to study the quadrivium of arithmetic, geometry, music, and astronomy. Together these were the seven liberal arts.
The study of rhetoric was inherited directly from Rome, where it was considered the most important subject. It would not be far from the truth to say that education in the classical world meant training landowners' sons to speak well enough to defend their interests in political and legal disputes.
[6] Trevor Blackwell points out that this isn't strictly true, because the outside edges of curves erode faster.
Thanks to Ken Anderson, Trevor Blackwell, Sarah Harlin, Jessica Livingston, Jackie McDonough, and Robert Morris for reading drafts of this.

What the Bubble Got Right

(This essay is derived from an invited talk at ICFP 2004.)
I had a front row seat for the Internet Bubble, because I worked at Yahoo during 1998 and 1999. One day, when the stock was trading around $200, I sat down and calculated what I thought the price should be. The answer I got was $12. I went to the next cubicle and told my friend Trevor. "Twelve!" he said. He tried to sound indignant, but he didn't quite manage it. He knew as well as I did that our valuation was crazy.
Yahoo was a special case. It was not just our price to earnings ratio that was bogus. Half our earnings were too. Not in the Enron way, of course. The finance guys seemed scrupulous about reporting earnings. What made our earnings bogus was that Yahoo was, in effect, the center of a pyramid scheme. Investors looked at Yahoo's earnings and said to themselves, here is proof that Internet companies can make money. So they invested in new startups that promised to be the next Yahoo. And as soon as these startups got the money, what did they do with it? Buy millions of dollars worth of advertising on Yahoo to promote their brand. Result: a capital investment in a startup this quarter shows up as Yahoo earnings next quarter-- stimulating another round of investments in startups.
As in a pyramid scheme, what seemed to be the returns of this system were simply the latest round of investments in it. What made it not a pyramid scheme was that it was unintentional. At least, I think it was. The venture capital business is pretty incestuous, and there were presumably people in a position, if not to create this situation, to realize what was happening and to milk it.
A year later the game was up. Starting in January 2000, Yahoo's stock price began to crash, ultimately losing 95% of its value.
Notice, though, that even with all the fat trimmed off its market cap, Yahoo was still worth a lot. Even at the morning-after valuations of March and April 2001, the people at Yahoo had managed to create a company worth about $8 billion in just six years.
The fact is, despite all the nonsense we heard during the Bubble about the "new economy," there was a core of truth. You need that to get a really big bubble: you need to have something solid at the center, so that even smart people are sucked in. (Isaac Newton and Jonathan Swift both lost money in the South Sea Bubble of 1720.)
Now the pendulum has swung the other way. Now anything that became fashionable during the Bubble is ipso facto unfashionable. But that's a mistake-- an even bigger mistake than believing what everyone was saying in 1999. Over the long term, what the Bubble got right will be more important than what it got wrong.
1. Retail VC
After the excesses of the Bubble, it's now considered dubious to take companies public before they have earnings. But there is nothing intrinsically wrong with that idea. Taking a company public at an early stage is simply retail VC: instead of going to venture capital firms for the last round of funding, you go to the public markets.
By the end of the Bubble, companies going public with no earnings were being derided as "concept stocks," as if it were inherently stupid to invest in them. But investing in concepts isn't stupid; it's what VCs do, and the best of them are far from stupid.
The stock of a company that doesn't yet have earnings is worth something. It may take a while for the market to learn how to value such companies, just as it had to learn to value common stocks in the early 20th century. But markets are good at solving that kind of problem. I wouldn't be surprised if the market ultimately did a better job than VCs do now.
Going public early will not be the right plan for every company. And it can of course be disruptive-- by distracting the management, or by making the early employees suddenly rich. But just as the market will learn how to value startups, startups will learn how to minimize the damage of going public.
2. The Internet
The Internet genuinely is a big deal. That was one reason even smart people were fooled by the Bubble. Obviously it was going to have a huge effect. Enough of an effect to triple the value of Nasdaq companies in two years? No, as it turned out. But it was hard to say for certain at the time. [1]
The same thing happened during the Mississippi and South Sea Bubbles. What drove them was the invention of organized public finance (the South Sea Company, despite its name, was really a competitor of the Bank of England). And that did turn out to be a big deal, in the long run.
Recognizing an important trend turns out to be easier than figuring out how to profit from it. The mistake investors always seem to make is to take the trend too literally. Since the Internet was the big new thing, investors supposed that the more Internettish the company, the better. Hence such parodies as Pets.Com.
In fact most of the money to be made from big trends is made indirectly. It was not the railroads themselves that made the most money during the railroad boom, but the companies on either side, like Carnegie's steelworks, which made the rails, and Standard Oil, which used railroads to get oil to the East Coast, where it could be shipped to Europe.
I think the Internet will have great effects, and that what we've seen so far is nothing compared to what's coming. But most of the winners will only indirectly be Internet companies; for every Google there will be ten JetBlues.
3. Choices
Why will the Internet have great effects? The general argument is that new forms of communication always do. They happen rarely (till industrial times there were just speech, writing, and printing), but when they do, they always cause a big splash.
The specific argument, or one of them, is the Internet gives us more choices. In the "old" economy, the high cost of presenting information to people meant they had only a narrow range of options to choose from. The tiny, expensive pipeline to consumers was tellingly named "the channel." Control the channel and you could feed them what you wanted, on your terms. And it was not just big corporations that depended on this principle. So, in their way, did labor unions, the traditional news media, and the art and literary establishments. Winning depended not on doing good work, but on gaining control of some bottleneck.
There are signs that this is changing. Google has over 82 million unique users a month and annual revenues of about three billion dollars. [2] And yet have you ever seen a Google ad? Something is going on here.
Admittedly, Google is an extreme case. It's very easy for people to switch to a new search engine. It costs little effort and no money to try a new one, and it's easy to see if the results are better. And so Google doesn't have to advertise. In a business like theirs, being the best is enough.
The exciting thing about the Internet is that it's shifting everything in that direction. The hard part, if you want to win by making the best stuff, is the beginning. Eventually everyone will learn by word of mouth that you're the best, but how do you survive to that point? And it is in this crucial stage that the Internet has the most effect. First, the Internet lets anyone find you at almost zero cost. Second, it dramatically speeds up the rate at which reputation spreads by word of mouth. Together these mean that in many fields the rule will be: Build it, and they will come. Make something great and put it online. That is a big change from the recipe for winning in the past century.
4. Youth
The aspect of the Internet Bubble that the press seemed most taken with was the youth of some of the startup founders. This too is a trend that will last. There is a huge standard deviation among 26 year olds. Some are fit only for entry level jobs, but others are ready to rule the world if they can find someone to handle the paperwork for them.
A 26 year old may not be very good at managing people or dealing with the SEC. Those require experience. But those are also commodities, which can be handed off to some lieutenant. The most important quality in a CEO is his vision for the company's future. What will they build next? And in that department, there are 26 year olds who can compete with anyone.
In 1970 a company president meant someone in his fifties, at least. If he had technologists working for him, they were treated like a racing stable: prized, but not powerful. But as technology has grown more important, the power of nerds has grown to reflect it. Now it's not enough for a CEO to have someone smart he can ask about technical matters. Increasingly, he has to be that person himself.
As always, business has clung to old forms. VCs still seem to want to install a legitimate-looking talking head as the CEO. But increasingly the founders of the company are the real powers, and the grey-headed man installed by the VCs more like a music group's manager than a general.
5. Informality
In New York, the Bubble had dramatic consequences: suits went out of fashion. They made one seem old. So in 1998 powerful New York types were suddenly wearing open-necked shirts and khakis and oval wire-rimmed glasses, just like guys in Santa Clara.
The pendulum has swung back a bit, driven in part by a panicked reaction by the clothing industry. But I'm betting on the open-necked shirts. And this is not as frivolous a question as it might seem. Clothes are important, as all nerds can sense, though they may not realize it consciously.
If you're a nerd, you can understand how important clothes are by asking yourself how you'd feel about a company that made you wear a suit and tie to work. The idea sounds horrible, doesn't it? In fact, horrible far out of proportion to the mere discomfort of wearing such clothes. A company that made programmers wear suits would have something deeply wrong with it.
And what would be wrong would be that how one presented oneself counted more than the quality of one's ideas. That's the problem with formality. Dressing up is not so much bad in itself. The problem is the receptor it binds to: dressing up is inevitably a substitute for good ideas. It is no coincidence that technically inept business types are known as "suits."
Nerds don't just happen to dress informally. They do it too consistently. Consciously or not, they dress informally as a prophylactic measure against stupidity.
6. Nerds
Clothing is only the most visible battleground in the war against formality. Nerds tend to eschew formality of any sort. They're not impressed by one's job title, for example, or any of the other appurtenances of authority.
Indeed, that's practically the definition of a nerd. I found myself talking recently to someone from Hollywood who was planning a show about nerds. I thought it would be useful if I explained what a nerd was. What I came up with was: someone who doesn't expend any effort on marketing himself.
A nerd, in other words, is someone who concentrates on substance. So what's the connection between nerds and technology? Roughly that you can't fool mother nature. In technical matters, you have to get the right answers. If your software miscalculates the path of a space probe, you can't finesse your way out of trouble by saying that your code is patriotic, or avant-garde, or any of the other dodges people use in nontechnical fields.
And as technology becomes increasingly important in the economy, nerd culture is rising with it. Nerds are already a lot cooler than they were when I was a kid. When I was in college in the mid-1980s, "nerd" was still an insult. People who majored in computer science generally tried to conceal it. Now women ask me where they can meet nerds. (The answer that springs to mind is "Usenix," but that would be like drinking from a firehose.)
I have no illusions about why nerd culture is becoming more accepted. It's not because people are realizing that substance is more important than marketing. It's because the nerds are getting rich. But that is not going to change.
7. Options
What makes the nerds rich, usually, is stock options. Now there are moves afoot to make it harder for companies to grant options. To the extent there's some genuine accounting abuse going on, by all means correct it. But don't kill the golden goose. Equity is the fuel that drives technical innovation.
Options are a good idea because (a) they're fair, and (b) they work. Someone who goes to work for a company is (one hopes) adding to its value, and it's only fair to give them a share of it. And as a purely practical measure, people work a lot harder when they have options. I've seen that first hand.
The fact that a few crooks during the Bubble robbed their companies by granting themselves options doesn't mean options are a bad idea. During the railroad boom, some executives enriched themselves by selling watered stock-- by issuing more shares than they said were outstanding. But that doesn't make common stock a bad idea. Crooks just use whatever means are available.
If there is a problem with options, it's that they reward slightly the wrong thing. Not surprisingly, people do what you pay them to. If you pay them by the hour, they'll work a lot of hours. If you pay them by the volume of work done, they'll get a lot of work done (but only as you defined work). And if you pay them to raise the stock price, which is what options amount to, they'll raise the stock price.
But that's not quite what you want. What you want is to increase the actual value of the company, not its market cap. Over time the two inevitably meet, but not always as quickly as options vest. Which means options tempt employees, if only unconsciously, to "pump and dump"-- to do things that will make the company seem valuable. I found that when I was at Yahoo, I couldn't help thinking, "how will this sound to investors?" when I should have been thinking "is this a good idea?"
So maybe the standard option deal needs to be tweaked slightly. Maybe options should be replaced with something tied more directly to earnings. It's still early days.
8. Startups
What made the options valuable, for the most part, is that they were options on the stock of startups. Startups were not of course a creation of the Bubble, but they were more visible during the Bubble than ever before.
One thing most people did learn about for the first time during the Bubble was the startup created with the intention of selling it. Originally a startup meant a small company that hoped to grow into a big one. But increasingly startups are evolving into a vehicle for developing technology on spec.
As I wrote in Hackers & Painters, employees seem to be most productive when they're paid in proportion to the wealth they generate. And the advantage of a startup-- indeed, almost its raison d'etre-- is that it offers something otherwise impossible to obtain: a way of measuring that.
In many businesses, it just makes more sense for companies to get technology by buying startups rather than developing it in house. You pay more, but there is less risk, and risk is what big companies don't want. It makes the guys developing the technology more accountable, because they only get paid if they build the winner. And you end up with better technology, created faster, because things are made in the innovative atmosphere of startups instead of the bureaucratic atmosphere of big companies.
Our startup, Viaweb, was built to be sold. We were open with investors about that from the start. And we were careful to create something that could slot easily into a larger company. That is the pattern for the future.
9. California
The Bubble was a California phenomenon. When I showed up in Silicon Valley in 1998, I felt like an immigrant from Eastern Europe arriving in America in 1900. Everyone was so cheerful and healthy and rich. It seemed a new and improved world.
The press, ever eager to exaggerate small trends, now gives one the impression that Silicon Valley is a ghost town. Not at all. When I drive down 101 from the airport, I still feel a buzz of energy, as if there were a giant transformer nearby. Real estate is still more expensive than just about anywhere else in the country. The people still look healthy, and the weather is still fabulous. The future is there. (I say "there" because I moved back to the East Coast after Yahoo. I still wonder if this was a smart idea.)
What makes the Bay Area superior is the attitude of the people. I notice that when I come home to Boston. The first thing I see when I walk out of the airline terminal is the fat, grumpy guy in charge of the taxi line. I brace myself for rudeness: remember, you're back on the East Coast now.
The atmosphere varies from city to city, and fragile organisms like startups are exceedingly sensitive to such variation. If it hadn't already been hijacked as a new euphemism for liberal, the word to describe the atmosphere in the Bay Area would be "progressive." People there are trying to build the future. Boston has MIT and Harvard, but it also has a lot of truculent, unionized employees like the police who recently held the Democratic National Convention for ransom, and a lot of people trying to be Thurston Howell. Two sides of an obsolete coin.
Silicon Valley may not be the next Paris or London, but it is at least the next Chicago. For the next fifty years, that's where new wealth will come from.
10. Productivity
During the Bubble, optimistic analysts used to justify high price to earnings ratios by saying that technology was going to increase productivity dramatically. They were wrong about the specific companies, but not so wrong about the underlying principle. I think one of the big trends we'll see in the coming century is a huge increase in productivity.
Or more precisely, a huge increase in variation in productivity. Technology is a lever. It doesn't add; it multiplies. If the present range of productivity is 0 to 100, introducing a multiple of 10 increases the range from 0 to 1000.
One upshot of which is that the companies of the future may be surprisingly small. I sometimes daydream about how big you could grow a company (in revenues) without ever having more than ten people. What would happen if you outsourced everything except product development? If you tried this experiment, I think you'd be surprised at how far you could get. As Fred Brooks pointed out, small groups are intrinsically more productive, because the internal friction in a group grows as the square of its size.
Till quite recently, running a major company meant managing an army of workers. Our standards about how many employees a company should have are still influenced by old patterns. Startups are perforce small, because they can't afford to hire a lot of people. But I think it's a big mistake for companies to loosen their belts as revenues increase. The question is not whether you can afford the extra salaries. Can you afford the loss in productivity that comes from making the company bigger?
The prospect of technological leverage will of course raise the specter of unemployment. I'm surprised people still worry about this. After centuries of supposedly job-killing innovations, the number of jobs is within ten percent of the number of people who want them. This can't be a coincidence. There must be some kind of balancing mechanism.
What's New
When one looks over these trends, is there any overall theme? There does seem to be: that in the coming century, good ideas will count for more. That 26 year olds with good ideas will increasingly have an edge over 50 year olds with powerful connections. That doing good work will matter more than dressing up-- or advertising, which is the same thing for companies. That people will be rewarded a bit more in proportion to the value of what they create.
If so, this is good news indeed. Good ideas always tend to win eventually. The problem is, it can take a very long time. It took decades for relativity to be accepted, and the greater part of a century to establish that central planning didn't work. So even a small increase in the rate at which good ideas win would be a momentous change-- big enough, probably, to justify a name like the "new economy."
Notes
[1] Actually it's hard to say now. As Jeremy Seigel points out, if the value of a stock is its future earnings, you can't tell if it was overvalued till you see what the earnings turn out to be. While certain famous Internet stocks were almost certainly overvalued in 1999, it is still hard to say for sure whether, e.g., the Nasdaq index was.
Seigel, Jeremy J. "What Is an Asset Price Bubble? An Operational Definition." European Financial Management, 9:1, 2003.
[2] The number of users comes from a 6/03 Nielsen study quoted on Google's site. (You'd think they'd have something more recent.) The revenue estimate is based on revenues of $1.35 billion for the first half of 2004, as reported in their IPO filing.
Thanks to Chris Anderson, Trevor Blackwell, Sarah Harlin, Jessica Livingston, and Robert Morris for reading drafts of this.

Bradley's Ghost

A lot of people are writing now about why Kerry lost. Here I want to examine a more specific question: why were the exit polls so wrong?
In Ohio, which Kerry ultimately lost 49-51, exit polls gave him a 52-48 victory. And this wasn't just random error. In every swing state they overestimated the Kerry vote. In Florida, which Bush ultimately won 52-47, exit polls predicted a dead heat.
(These are not early numbers. They're from about midnight eastern time, long after polls closed in Ohio and Florida. And yet by the next afternoon the exit poll numbers online corresponded to the returns. The only way I can imagine this happening is if those in charge of the exit polls cooked the books after seeing the actual returns. But that's another issue.)
What happened? The source of the problem may be a variant of the Bradley Effect. This term was invented after Tom Bradley, the black mayor of Los Angeles, lost an election for governor of California despite a comfortable lead in the polls. Apparently voters were afraid to say they planned to vote against him, lest their motives be (perhaps correctly) suspected.
It seems likely that something similar happened in exit polls this year. In theory, exit polls ought to be very accurate. You're not asking people what they would do. You're asking what they just did.
How can you get errors asking that? Because some people don't respond. To get a truly random sample, pollsters ask, say, every 20th person leaving the polling place who they voted for. But not everyone wants to answer. And the pollsters can't simply ignore those who won't, or their sample isn't random anymore. So what they do, apparently, is note down the age and race and sex of the person, and guess from that who they voted for.
This works so long as there is no correlation between who people vote for and whether they're willing to talk about it. But this year there may have been. It may be that a significant number of those who voted for Bush didn't want to say so.
Why not? Because people in the US are more conservative than they're willing to admit. The values of the elite in this country, at least at the moment, are NPR values. The average person, as I think both Republicans and Democrats would agree, is more socially conservative. But while some openly flaunt the fact that they don't share the opinions of the elite, others feel a little nervous about it, as if they had bad table manners.
For example, according to current NPR values, you can't say anything that might be perceived as disparaging towards homosexuals. To do so is "homophobic." And yet a large number of Americans are deeply religious, and the Bible is quite explicit on the subject of homosexuality. What are they to do? I think what many do is keep their opinions, but keep them to themselves.
They know what they believe, but they also know what they're supposed to believe. And so when a stranger (for example, a pollster) asks them their opinion about something like gay marriage, they will not always say what they really think.
When the values of the elite are liberal, polls will tend to underestimate the conservativeness of ordinary voters. This seems to me the leading theory to explain why the exit polls were so far off this year. NPR values said one ought to vote for Kerry. So all the people who voted for Kerry felt virtuous for doing so, and were eager to tell pollsters they had. No one who voted for Kerry did it as an act of quiet defiance.

Made in USA

(This is a new essay for the Japanese edition of Hackers & Painters. It tries to explain why Americans make some things well and others badly.)
A few years ago an Italian friend of mine travelled by train from Boston to Providence. She had only been in America for a couple weeks and hadn't seen much of the country yet. She arrived looking astonished. "It's so ugly!"
People from other rich countries can scarcely imagine the squalor of the man-made bits of America. In travel books they show you mostly natural environments: the Grand Canyon, whitewater rafting, horses in a field. If you see pictures with man-made things in them, it will be either a view of the New York skyline shot from a discreet distance, or a carefully cropped image of a seacoast town in Maine.
How can it be, visitors must wonder. How can the richest country in the world look like this?
Oddly enough, it may not be a coincidence. Americans are good at some things and bad at others. We're good at making movies and software, and bad at making cars and cities. And I think we may be good at what we're good at for the same reason we're bad at what we're bad at. We're impatient. In America, if you want to do something, you don't worry that it might come out badly, or upset delicate social balances, or that people might think you're getting above yourself. If you want to do something, as Nike says, just do it.
This works well in some fields and badly in others. I suspect it works in movies and software because they're both messy processes. "Systematic" is the last word I'd use to describe the way good programmers write software. Code is not something they assemble painstakingly after careful planning, like the pyramids. It's something they plunge into, working fast and constantly changing their minds, like a charcoal sketch.
In software, paradoxical as it sounds, good craftsmanship means working fast. If you work slowly and meticulously, you merely end up with a very fine implementation of your initial, mistaken idea. Working slowly and meticulously is premature optimization. Better to get a prototype done fast, and see what new ideas it gives you.
It sounds like making movies works a lot like making software. Every movie is a Frankenstein, full of imperfections and usually quite different from what was originally envisioned. But interesting, and finished fairly quickly.
I think we get away with this in movies and software because they're both malleable mediums. Boldness pays. And if at the last minute two parts don't quite fit, you can figure out some hack that will at least conceal the problem.
Not so with cars, or cities. They are all too physical. If the car business worked like software or movies, you'd surpass your competitors by making a car that weighed only fifty pounds, or folded up to the size of a motorcycle when you wanted to park it. But with physical products there are more constraints. You don't win by dramatic innovations so much as by good taste and attention to detail.
The trouble is, the very word "taste" sounds slightly ridiculous to American ears. It seems pretentious, or frivolous, or even effeminate. Blue staters think it's "subjective," and red staters think it's for sissies. So anyone in America who really cares about design will be sailing upwind.
Twenty years ago we used to hear that the problem with the US car industry was the workers. We don't hear that any more now that Japanese companies are building cars in the US. The problem with American cars is bad design. You can see that just by looking at them.
All that extra sheet metal on the AMC Matador wasn't added by the workers. The problem with this car, as with American cars today, is that it was designed by marketing people instead of designers.
Why do the Japanese make better cars than us? Some say it's because their culture encourages cooperation. That may come into it. But in this case it seems more to the point that their culture prizes design and craftsmanship.
For centuries the Japanese have made finer things than we have in the West. When you look at swords they made in 1200, you just can't believe the date on the label is right. Presumably their cars fit together more precisely than ours for the same reason their joinery always has. They're obsessed with making things well.
Not us. When we make something in America, our aim is just to get the job done. Once we reach that point, we take one of two routes. We can stop there, and have something crude but serviceable, like a Vise-grip. Or we can improve it, which usually means encrusting it with gratuitous ornament. When we want to make a car "better," we stick tail fins on it, or make it longer, or make the windows smaller, depending on the current fashion.
Ditto for houses. In America you can have either a flimsy box banged together out of two by fours and drywall, or a McMansion-- a flimsy box banged together out of two by fours and drywall, but larger, more dramatic-looking, and full of expensive fittings. Rich people don't get better design or craftsmanship; they just get a larger, more conspicuous version of the standard house.
We don't especially prize design or craftsmanship here. What we like is speed, and we're willing to do something in an ugly way to get it done fast. In some fields, like software or movies, this is a net win.
But it's not just that software and movies are malleable mediums. In those businesses, the designers (though they're not generally called that) have more power. Software companies, at least successful ones, tend to be run by programmers. And in the film industry, though producers may second-guess directors, the director controls most of what appears on the screen. And so American software and movies, and Japanese cars, all have this in common: the people in charge care about design-- the former because the designers are in charge, and the latter because the whole culture cares about design.
I think most Japanese executives would be horrified at the idea of making a bad car. Whereas American executives, in their hearts, still believe the most important thing about a car is the image it projects. Make a good car? What's "good?" It's so subjective. If you want to know how to design a car, ask a focus group.
Instead of relying on their own internal design compass (like Henry Ford did), American car companies try to make what marketing people think consumers want. But it isn't working. American cars continue to lose market share. And the reason is that the customer doesn't want what he thinks he wants.
Letting focus groups design your cars for you only wins in the short term. In the long term, it pays to bet on good design. The focus group may say they want the meretricious feature du jour, but what they want even more is to imitate sophisticated buyers, and they, though a small minority, really do care about good design. Eventually the pimps and drug dealers notice that the doctors and lawyers have switched from Cadillac to Lexus, and do the same.
Apple is an interesting counterexample to the general American trend. If you want to buy a nice CD player, you'll probably buy a Japanese one. But if you want to buy an MP3 player, you'll probably buy an iPod. What happened? Why doesn't Sony dominate MP3 players? Because Apple is in the consumer electronics business now, and unlike other American companies, they're obsessed with good design. Or more precisely, their CEO is.
I just got an iPod, and it's not just nice. It's surprisingly nice. For it to surprise me, it must be satisfying expectations I didn't know I had. No focus group is going to discover those. Only a great designer can.
Cars aren't the worst thing we make in America. Where the just-do-it model fails most dramatically is in our cities-- or rather, exurbs. If real estate developers operated on a large enough scale, if they built whole towns, market forces would compel them to build towns that didn't suck. But they only build a couple office buildings or suburban streets at a time, and the result is so depressing that the inhabitants consider it a great treat to fly to Europe and spend a couple weeks living what is, for people there, just everyday life. [1]
But the just-do-it model does have advantages. It seems the clear winner for generating wealth and technical innovations (which are practically the same thing). I think speed is the reason. It's hard to create wealth by making a commodity. The real value is in things that are new, and if you want to be the first to make something, it helps to work fast. For better or worse, the just-do-it model is fast, whether you're Dan Bricklin writing the prototype of VisiCalc in a weekend, or a real estate developer building a block of shoddy condos in a month.
If I had to choose between the just-do-it model and the careful model, I'd probably choose just-do-it. But do we have to choose? Could we have it both ways? Could Americans have nice places to live without undermining the impatient, individualistic spirit that makes us good at software? Could other countries introduce more individualism into their technology companies and research labs without having it metastasize as strip malls? I'm optimistic. It's harder to say about other countries, but in the US, at least, I think we can have both.
Apple is an encouraging example. They've managed to preserve enough of the impatient, hackerly spirit you need to write software. And yet when you pick up a new Apple laptop, well, it doesn't seem American. It's too perfect. It seems as if it must have been made by a Swedish or a Japanese company.
In many technologies, version 2 has higher resolution. Why not in design generally? I think we'll gradually see national characters superseded by occupational characters: hackers in Japan will be allowed to behave with a willfulness that would now seem unJapanese, and products in America will be designed with an insistence on taste that would now seem unAmerican. Perhaps the most successful countries, in the future, will be those most willing to ignore what are now considered national characters, and do each kind of work in the way that works best. Race you.
Notes
[1] Japanese cities are ugly too, but for different reasons. Japan is prone to earthquakes, so buildings are traditionally seen as temporary; there is no grand tradition of city planning like the one Europeans inherited from Rome. The other cause is the notoriously corrupt relationship between the government and construction companies.
Thanks to Trevor Blackwell, Barry Eisler, Sarah Harlin, Shiro Kawai, Jessica Livingston, Jackie McDonough, Robert Morris, and Eric Raymond for reading drafts of this.

What You'll Wish You'd Known

(I wrote this talk for a high school. I never actually gave it, because the school authorities vetoed the plan to invite me.)
When I said I was speaking at a high school, my friends were curious. What will you say to high school students? So I asked them, what do you wish someone had told you in high school? Their answers were remarkably similar. So I'm going to tell you what we all wish someone had told us.
I'll start by telling you something you don't have to know in high school: what you want to do with your life. People are always asking you this, so you think you're supposed to have an answer. But adults ask this mainly as a conversation starter. They want to know what sort of person you are, and this question is just to get you talking. They ask it the way you might poke a hermit crab in a tide pool, to see what it does.
If I were back in high school and someone asked about my plans, I'd say that my first priority was to learn what the options were. You don't need to be in a rush to choose your life's work. What you need to do is discover what you like. You have to work on stuff you like if you want to be good at what you do.
It might seem that nothing would be easier than deciding what you like, but it turns out to be hard, partly because it's hard to get an accurate picture of most jobs. Being a doctor is not the way it's portrayed on TV. Fortunately you can also watch real doctors, by volunteering in hospitals. [1]
But there are other jobs you can't learn about, because no one is doing them yet. Most of the work I've done in the last ten years didn't exist when I was in high school. The world changes fast, and the rate at which it changes is itself speeding up. In such a world it's not a good idea to have fixed plans.
And yet every May, speakers all over the country fire up the Standard Graduation Speech, the theme of which is: don't give up on your dreams. I know what they mean, but this is a bad way to put it, because it implies you're supposed to be bound by some plan you made early on. The computer world has a name for this: premature optimization. And it is synonymous with disaster. These speakers would do better to say simply, don't give up.
What they really mean is, don't get demoralized. Don't think that you can't do what other people can. And I agree you shouldn't underestimate your potential. People who've done great things tend to seem as if they were a race apart. And most biographies only exaggerate this illusion, partly due to the worshipful attitude biographers inevitably sink into, and partly because, knowing how the story ends, they can't help streamlining the plot till it seems like the subject's life was a matter of destiny, the mere unfolding of some innate genius. In fact I suspect if you had the sixteen year old Shakespeare or Einstein in school with you, they'd seem impressive, but not totally unlike your other friends.
Which is an uncomfortable thought. If they were just like us, then they had to work very hard to do what they did. And that's one reason we like to believe in genius. It gives us an excuse for being lazy. If these guys were able to do what they did only because of some magic Shakespeareness or Einsteinness, then it's not our fault if we can't do something as good.
I'm not saying there's no such thing as genius. But if you're trying to choose between two theories and one gives you an excuse for being lazy, the other one is probably right.
So far we've cut the Standard Graduation Speech down from "don't give up on your dreams" to "what someone else can do, you can do." But it needs to be cut still further. There is some variation in natural ability. Most people overestimate its role, but it does exist. If I were talking to a guy four feet tall whose ambition was to play in the NBA, I'd feel pretty stupid saying, you can do anything if you really try. [2]
We need to cut the Standard Graduation Speech down to, "what someone else with your abilities can do, you can do; and don't underestimate your abilities." But as so often happens, the closer you get to the truth, the messier your sentence gets. We've taken a nice, neat (but wrong) slogan, and churned it up like a mud puddle. It doesn't make a very good speech anymore. But worse still, it doesn't tell you what to do anymore. Someone with your abilities? What are your abilities?
Upwind
I think the solution is to work in the other direction. Instead of working back from a goal, work forward from promising situations. This is what most successful people actually do anyway.
In the graduation-speech approach, you decide where you want to be in twenty years, and then ask: what should I do now to get there? I propose instead that you don't commit to anything in the future, but just look at the options available now, and choose those that will give you the most promising range of options afterward.
It's not so important what you work on, so long as you're not wasting your time. Work on things that interest you and increase your options, and worry later about which you'll take.
Suppose you're a college freshman deciding whether to major in math or economics. Well, math will give you more options: you can go into almost any field from math. If you major in math it will be easy to get into grad school in economics, but if you major in economics it will be hard to get into grad school in math.
Flying a glider is a good metaphor here. Because a glider doesn't have an engine, you can't fly into the wind without losing a lot of altitude. If you let yourself get far downwind of good places to land, your options narrow uncomfortably. As a rule you want to stay upwind. So I propose that as a replacement for "don't give up on your dreams." Stay upwind.
How do you do that, though? Even if math is upwind of economics, how are you supposed to know that as a high school student?
Well, you don't, and that's what you need to find out. Look for smart people and hard problems. Smart people tend to clump together, and if you can find such a clump, it's probably worthwhile to join it. But it's not straightforward to find these, because there is a lot of faking going on.
To a newly arrived undergraduate, all university departments look much the same. The professors all seem forbiddingly intellectual and publish papers unintelligible to outsiders. But while in some fields the papers are unintelligible because they're full of hard ideas, in others they're deliberately written in an obscure way to seem as if they're saying something important. This may seem a scandalous proposition, but it has been experimentally verified, in the famous Social Text affair. Suspecting that the papers published by literary theorists were often just intellectual-sounding nonsense, a physicist deliberately wrote a paper full of intellectual-sounding nonsense, and submitted it to a literary theory journal, which published it.
The best protection is always to be working on hard problems. Writing novels is hard. Reading novels isn't. Hard means worry: if you're not worrying that something you're making will come out badly, or that you won't be able to understand something you're studying, then it isn't hard enough. There has to be suspense.
Well, this seems a grim view of the world, you may think. What I'm telling you is that you should worry? Yes, but it's not as bad as it sounds. It's exhilarating to overcome worries. You don't see faces much happier than people winning gold medals. And you know why they're so happy? Relief.
I'm not saying this is the only way to be happy. Just that some kinds of worry are not as bad as they sound.
Ambition
In practice, "stay upwind" reduces to "work on hard problems." And you can start today. I wish I'd grasped that in high school.
Most people like to be good at what they do. In the so-called real world this need is a powerful force. But high school students rarely benefit from it, because they're given a fake thing to do. When I was in high school, I let myself believe that my job was to be a high school student. And so I let my need to be good at what I did be satisfied by merely doing well in school.
If you'd asked me in high school what the difference was between high school kids and adults, I'd have said it was that adults had to earn a living. Wrong. It's that adults take responsibility for themselves. Making a living is only a small part of it. Far more important is to take intellectual responsibility for oneself.
If I had to go through high school again, I'd treat it like a day job. I don't mean that I'd slack in school. Working at something as a day job doesn't mean doing it badly. It means not being defined by it. I mean I wouldn't think of myself as a high school student, just as a musician with a day job as a waiter doesn't think of himself as a waiter. [3] And when I wasn't working at my day job I'd start trying to do real work.
When I ask people what they regret most about high school, they nearly all say the same thing: that they wasted so much time. If you're wondering what you're doing now that you'll regret most later, that's probably it. [4]
Some people say this is inevitable-- that high school students aren't capable of getting anything done yet. But I don't think this is true. And the proof is that you're bored. You probably weren't bored when you were eight. When you're eight it's called "playing" instead of "hanging out," but it's the same thing. And when I was eight, I was rarely bored. Give me a back yard and a few other kids and I could play all day.
The reason this got stale in middle school and high school, I now realize, is that I was ready for something else. Childhood was getting old.
I'm not saying you shouldn't hang out with your friends-- that you should all become humorless little robots who do nothing but work. Hanging out with friends is like chocolate cake. You enjoy it more if you eat it occasionally than if you eat nothing but chocolate cake for every meal. No matter how much you like chocolate cake, you'll be pretty queasy after the third meal of it. And that's what the malaise one feels in high school is: mental queasiness. [5]
You may be thinking, we have to do more than get good grades. We have to have extracurricular activities. But you know perfectly well how bogus most of these are. Collecting donations for a charity is an admirable thing to do, but it's not hard. It's not getting something done. What I mean by getting something done is learning how to write well, or how to program computers, or what life was really like in preindustrial societies, or how to draw the human face from life. This sort of thing rarely translates into a line item on a college application.
Corruption
It's dangerous to design your life around getting into college, because the people you have to impress to get into college are not a very discerning audience. At most colleges, it's not the professors who decide whether you get in, but admissions officers, and they are nowhere near as smart. They're the NCOs of the intellectual world. They can't tell how smart you are. The mere existence of prep schools is proof of that.
Few parents would pay so much for their kids to go to a school that didn't improve their admissions prospects. Prep schools openly say this is one of their aims. But what that means, if you stop to think about it, is that they can hack the admissions process: that they can take the very same kid and make him seem a more appealing candidate than he would if he went to the local public school. [6]
Right now most of you feel your job in life is to be a promising college applicant. But that means you're designing your life to satisfy a process so mindless that there's a whole industry devoted to subverting it. No wonder you become cynical. The malaise you feel is the same that a producer of reality TV shows or a tobacco industry executive feels. And you don't even get paid a lot.
So what do you do? What you should not do is rebel. That's what I did, and it was a mistake. I didn't realize exactly what was happening to us, but I smelled a major rat. And so I just gave up. Obviously the world sucked, so why bother?
When I discovered that one of our teachers was herself using Cliff's Notes, it seemed par for the course. Surely it meant nothing to get a good grade in such a class.
In retrospect this was stupid. It was like someone getting fouled in a soccer game and saying, hey, you fouled me, that's against the rules, and walking off the field in indignation. Fouls happen. The thing to do when you get fouled is not to lose your cool. Just keep playing.
By putting you in this situation, society has fouled you. Yes, as you suspect, a lot of the stuff you learn in your classes is crap. And yes, as you suspect, the college admissions process is largely a charade. But like many fouls, this one was unintentional. [7] So just keep playing.
Rebellion is almost as stupid as obedience. In either case you let yourself be defined by what they tell you to do. The best plan, I think, is to step onto an orthogonal vector. Don't just do what they tell you, and don't just refuse to. Instead treat school as a day job. As day jobs go, it's pretty sweet. You're done at 3 o'clock, and you can even work on your own stuff while you're there.
Curiosity
And what's your real job supposed to be? Unless you're Mozart, your first task is to figure that out. What are the great things to work on? Where are the imaginative people? And most importantly, what are you interested in? The word "aptitude" is misleading, because it implies something innate. The most powerful sort of aptitude is a consuming interest in some question, and such interests are often acquired tastes.
A distorted version of this idea has filtered into popular culture under the name "passion." I recently saw an ad for waiters saying they wanted people with a "passion for service." The real thing is not something one could have for waiting on tables. And passion is a bad word for it. A better name would be curiosity.
Kids are curious, but the curiosity I mean has a different shape from kid curiosity. Kid curiosity is broad and shallow; they ask why at random about everything. In most adults this curiosity dries up entirely. It has to: you can't get anything done if you're always asking why about everything. But in ambitious adults, instead of drying up, curiosity becomes narrow and deep. The mud flat morphs into a well.
Curiosity turns work into play. For Einstein, relativity wasn't a book full of hard stuff he had to learn for an exam. It was a mystery he was trying to solve. So it probably felt like less work to him to invent it than it would seem to someone now to learn it in a class.
One of the most dangerous illusions you get from school is the idea that doing great things requires a lot of discipline. Most subjects are taught in such a boring way that it's only by discipline that you can flog yourself through them. So I was surprised when, early in college, I read a quote by Wittgenstein saying that he had no self-discipline and had never been able to deny himself anything, not even a cup of coffee.
Now I know a number of people who do great work, and it's the same with all of them. They have little discipline. They're all terrible procrastinators and find it almost impossible to make themselves do anything they're not interested in. One still hasn't sent out his half of the thank-you notes from his wedding, four years ago. Another has 26,000 emails in her inbox.
I'm not saying you can get away with zero self-discipline. You probably need about the amount you need to go running. I'm often reluctant to go running, but once I do, I enjoy it. And if I don't run for several days, I feel ill. It's the same with people who do great things. They know they'll feel bad if they don't work, and they have enough discipline to get themselves to their desks to start working. But once they get started, interest takes over, and discipline is no longer necessary.
Do you think Shakespeare was gritting his teeth and diligently trying to write Great Literature? Of course not. He was having fun. That's why he's so good.
If you want to do good work, what you need is a great curiosity about a promising question. The critical moment for Einstein was when he looked at Maxwell's equations and said, what the hell is going on here?
It can take years to zero in on a productive question, because it can take years to figure out what a subject is really about. To take an extreme example, consider math. Most people think they hate math, but the boring stuff you do in school under the name "mathematics" is not at all like what mathematicians do.
The great mathematician G. H. Hardy said he didn't like math in high school either. He only took it up because he was better at it than the other students. Only later did he realize math was interesting-- only later did he start to ask questions instead of merely answering them correctly.
When a friend of mine used to grumble because he had to write a paper for school, his mother would tell him: find a way to make it interesting. That's what you need to do: find a question that makes the world interesting. People who do great things look at the same world everyone else does, but notice some odd detail that's compellingly mysterious.
And not only in intellectual matters. Henry Ford's great question was, why do cars have to be a luxury item? What would happen if you treated them as a commodity? Franz Beckenbauer's was, in effect, why does everyone have to stay in his position? Why can't defenders score goals too?
Now
If it takes years to articulate great questions, what do you do now, at sixteen? Work toward finding one. Great questions don't appear suddenly. They gradually congeal in your head. And what makes them congeal is experience. So the way to find great questions is not to search for them-- not to wander about thinking, what great discovery shall I make? You can't answer that; if you could, you'd have made it.
The way to get a big idea to appear in your head is not to hunt for big ideas, but to put in a lot of time on work that interests you, and in the process keep your mind open enough that a big idea can take roost. Einstein, Ford, and Beckenbauer all used this recipe. They all knew their work like a piano player knows the keys. So when something seemed amiss to them, they had the confidence to notice it.
Put in time how and on what? Just pick a project that seems interesting: to master some chunk of material, or to make something, or to answer some question. Choose a project that will take less than a month, and make it something you have the means to finish. Do something hard enough to stretch you, but only just, especially at first. If you're deciding between two projects, choose whichever seems most fun. If one blows up in your face, start another. Repeat till, like an internal combustion engine, the process becomes self-sustaining, and each project generates the next one. (This could take years.)
It may be just as well not to do a project "for school," if that will restrict you or make it seem like work. Involve your friends if you want, but not too many, and only if they're not flakes. Friends offer moral support (few startups are started by one person), but secrecy also has its advantages. There's something pleasing about a secret project. And you can take more risks, because no one will know if you fail.
Don't worry if a project doesn't seem to be on the path to some goal you're supposed to have. Paths can bend a lot more than you think. So let the path grow out the project. The most important thing is to be excited about it, because it's by doing that you learn.
Don't disregard unseemly motivations. One of the most powerful is the desire to be better than other people at something. Hardy said that's what got him started, and I think the only unusual thing about him is that he admitted it. Another powerful motivator is the desire to do, or know, things you're not supposed to. Closely related is the desire to do something audacious. Sixteen year olds aren't supposed to write novels. So if you try, anything you achieve is on the plus side of the ledger; if you fail utterly, you're doing no worse than expectations. [8]
Beware of bad models. Especially when they excuse laziness. When I was in high school I used to write "existentialist" short stories like ones I'd seen by famous writers. My stories didn't have a lot of plot, but they were very deep. And they were less work to write than entertaining ones would have been. I should have known that was a danger sign. And in fact I found my stories pretty boring; what excited me was the idea of writing serious, intellectual stuff like the famous writers.
Now I have enough experience to realize that those famous writers actually sucked. Plenty of famous people do; in the short term, the quality of one's work is only a small component of fame. I should have been less worried about doing something that seemed cool, and just done something I liked. That's the actual road to coolness anyway.
A key ingredient in many projects, almost a project on its own, is to find good books. Most books are bad. Nearly all textbooks are bad. [9] So don't assume a subject is to be learned from whatever book on it happens to be closest. You have to search actively for the tiny number of good books.
The important thing is to get out there and do stuff. Instead of waiting to be taught, go out and learn.
Your life doesn't have to be shaped by admissions officers. It could be shaped by your own curiosity. It is for all ambitious adults. And you don't have to wait to start. In fact, you don't have to wait to be an adult. There's no switch inside you that magically flips when you turn a certain age or graduate from some institution. You start being an adult when you decide to take responsibility for your life. You can do that at any age. [10]
This may sound like bullshit. I'm just a minor, you may think, I have no money, I have to live at home, I have to do what adults tell me all day long. Well, most adults labor under restrictions just as cumbersome, and they manage to get things done. If you think it's restrictive being a kid, imagine having kids.
The only real difference between adults and high school kids is that adults realize they need to get things done, and high school kids don't. That realization hits most people around 23. But I'm letting you in on the secret early. So get to work. Maybe you can be the first generation whose greatest regret from high school isn't how much time you wasted.
Notes
[1] A doctor friend warns that even this can give an inaccurate picture. "Who knew how much time it would take up, how little autonomy one would have for endless years of training, and how unbelievably annoying it is to carry a beeper?"
[2] His best bet would probably be to become dictator and intimidate the NBA into letting him play. So far the closest anyone has come is Secretary of Labor.
[3] A day job is one you take to pay the bills so you can do what you really want, like play in a band, or invent relativity.
Treating high school as a day job might actually make it easier for some students to get good grades. If you treat your classes as a game, you won't be demoralized if they seem pointless.
However bad your classes, you need to get good grades in them to get into a decent college. And that is worth doing, because universities are where a lot of the clumps of smart people are these days.
[4] The second biggest regret was caring so much about unimportant things. And especially about what other people thought of them.
I think what they really mean, in the latter case, is caring what random people thought of them. Adults care just as much what other people think, but they get to be more selective about the other people.
I have about thirty friends whose opinions I care about, and the opinion of the rest of the world barely affects me. The problem in high school is that your peers are chosen for you by accidents of age and geography, rather than by you based on respect for their judgement.
[5] The key to wasting time is distraction. Without distractions it's too obvious to your brain that you're not doing anything with it, and you start to feel uncomfortable. If you want to measure how dependent you've become on distractions, try this experiment: set aside a chunk of time on a weekend and sit alone and think. You can have a notebook to write your thoughts down in, but nothing else: no friends, TV, music, phone, IM, email, Web, games, books, newspapers, or magazines. Within an hour most people will feel a strong craving for distraction.
[6] I don't mean to imply that the only function of prep schools is to trick admissions officers. They also generally provide a better education. But try this thought experiment: suppose prep schools supplied the same superior education but had a tiny (.001) negative effect on college admissions. How many parents would still send their kids to them?
It might also be argued that kids who went to prep schools, because they've learned more, are better college candidates. But this seems empirically false. What you learn in even the best high school is rounding error compared to what you learn in college. Public school kids arrive at college with a slight disadvantage, but they start to pull ahead in the sophomore year.
(I'm not saying public school kids are smarter than preppies, just that they are within any given college. That follows necessarily if you agree prep schools improve kids' admissions prospects.)
[7] Why does society foul you? Indifference, mainly. There are simply no outside forces pushing high school to be good. The air traffic control system works because planes would crash otherwise. Businesses have to deliver because otherwise competitors would take their customers. But no planes crash if your school sucks, and it has no competitors. High school isn't evil; it's random; but random is pretty bad.
[8] And then of course there is money. It's not a big factor in high school, because you can't do much that anyone wants. But a lot of great things were created mainly to make money. Samuel Johnson said "no man but a blockhead ever wrote except for money." (Many hope he was exaggerating.)
[9] Even college textbooks are bad. When you get to college, you'll find that (with a few stellar exceptions) the textbooks are not written by the leading scholars in the field they describe. Writing college textbooks is unpleasant work, done mostly by people who need the money. It's unpleasant because the publishers exert so much control, and there are few things worse than close supervision by someone who doesn't understand what you're doing. This phenomenon is apparently even worse in the production of high school textbooks.
[10] Your teachers are always telling you to behave like adults. I wonder if they'd like it if you did. You may be loud and disorganized, but you're very docile compared to adults. If you actually started acting like adults, it would be just as if a bunch of adults had been transposed into your bodies. Imagine the reaction of an FBI agent or taxi driver or reporter to being told they had to ask permission to go the bathroom, and only one person could go at a time. To say nothing of the things you're taught. If a bunch of actual adults suddenly found themselves trapped in high school, the first thing they'd do is form a union and renegotiate all the rules with the administration.
Thanks to Ingrid Bassett, Trevor Blackwell, Rich Draves, Dan Giffin, Sarah Harlin, Jessica Livingston, Jackie McDonough, Robert Morris, Mark Nitzberg, Lisa Randall, and Aaron Swartz for reading drafts of this, and to many others for talking to me about high school.

How to Start a Startup

(This essay is derived from a talk at the Harvard Computer Society. It's not meant to be complete; I skipped some topics I've already written about in "How to Make Wealth," in Hackers & Painters.)
You need three things to create a successful startup: to start with good people, to make something customers actually want, and to spend as little money as possible. Most startups that fail do it because they fail at one of these. A startup that does all three will probably succeed.
And that's kind of exciting, when you think about it, because all three are doable. Hard, but doable. And since a startup that succeeds ordinarily makes its founders rich, that implies getting rich is doable too. Hard, but doable.
If there is one message I'd like to get across about startups, that's it. There is no magically difficult step that requires brilliance to solve.
The Idea
In particular, you don't need a brilliant idea to start a startup around. The way a startup makes money is to offer people better technology than they have now. But what people have now is often so bad that it doesn't take brilliance to do better.
Google's plan, for example, was simply to create a search site that didn't suck. They had three new ideas: index more of the Web, use links to rank search results, and have clean, simple web pages with unintrusive keyword-based ads. Above all, they were determined to make a site that was good to use. No doubt there are great technical tricks within Google, but the overall plan was straightforward. And while they probably have bigger ambitions now, this alone brings them a billion dollars a year. [1]
There are plenty of other areas that are just as backward as search was before Google. I can think of several heuristics for generating ideas for startups, but most reduce to this: look at something people are trying to do, and figure out how to do it in a way that doesn't suck.
For example, dating sites currently suck far worse than search did before Google. They all use the same simple-minded model. They seem to have approached the problem by thinking about how to do database matches instead of how dating works in the real world. An undergrad could build something better as a class project. And yet there's a lot of money at stake. Online dating is a valuable business now, and it might be worth a hundred times as much if it worked.
An idea for a startup, however, is only a beginning. A lot of would-be startup founders think the key to the whole process is the initial idea, and from that point all you have to do is execute. Venture capitalists know better. If you go to VC firms with a brilliant idea that you'll tell them about if they sign a nondisclosure agreement, most will tell you to get lost. That shows how much a mere idea is worth. The market price is less than the inconvenience of signing an NDA.
Another sign of how little the initial idea is worth is the number of startups that change their plan en route. Microsoft's original plan was to make money selling programming languages, of all things. Their current business model didn't occur to them until IBM dropped it in their lap five years later.
Ideas for startups are worth something, certainly, but the trouble is, they're not transferrable. They're not something you could hand to someone else to execute. Their value is mainly as starting points: as questions for the people who had them to continue thinking about.
What matters is not ideas, but the people who have them. Good people can fix bad ideas, but good ideas can't save bad people.
People
What do I mean by good people? One of the best tricks I learned during our startup was a rule for deciding who to hire. Could you describe the person as an animal? It might be hard to translate that into another language, but I think everyone in the US knows what it means. It means someone who takes their work a little too seriously; someone who does what they do so well that they pass right through professional and cross over into obsessive.
What it means specifically depends on the job: a salesperson who just won't take no for an answer; a hacker who will stay up till 4:00 AM rather than go to bed leaving code with a bug in it; a PR person who will cold-call New York Times reporters on their cell phones; a graphic designer who feels physical pain when something is two millimeters out of place.
Almost everyone who worked for us was an animal at what they did. The woman in charge of sales was so tenacious that I used to feel sorry for potential customers on the phone with her. You could sense them squirming on the hook, but you knew there would be no rest for them till they'd signed up.
If you think about people you know, you'll find the animal test is easy to apply. Call the person's image to mind and imagine the sentence "so-and-so is an animal." If you laugh, they're not. You don't need or perhaps even want this quality in big companies, but you need it in a startup.
For programmers we had three additional tests. Was the person genuinely smart? If so, could they actually get things done? And finally, since a few good hackers have unbearable personalities, could we stand to have them around?
That last test filters out surprisingly few people. We could bear any amount of nerdiness if someone was truly smart. What we couldn't stand were people with a lot of attitude. But most of those weren't truly smart, so our third test was largely a restatement of the first.
When nerds are unbearable it's usually because they're trying too hard to seem smart. But the smarter they are, the less pressure they feel to act smart. So as a rule you can recognize genuinely smart people by their ability to say things like "I don't know," "Maybe you're right," and "I don't understand x well enough."
This technique doesn't always work, because people can be influenced by their environment. In the MIT CS department, there seems to be a tradition of acting like a brusque know-it-all. I'm told it derives ultimately from Marvin Minsky, in the same way the classic airline pilot manner is said to derive from Chuck Yeager. Even genuinely smart people start to act this way there, so you have to make allowances.
It helped us to have Robert Morris, who is one of the readiest to say "I don't know" of anyone I've met. (At least, he was before he became a professor at MIT.) No one dared put on attitude around Robert, because he was obviously smarter than they were and yet had zero attitude himself.
Like most startups, ours began with a group of friends, and it was through personal contacts that we got most of the people we hired. This is a crucial difference between startups and big companies. Being friends with someone for even a couple days will tell you more than companies could ever learn in interviews. [2]
It's no coincidence that startups start around universities, because that's where smart people meet. It's not what people learn in classes at MIT and Stanford that has made technology companies spring up around them. They could sing campfire songs in the classes so long as admissions worked the same.
If you start a startup, there's a good chance it will be with people you know from college or grad school. So in theory you ought to try to make friends with as many smart people as you can in school, right? Well, no. Don't make a conscious effort to schmooze; that doesn't work well with hackers.
What you should do in college is work on your own projects. Hackers should do this even if they don't plan to start startups, because it's the only real way to learn how to program. In some cases you may collaborate with other students, and this is the best way to get to know good hackers. The project may even grow into a startup. But once again, I wouldn't aim too directly at either target. Don't force things; just work on stuff you like with people you like.
Ideally you want between two and four founders. It would be hard to start with just one. One person would find the moral weight of starting a company hard to bear. Even Bill Gates, who seems to be able to bear a good deal of moral weight, had to have a co-founder. But you don't want so many founders that the company starts to look like a group photo. Partly because you don't need a lot of people at first, but mainly because the more founders you have, the worse disagreements you'll have. When there are just two or three founders, you know you have to resolve disputes immediately or perish. If there are seven or eight, disagreements can linger and harden into factions. You don't want mere voting; you need unanimity.
In a technology startup, which most startups are, the founders should include technical people. During the Internet Bubble there were a number of startups founded by business people who then went looking for hackers to create their product for them. This doesn't work well. Business people are bad at deciding what to do with technology, because they don't know what the options are, or which kinds of problems are hard and which are easy. And when business people try to hire hackers, they can't tell which ones are good. Even other hackers have a hard time doing that. For business people it's roulette.
Do the founders of a startup have to include business people? That depends. We thought so when we started ours, and we asked several people who were said to know about this mysterious thing called "business" if they would be the president. But they all said no, so I had to do it myself. And what I discovered was that business was no great mystery. It's not something like physics or medicine that requires extensive study. You just try to get people to pay you for stuff.
I think the reason I made such a mystery of business was that I was disgusted by the idea of doing it. I wanted to work in the pure, intellectual world of software, not deal with customers' mundane problems. People who don't want to get dragged into some kind of work often develop a protective incompetence at it. Paul Erdos was particularly good at this. By seeming unable even to cut a grapefruit in half (let alone go to the store and buy one), he forced other people to do such things for him, leaving all his time free for math. Erdos was an extreme case, but most husbands use the same trick to some degree.
Once I was forced to discard my protective incompetence, I found that business was neither so hard nor so boring as I feared. There are esoteric areas of business that are quite hard, like tax law or the pricing of derivatives, but you don't need to know about those in a startup. All you need to know about business to run a startup are commonsense things people knew before there were business schools, or even universities.
If you work your way down the Forbes 400 making an x next to the name of each person with an MBA, you'll learn something important about business school. You don't even hit an MBA till number 22, Phil Knight, the CEO of Nike. There are only four MBAs in the top 50. What you notice in the Forbes 400 are a lot of people with technical backgrounds. Bill Gates, Steve Jobs, Larry Ellison, Michael Dell, Jeff Bezos, Gordon Moore. The rulers of the technology business tend to come from technology, not business. So if you want to invest two years in something that will help you succeed in business, the evidence suggests you'd do better to learn how to hack than get an MBA. [3]
There is one reason you might want to include business people in a startup, though: because you have to have at least one person willing and able to focus on what customers want. Some believe only business people can do this-- that hackers can implement software, but not design it. That's nonsense. There's nothing about knowing how to program that prevents hackers from understanding users, or about not knowing how to program that magically enables business people to understand them.
If you can't understand users, however, you should either learn how or find a co-founder who can. That is the single most important issue for technology startups, and the rock that sinks more of them than anything else.
What Customers Want
It's not just startups that have to worry about this. I think most businesses that fail do it because they don't give customers what they want. Look at restaurants. A large percentage fail, about a quarter in the first year. But can you think of one restaurant that had really good food and went out of business?
Restaurants with great food seem to prosper no matter what. A restaurant with great food can be expensive, crowded, noisy, dingy, out of the way, and even have bad service, and people will keep coming. It's true that a restaurant with mediocre food can sometimes attract customers through gimmicks. But that approach is very risky. It's more straightforward just to make the food good.
It's the same with technology. You hear all kinds of reasons why startups fail. But can you think of one that had a massively popular product and still failed?
In nearly every failed startup, the real problem was that customers didn't want the product. For most, the cause of death is listed as "ran out of funding," but that's only the immediate cause. Why couldn't they get more funding? Probably because the product was a dog, or never seemed likely to be done, or both.
When I was trying to think of the things every startup needed to do, I almost included a fourth: get a version 1 out as soon as you can. But I decided not to, because that's implicit in making something customers want. The only way to make something customers want is to get a prototype in front of them and refine it based on their reactions.
The other approach is what I call the "Hail Mary" strategy. You make elaborate plans for a product, hire a team of engineers to develop it (people who do this tend to use the term "engineer" for hackers), and then find after a year that you've spent two million dollars to develop something no one wants. This was not uncommon during the Bubble, especially in companies run by business types, who thought of software development as something terrifying that therefore had to be carefully planned.
We never even considered that approach. As a Lisp hacker, I come from the tradition of rapid prototyping. I would not claim (at least, not here) that this is the right way to write every program, but it's certainly the right way to write software for a startup. In a startup, your initial plans are almost certain to be wrong in some way, and your first priority should be to figure out where. The only way to do that is to try implementing them.
Like most startups, we changed our plan on the fly. At first we expected our customers to be Web consultants. But it turned out they didn't like us, because our software was easy to use and we hosted the site. It would be too easy for clients to fire them. We also thought we'd be able to sign up a lot of catalog companies, because selling online was a natural extension of their existing business. But in 1996 that was a hard sell. The middle managers we talked to at catalog companies saw the Web not as an opportunity, but as something that meant more work for them.
We did get a few of the more adventurous catalog companies. Among them was Frederick's of Hollywood, which gave us valuable experience dealing with heavy loads on our servers. But most of our users were small, individual merchants who saw the Web as an opportunity to build a business. Some had retail stores, but many only existed online. And so we changed direction to focus on these users. Instead of concentrating on the features Web consultants and catalog companies would want, we worked to make the software easy to use.
I learned something valuable from that. It's worth trying very, very hard to make technology easy to use. Hackers are so used to computers that they have no idea how horrifying software seems to normal people. Stephen Hawking's editor told him that every equation he included in his book would cut sales in half. When you work on making technology easier to use, you're riding that curve up instead of down. A 10% improvement in ease of use doesn't just increase your sales 10%. It's more likely to double your sales.
How do you figure out what customers want? Watch them. One of the best places to do this was at trade shows. Trade shows didn't pay as a way of getting new customers, but they were worth it as market research. We didn't just give canned presentations at trade shows. We used to show people how to build real, working stores. Which meant we got to watch as they used our software, and talk to them about what they needed.
No matter what kind of startup you start, it will probably be a stretch for you, the founders, to understand what users want. The only kind of software you can build without studying users is the sort for which you are the typical user. But this is just the kind that tends to be open source: operating systems, programming languages, editors, and so on. So if you're developing technology for money, you're probably not going to be developing it for people like you. Indeed, you can use this as a way to generate ideas for startups: what do people who are not like you want from technology?
When most people think of startups, they think of companies like Apple or Google. Everyone knows these, because they're big consumer brands. But for every startup like that, there are twenty more that operate in niche markets or live quietly down in the infrastructure. So if you start a successful startup, odds are you'll start one of those.
Another way to say that is, if you try to start the kind of startup that has to be a big consumer brand, the odds against succeeding are steeper. The best odds are in niche markets. Since startups make money by offering people something better than they had before, the best opportunities are where things suck most. And it would be hard to find a place where things suck more than in corporate IT departments. You would not believe the amount of money companies spend on software, and the crap they get in return. This imbalance equals opportunity.
If you want ideas for startups, one of the most valuable things you could do is find a middle-sized non-technology company and spend a couple weeks just watching what they do with computers. Most good hackers have no more idea of the horrors perpetrated in these places than rich Americans do of what goes on in Brazilian slums.
Start by writing software for smaller companies, because it's easier to sell to them. It's worth so much to sell stuff to big companies that the people selling them the crap they currently use spend a lot of time and money to do it. And while you can outhack Oracle with one frontal lobe tied behind your back, you can't outsell an Oracle salesman. So if you want to win through better technology, aim at smaller customers. [4]
They're the more strategically valuable part of the market anyway. In technology, the low end always eats the high end. It's easier to make an inexpensive product more powerful than to make a powerful product cheaper. So the products that start as cheap, simple options tend to gradually grow more powerful till, like water rising in a room, they squash the "high-end" products against the ceiling. Sun did this to mainframes, and Intel is doing it to Sun. Microsoft Word did it to desktop publishing software like Interleaf and Framemaker. Mass-market digital cameras are doing it to the expensive models made for professionals. Avid did it to the manufacturers of specialized video editing systems, and now Apple is doing it to Avid. Henry Ford did it to the car makers that preceded him. If you build the simple, inexpensive option, you'll not only find it easier to sell at first, but you'll also be in the best position to conquer the rest of the market.
It's very dangerous to let anyone fly under you. If you have the cheapest, easiest product, you'll own the low end. And if you don't, you're in the crosshairs of whoever does.
Raising Money
To make all this happen, you're going to need money. Some startups have been self-funding-- Microsoft for example-- but most aren't. I think it's wise to take money from investors. To be self-funding, you have to start as a consulting company, and it's hard to switch from that to a product company.
Financially, a startup is like a pass/fail course. The way to get rich from a startup is to maximize the company's chances of succeeding, not to maximize the amount of stock you retain. So if you can trade stock for something that improves your odds, it's probably a smart move.
To most hackers, getting investors seems like a terrifying and mysterious process. Actually it's merely tedious. I'll try to give an outline of how it works.
The first thing you'll need is a few tens of thousands of dollars to pay your expenses while you develop a prototype. This is called seed capital. Because so little money is involved, raising seed capital is comparatively easy-- at least in the sense of getting a quick yes or no.
Usually you get seed money from individual rich people called "angels." Often they're people who themselves got rich from technology. At the seed stage, investors don't expect you to have an elaborate business plan. Most know that they're supposed to decide quickly. It's not unusual to get a check within a week based on a half-page agreement.
We started Viaweb with $10,000 of seed money from our friend Julian. But he gave us a lot more than money. He's a former CEO and also a corporate lawyer, so he gave us a lot of valuable advice about business, and also did all the legal work of getting us set up as a company. Plus he introduced us to one of the two angel investors who supplied our next round of funding.
Some angels, especially those with technology backgrounds, may be satisfied with a demo and a verbal description of what you plan to do. But many will want a copy of your business plan, if only to remind themselves what they invested in.
Our angels asked for one, and looking back, I'm amazed how much worry it caused me. "Business plan" has that word "business" in it, so I figured it had to be something I'd have to read a book about business plans to write. Well, it doesn't. At this stage, all most investors expect is a brief description of what you plan to do and how you're going to make money from it, and the resumes of the founders. If you just sit down and write out what you've been saying to one another, that should be fine. It shouldn't take more than a couple hours, and you'll probably find that writing it all down gives you more ideas about what to do.
For the angel to have someone to make the check out to, you're going to have to have some kind of company. Merely incorporating yourselves isn't hard. The problem is, for the company to exist, you have to decide who the founders are, and how much stock they each have. If there are two founders with the same qualifications who are both equally committed to the business, that's easy. But if you have a number of people who are expected to contribute in varying degrees, arranging the proportions of stock can be hard. And once you've done it, it tends to be set in stone.
I have no tricks for dealing with this problem. All I can say is, try hard to do it right. I do have a rule of thumb for recognizing when you have, though. When everyone feels they're getting a slightly bad deal, that they're doing more than they should for the amount of stock they have, the stock is optimally apportioned.
There is more to setting up a company than incorporating it, of course: insurance, business license, unemployment compensation, various things with the IRS. I'm not even sure what the list is, because we, ah, skipped all that. When we got real funding near the end of 1996, we hired a great CFO, who fixed everything retroactively. It turns out that no one comes and arrests you if you don't do everything you're supposed to when starting a company. And a good thing too, or a lot of startups would never get started. [5]
It can be dangerous to delay turning yourself into a company, because one or more of the founders might decide to split off and start another company doing the same thing. This does happen. So when you set up the company, as well as as apportioning the stock, you should get all the founders to sign something agreeing that everyone's ideas belong to this company, and that this company is going to be everyone's only job.
[If this were a movie, ominous music would begin here.]
While you're at it, you should ask what else they've signed. One of the worst things that can happen to a startup is to run into intellectual property problems. We did, and it came closer to killing us than any competitor ever did.
As we were in the middle of getting bought, we discovered that one of our people had, early on, been bound by an agreement that said all his ideas belonged to the giant company that was paying for him to go to grad school. In theory, that could have meant someone else owned big chunks of our software. So the acquisition came to a screeching halt while we tried to sort this out. The problem was, since we'd been about to be acquired, we'd allowed ourselves to run low on cash. Now we needed to raise more to keep going. But it's hard to raise money with an IP cloud over your head, because investors can't judge how serious it is.
Our existing investors, knowing that we needed money and had nowhere else to get it, at this point attempted certain gambits which I will not describe in detail, except to remind readers that the word "angel" is a metaphor. The founders thereupon proposed to walk away from the company, after giving the investors a brief tutorial on how to administer the servers themselves. And while this was happening, the acquirers used the delay as an excuse to welch on the deal.
Miraculously it all turned out ok. The investors backed down; we did another round of funding at a reasonable valuation; the giant company finally gave us a piece of paper saying they didn't own our software; and six months later we were bought by Yahoo for much more than the earlier acquirer had agreed to pay. So we were happy in the end, though the experience probably took several years off my life.
Don't do what we did. Before you consummate a startup, ask everyone about their previous IP history.
Once you've got a company set up, it may seem presumptuous to go knocking on the doors of rich people and asking them to invest tens of thousands of dollars in something that is really just a bunch of guys with some ideas. But when you look at it from the rich people's point of view, the picture is more encouraging. Most rich people are looking for good investments. If you really think you have a chance of succeeding, you're doing them a favor by letting them invest. Mixed with any annoyance they might feel about being approached will be the thought: are these guys the next Google?
Usually angels are financially equivalent to founders. They get the same kind of stock and get diluted the same amount in future rounds. How much stock should they get? That depends on how ambitious you feel. When you offer x percent of your company for y dollars, you're implicitly claiming a certain value for the whole company. Venture investments are usually described in terms of that number. If you give an investor new shares equal to 5% of those already outstanding in return for $100,000, then you've done the deal at a pre-money valuation of $2 million.
How do you decide what the value of the company should be? There is no rational way. At this stage the company is just a bet. I didn't realize that when we were raising money. Julian thought we ought to value the company at several million dollars. I thought it was preposterous to claim that a couple thousand lines of code, which was all we had at the time, were worth several million dollars. Eventually we settled on one millon, because Julian said no one would invest in a company with a valuation any lower. [6]
What I didn't grasp at the time was that the valuation wasn't just the value of the code we'd written so far. It was also the value of our ideas, which turned out to be right, and of all the future work we'd do, which turned out to be a lot.
The next round of funding is the one in which you might deal with actual venture capital firms. But don't wait till you've burned through your last round of funding to start approaching them. VCs are slow to make up their minds. They can take months. You don't want to be running out of money while you're trying to negotiate with them.
Getting money from an actual VC firm is a bigger deal than getting money from angels. The amounts of money involved are larger, millions usually. So the deals take longer, dilute you more, and impose more onerous conditions.
Sometimes the VCs want to install a new CEO of their own choosing. Usually the claim is that you need someone mature and experienced, with a business background. Maybe in some cases this is true. And yet Bill Gates was young and inexperienced and had no business background, and he seems to have done ok. Steve Jobs got booted out of his own company by someone mature and experienced, with a business background, who then proceeded to ruin the company. So I think people who are mature and experienced, with a business background, may be overrated. We used to call these guys "newscasters," because they had neat hair and spoke in deep, confident voices, and generally didn't know much more than they read on the teleprompter.
We talked to a number of VCs, but eventually we ended up financing our startup entirely with angel money. The main reason was that we feared a brand-name VC firm would stick us with a newscaster as part of the deal. That might have been ok if he was content to limit himself to talking to the press, but what if he wanted to have a say in running the company? That would have led to disaster, because our software was so complex. We were a company whose whole m.o. was to win through better technology. The strategic decisions were mostly decisions about technology, and we didn't need any help with those.
This was also one reason we didn't go public. Back in 1998 our CFO tried to talk me into it. In those days you could go public as a dogfood portal, so as a company with a real product and real revenues, we might have done well. But I feared it would have meant taking on a newscaster-- someone who, as they say, "can talk Wall Street's language."
I'm happy to see Google is bucking that trend. They didn't talk Wall Street's language when they did their IPO, and Wall Street didn't buy. And now Wall Street is collectively kicking itself. They'll pay attention next time. Wall Street learns new languages fast when money is involved.
You have more leverage negotiating with VCs than you realize. The reason is other VCs. I know a number of VCs now, and when you talk to them you realize that it's a seller's market. Even now there is too much money chasing too few good deals.
VCs form a pyramid. At the top are famous ones like Sequoia and Kleiner Perkins, but beneath those are a huge number you've never heard of. What they all have in common is that a dollar from them is worth one dollar. Most VCs will tell you that they don't just provide money, but connections and advice. If you're talking to Vinod Khosla or John Doerr or Mike Moritz, this is true. But such advice and connections can come very expensive. And as you go down the food chain the VCs get rapidly dumber. A few steps down from the top you're basically talking to bankers who've picked up a few new vocabulary words from reading Wired. (Does your product use XML?) So I'd advise you to be skeptical about claims of experience and connections. Basically, a VC is a source of money. I'd be inclined to go with whoever offered the most money the soonest with the least strings attached.
You may wonder how much to tell VCs. And you should, because some of them may one day be funding your competitors. I think the best plan is not to be overtly secretive, but not to tell them everything either. After all, as most VCs say, they're more interested in the people than the ideas. The main reason they want to talk about your idea is to judge you, not the idea. So as long as you seem like you know what you're doing, you can probably keep a few things back from them. [7]
Talk to as many VCs as you can, even if you don't want their money, because a) they may be on the board of someone who will buy you, and b) if you seem impressive, they'll be discouraged from investing in your competitors. The most efficient way to reach VCs, especially if you only want them to know about you and don't want their money, is at the conferences that are occasionally organized for startups to present to them.
Not Spending It
When and if you get an infusion of real money from investors, what should you do with it? Not spend it, that's what. In nearly every startup that fails, the proximate cause is running out of money. Usually there is something deeper wrong. But even a proximate cause of death is worth trying hard to avoid.
During the Bubble many startups tried to "get big fast." Ideally this meant getting a lot of customers fast. But it was easy for the meaning to slide over into hiring a lot of people fast.
Of the two versions, the one where you get a lot of customers fast is of course preferable. But even that may be overrated. The idea is to get there first and get all the users, leaving none for competitors. But I think in most businesses the advantages of being first to market are not so overwhelmingly great. Google is again a case in point. When they appeared it seemed as if search was a mature market, dominated by big players who'd spent millions to build their brands: Yahoo, Lycos, Excite, Infoseek, Altavista, Inktomi. Surely 1998 was a little late to arrive at the party.
But as the founders of Google knew, brand is worth next to nothing in the search business. You can come along at any point and make something better, and users will gradually seep over to you. As if to emphasize the point, Google never did any advertising. They're like dealers; they sell the stuff, but they know better than to use it themselves.
The competitors Google buried would have done better to spend those millions improving their software. Future startups should learn from that mistake. Unless you're in a market where products are as undifferentiated as cigarettes or vodka or laundry detergent, spending a lot on brand advertising is a sign of breakage. And few if any Web businesses are so undifferentiated. The dating sites are running big ad campaigns right now, which is all the more evidence they're ripe for the picking. (Fee, fie, fo, fum, I smell a company run by marketing guys.)
We were compelled by circumstances to grow slowly, and in retrospect it was a good thing. The founders all learned to do every job in the company. As well as writing software, I had to do sales and customer support. At sales I was not very good. I was persistent, but I didn't have the smoothness of a good salesman. My message to potential customers was: you'd be stupid not to sell online, and if you sell online you'd be stupid to use anyone else's software. Both statements were true, but that's not the way to convince people.
I was great at customer support though. Imagine talking to a customer support person who not only knew everything about the product, but would apologize abjectly if there was a bug, and then fix it immediately, while you were on the phone with them. Customers loved us. And we loved them, because when you're growing slow by word of mouth, your first batch of users are the ones who were smart enough to find you by themselves. There is nothing more valuable, in the early stages of a startup, than smart users. If you listen to them, they'll tell you exactly how to make a winning product. And not only will they give you this advice for free, they'll pay you.
We officially launched in early 1996. By the end of that year we had about 70 users. Since this was the era of "get big fast," I worried about how small and obscure we were. But in fact we were doing exactly the right thing. Once you get big (in users or employees) it gets hard to change your product. That year was effectively a laboratory for improving our software. By the end of it, we were so far ahead of our competitors that they never had a hope of catching up. And since all the hackers had spent many hours talking to users, we understood online commerce way better than anyone else.
That's the key to success as a startup. There is nothing more important than understanding your business. You might think that anyone in a business must, ex officio, understand it. Far from it. Google's secret weapon was simply that they understood search. I was working for Yahoo when Google appeared, and Yahoo didn't understand search. I know because I once tried to convince the powers that be that we had to make search better, and I got in reply what was then the party line about it: that Yahoo was no longer a mere "search engine." Search was now only a small percentage of our page views, less than one month's growth, and now that we were established as a "media company," or "portal," or whatever we were, search could safely be allowed to wither and drop off, like an umbilical cord.
Well, a small fraction of page views they may be, but they are an important fraction, because they are the page views that Web sessions start with. I think Yahoo gets that now.
Google understands a few other things most Web companies still don't. The most important is that you should put users before advertisers, even though the advertisers are paying and users aren't. One of my favorite bumper stickers reads "if the people lead, the leaders will follow." Paraphrased for the Web, this becomes "get all the users, and the advertisers will follow." More generally, design your product to please users first, and then think about how to make money from it. If you don't put users first, you leave a gap for competitors who do.
To make something users love, you have to understand them. And the bigger you are, the harder that is. So I say "get big slow." The slower you burn through your funding, the more time you have to learn.
The other reason to spend money slowly is to encourage a culture of cheapness. That's something Yahoo did understand. David Filo's title was "Chief Yahoo," but he was proud that his unofficial title was "Cheap Yahoo." Soon after we arrived at Yahoo, we got an email from Filo, who had been crawling around our directory hierarchy, asking if it was really necessary to store so much of our data on expensive RAID drives. I was impressed by that. Yahoo's market cap then was already in the billions, and they were still worrying about wasting a few gigs of disk space.
When you get a couple million dollars from a VC firm, you tend to feel rich. It's important to realize you're not. A rich company is one with large revenues. This money isn't revenue. It's money investors have given you in the hope you'll be able to generate revenues. So despite those millions in the bank, you're still poor.
For most startups the model should be grad student, not law firm. Aim for cool and cheap, not expensive and impressive. For us the test of whether a startup understood this was whether they had Aeron chairs. The Aeron came out during the Bubble and was very popular with startups. Especially the type, all too common then, that was like a bunch of kids playing house with money supplied by VCs. We had office chairs so cheap that the arms all fell off. This was slightly embarrassing at the time, but in retrospect the grad-studenty atmosphere of our office was another of those things we did right without knowing it.
Our offices were in a wooden triple-decker in Harvard Square. It had been an apartment until about the 1970s, and there was still a claw-footed bathtub in the bathroom. It must once have been inhabited by someone fairly eccentric, because a lot of the chinks in the walls were stuffed with aluminum foil, as if to protect against cosmic rays. When eminent visitors came to see us, we were a bit sheepish about the low production values. But in fact that place was the perfect space for a startup. We felt like our role was to be impudent underdogs instead of corporate stuffed shirts, and that is exactly the spirit you want.
An apartment is also the right kind of place for developing software. Cube farms suck for that, as you've probably discovered if you've tried it. Ever notice how much easier it is to hack at home than at work? So why not make work more like home?
When you're looking for space for a startup, don't feel that it has to look professional. Professional means doing good work, not elevators and glass walls. I'd advise most startups to avoid corporate space at first and just rent an apartment. You want to live at the office in a startup, so why not have a place designed to be lived in as your office?
Besides being cheaper and better to work in, apartments tend to be in better locations than office buildings. And for a startup location is very important. The key to productivity is for people to come back to work after dinner. Those hours after the phone stops ringing are by far the best for getting work done. Great things happen when a group of employees go out to dinner together, talk over ideas, and then come back to their offices to implement them. So you want to be in a place where there are a lot of restaurants around, not some dreary office park that's a wasteland after 6:00 PM. Once a company shifts over into the model where everyone drives home to the suburbs for dinner, however late, you've lost something extraordinarily valuable. God help you if you actually start in that mode.
If I were going to start a startup today, there are only three places I'd consider doing it: on the Red Line near Central, Harvard, or Davis Squares (Kendall is too sterile); in Palo Alto on University or California Aves; and in Berkeley immediately north or south of campus. These are the only places I know that have the right kind of vibe.
The most important way to not spend money is by not hiring people. I may be an extremist, but I think hiring people is the worst thing a company can do. To start with, people are a recurring expense, which is the worst kind. They also tend to cause you to grow out of your space, and perhaps even move to the sort of uncool office building that will make your software worse. But worst of all, they slow you down: instead of sticking your head in someone's office and checking out an idea with them, eight people have to have a meeting about it. So the fewer people you can hire, the better.
During the Bubble a lot of startups had the opposite policy. They wanted to get "staffed up" as soon as possible, as if you couldn't get anything done unless there was someone with the corresponding job title. That's big company thinking. Don't hire people to fill the gaps in some a priori org chart. The only reason to hire someone is to do something you'd like to do but can't.
If hiring unnecessary people is expensive and slows you down, why do nearly all companies do it? I think the main reason is that people like the idea of having a lot of people working for them. This weakness often extends right up to the CEO. If you ever end up running a company, you'll find the most common question people ask is how many employees you have. This is their way of weighing you. It's not just random people who ask this; even reporters do. And they're going to be a lot more impressed if the answer is a thousand than if it's ten.
This is ridiculous, really. If two companies have the same revenues, it's the one with fewer employees that's more impressive. When people used to ask me how many people our startup had, and I answered "twenty," I could see them thinking that we didn't count for much. I used to want to add "but our main competitor, whose ass we regularly kick, has a hundred and forty, so can we have credit for the larger of the two numbers?"
As with office space, the number of your employees is a choice between seeming impressive, and being impressive. Any of you who were nerds in high school know about this choice. Keep doing it when you start a company.
Should You?
But should you start a company? Are you the right sort of person to do it? If you are, is it worth it?
More people are the right sort of person to start a startup than realize it. That's the main reason I wrote this. There could be ten times more startups than there are, and that would probably be a good thing.

I was, I now realize, exactly the right sort of person to start a startup. But the idea terrified me at first. I was forced into it because I was a Lisp hacker. The company I'd been consulting for seemed to be running into trouble, and there were not a lot of other companies using Lisp. Since I couldn't bear the thought of programming in another language (this was 1995, remember, when "another language" meant C++) the only option seemed to be to start a new company using Lisp.
I realize this sounds far-fetched, but if you're a Lisp hacker you'll know what I mean. And if the idea of starting a startup frightened me so much that I only did it out of necessity, there must be a lot of people who would be good at it but who are too intimidated to try.
So who should start a startup? Someone who is a good hacker, between about 23 and 38, and who wants to solve the money problem in one shot instead of getting paid gradually over a conventional working life.
I can't say precisely what a good hacker is. At a first rate university this might include the top half of computer science majors. Though of course you don't have to be a CS major to be a hacker; I was a philosophy major in college.
It's hard to tell whether you're a good hacker, especially when you're young. Fortunately the process of starting startups tends to select them automatically. What drives people to start startups is (or should be) looking at existing technology and thinking, don't these guys realize they should be doing x, y, and z? And that's also a sign that one is a good hacker.
I put the lower bound at 23 not because there's something that doesn't happen to your brain till then, but because you need to see what it's like in an existing business before you try running your own. The business doesn't have to be a startup. I spent a year working for a software company to pay off my college loans. It was the worst year of my adult life, but I learned, without realizing it at the time, a lot of valuable lessons about the software business. In this case they were mostly negative lessons: don't have a lot of meetings; don't have chunks of code that multiple people own; don't have a sales guy running the company; don't make a high-end product; don't let your code get too big; don't leave finding bugs to QA people; don't go too long between releases; don't isolate developers from users; don't move from Cambridge to Route 128; and so on. [8] But negative lessons are just as valuable as positive ones. Perhaps even more valuable: it's hard to repeat a brilliant performance, but it's straightforward to avoid errors. [9]
The other reason it's hard to start a company before 23 is that people won't take you seriously. VCs won't trust you, and will try to reduce you to a mascot as a condition of funding. Customers will worry you're going to flake out and leave them stranded. Even you yourself, unless you're very unusual, will feel your age to some degree; you'll find it awkward to be the boss of someone much older than you, and if you're 21, hiring only people younger rather limits your options.
Some people could probably start a company at 18 if they wanted to. Bill Gates was 19 when he and Paul Allen started Microsoft. (Paul Allen was 22, though, and that probably made a difference.) So if you're thinking, I don't care what he says, I'm going to start a company now, you may be the sort of person who could get away with it.
The other cutoff, 38, has a lot more play in it. One reason I put it there is that I don't think many people have the physical stamina much past that age. I used to work till 2:00 or 3:00 AM every night, seven days a week. I don't know if I could do that now.
Also, startups are a big risk financially. If you try something that blows up and leaves you broke at 26, big deal; a lot of 26 year olds are broke. By 38 you can't take so many risks-- especially if you have kids.
My final test may be the most restrictive. Do you actually want to start a startup? What it amounts to, economically, is compressing your working life into the smallest possible space. Instead of working at an ordinary rate for 40 years, you work like hell for four. And maybe end up with nothing-- though in that case it probably won't take four years.
During this time you'll do little but work, because when you're not working, your competitors will be. My only leisure activities were running, which I needed to do to keep working anyway, and about fifteen minutes of reading a night. I had a girlfriend for a total of two months during that three year period. Every couple weeks I would take a few hours off to visit a used bookshop or go to a friend's house for dinner. I went to visit my family twice. Otherwise I just worked.
Working was often fun, because the people I worked with were some of my best friends. Sometimes it was even technically interesting. But only about 10% of the time. The best I can say for the other 90% is that some of it is funnier in hindsight than it seemed then. Like the time the power went off in Cambridge for about six hours, and we made the mistake of trying to start a gasoline powered generator inside our offices. I won't try that again.
I don't think the amount of bullshit you have to deal with in a startup is more than you'd endure in an ordinary working life. It's probably less, in fact; it just seems like a lot because it's compressed into a short period. So mainly what a startup buys you is time. That's the way to think about it if you're trying to decide whether to start one. If you're the sort of person who would like to solve the money problem once and for all instead of working for a salary for 40 years, then a startup makes sense.
For a lot of people the conflict is between startups and graduate school. Grad students are just the age, and just the sort of people, to start software startups. You may worry that if you do you'll blow your chances of an academic career. But it's possible to be part of a startup and stay in grad school, especially at first. Two of our three original hackers were in grad school the whole time, and both got their degrees. There are few sources of energy so powerful as a procrastinating grad student.
If you do have to leave grad school, in the worst case it won't be for too long. If a startup fails, it will probably fail quickly enough that you can return to academic life. And if it succeeds, you may find you no longer have such a burning desire to be an assistant professor.
If you want to do it, do it. Starting a startup is not the great mystery it seems from outside. It's not something you have to know about "business" to do. Build something users love, and spend less than you make. How hard is that?
Notes
[1] Google's revenues are about two billion a year, but half comes from ads on other sites.
[2] One advantage startups have over established companies is that there are no discrimination laws about starting businesses. For example, I would be reluctant to start a startup with a woman who had small children, or was likely to have them soon. But you're not allowed to ask prospective employees if they plan to have kids soon. Believe it or not, under current US law, you're not even allowed to discriminate on the basis of intelligence. Whereas when you're starting a company, you can discriminate on any basis you want about who you start it with.
[3] Learning to hack is a lot cheaper than business school, because you can do it mostly on your own. For the price of a Linux box, a copy of K&R, and a few hours of advice from your neighbor's fifteen year old son, you'll be well on your way.
[4] Corollary: Avoid starting a startup to sell things to the biggest company of all, the government. Yes, there are lots of opportunities to sell them technology. But let someone else start those startups.
[5] A friend who started a company in Germany told me they do care about the paperwork there, and that there's more of it. Which helps explain why there are not more startups in Germany.
[6] At the seed stage our valuation was in principle $100,000, because Julian got 10% of the company. But this is a very misleading number, because the money was the least important of the things Julian gave us.
[7] The same goes for companies that seem to want to acquire you. There will be a few that are only pretending to in order to pick your brains. But you can never tell for sure which these are, so the best approach is to seem entirely open, but to fail to mention a few critical technical secrets.
[8] I was as bad an employee as this place was a company. I apologize to anyone who had to work with me there.
[9] You could probably write a book about how to succeed in business by doing everything in exactly the opposite way from the DMV.
Thanks to Trevor Blackwell, Sarah Harlin, Jessica Livingston, and Robert Morris for reading drafts of this essay, and to Steve Melendez and Gregory Price for inviting me to speak.

A Unified Theory of VC Suckagepad

A couple months ago I got an email from a recruiter asking if I was interested in being a "technologist in residence" at a new venture capital fund. I think the idea was to play Karl Rove to the VCs' George Bush.
I considered it for about four seconds. Work for a VC fund? Ick.
One of my most vivid memories from our startup is going to visit Greylock, the famous Boston VCs. They were the most arrogant people I've met in my life. And I've met a lot of arrogant people. [1]
I'm not alone in feeling this way, of course. Even a VC friend of mine dislikes VCs. "Assholes," he says.
But lately I've been learning more about how the VC world works, and a few days ago it hit me that there's a reason VCs are the way they are. It's not so much that the business attracts jerks, or even that the power they wield corrupts them. The real problem is the way they're paid.
The problem with VC funds is that they're funds. Like the managers of mutual funds or hedge funds, VCs get paid a percentage of the money they manage: about 2% a year in management fees, plus a percentage of the gains. So they want the fund to be huge-- hundreds of millions of dollars, if possible. But that means each partner ends up being responsible for investing a lot of money. And since one person can only manage so many deals, each deal has to be for multiple millions of dollars.
This turns out to explain nearly all the characteristics of VCs that founders hate.
It explains why VCs take so agonizingly long to make up their minds, and why their due diligence feels like a body cavity search. [2] With so much at stake, they have to be paranoid.
It explains why they steal your ideas. Every founder knows that VCs will tell your secrets to your competitors if they end up investing in them. It's not unheard of for VCs to meet you when they have no intention of funding you, just to pick your brain for a competitor. This prospect makes naive founders clumsily secretive. Experienced founders treat it as a cost of doing business. Either way it sucks. But again, the only reason VCs are so sneaky is the giant deals they do. With so much at stake, they have to be devious.
It explains why VCs tend to interfere in the companies they invest in. They want to be on your board not just so that they can advise you, but so that they can watch you. Often they even install a new CEO. Yes, he may have extensive business experience. But he's also their man: these newly installed CEOs always play something of the role of a political commissar in a Red Army unit. With so much at stake, VCs can't resist micromanaging you.
The huge investments themselves are something founders would dislike, if they realized how damaging they can be. VCs don't invest $x million because that's the amount you need, but because that's the amount the structure of their business requires them to invest. Like steroids, these sudden huge investments can do more harm than good. Google survived enormous VC funding because it could legitimately absorb large amounts of money. They had to buy a lot of servers and a lot of bandwidth to crawl the whole Web. Less fortunate startups just end up hiring armies of people to sit around having meetings.
In principle you could take a huge VC investment, put it in treasury bills, and continue to operate frugally. You just try it.
And of course giant investments mean giant valuations. They have to, or there's not enough stock left to keep the founders interested. You might think a high valuation is a great thing. Many founders do. But you can't eat paper. You can't benefit from a high valuation unless you can somehow achieve what those in the business call a "liquidity event," and the higher your valuation, the narrower your options for doing that. Many a founder would be happy to sell his company for $15 million, but VCs who've just invested at a pre-money valuation of $8 million won't hear of that. You're rolling the dice again, whether you like it or not.
Back in 1997, one of our competitors raised $20 million in a single round of VC funding. This was at the time more than the valuation of our entire company. Was I worried? Not at all: I was delighted. It was like watching a car you're chasing turn down a street that you know has no outlet.
Their smartest move at that point would have been to take every penny of the $20 million and use it to buy us. We would have sold. Their investors would have been furious of course. But I think the main reason they never considered this was that they never imagined we could be had so cheap. They probably assumed we were on the same VC gravy train they were.
In fact we only spent about $2 million in our entire existence. And that gave us flexibility. We could sell ourselves to Yahoo for $50 million, and everyone was delighted. If our competitor had done that, the last round of investors would presumably have lost money. I assume they could have vetoed such a deal. But no one those days was paying a lot more than Yahoo. So unless their founders could pull off an IPO (which would be difficult with Yahoo as a competitor), they had no choice but to ride the thing down.
The puffed-up companies that went public during the Bubble didn't do it just because they were pulled into it by unscrupulous investment bankers. Most were pushed just as hard from the other side by VCs who'd invested at high valuations, leaving an IPO as the only way out. The only people dumber were retail investors. So it was literally IPO or bust. Or rather, IPO then bust, or just bust.
Add up all the evidence of VCs' behavior, and the resulting personality is not attractive. In fact, it's the classic villain: alternately cowardly, greedy, sneaky, and overbearing.
I used to take it for granted that VCs were like this. Complaining that VCs were jerks used to seem as naive to me as complaining that users didn't read the reference manual. Of course VCs were jerks. How could it be otherwise?
But I realize now that they're not intrinsically jerks. VCs are like car salesmen or bureaucrats: the nature of their work turns them into jerks.
I've met a few VCs I like. Mike Moritz seems a good guy. He even has a sense of humor, which is almost unheard of among VCs. From what I've read about John Doerr, he sounds like a good guy too, almost a hacker. But they work for the very best VC funds. And my theory explains why they'd tend to be different: just as the very most popular kids don't have to persecute nerds, the very best VCs don't have to act like VCs. They get the pick of all the best deals. So they don't have to be so paranoid and sneaky, and they can choose those rare companies, like Google, that will actually benefit from the giant sums they're compelled to invest.
VCs often complain that in their business there's too much money chasing too few deals. Few realize that this also describes a flaw in the way funding works at the level of individual firms.
Perhaps this was the sort of strategic insight I was supposed to come up with as a "technologist in residence." If so, the good news is that they're getting it for free. The bad news is it means that if you're not one of the very top funds, you're condemned to be the bad guys.
Notes
[1] After Greylock booted founder Philip Greenspun out of ArsDigita, he wrote a hilarious but also very informative essay about it.
[2] Since most VCs aren't tech guys, the technology side of their due diligence tends to be like a body cavity search by someone with a faulty knowledge of human anatomy. After a while we were quite sore from VCs attempting to probe our nonexistent database orifice.
No, we don't use Oracle. We just store the data in files. Our secret is to use an OS that doesn't lose our data. Which OS? FreeBSD. Why do you use that instead of Windows NT? Because it's better and it doesn't cost anything. What, you're using a freeware OS?
How many times that conversation was repeated. Then when we got to Yahoo, we found they used FreeBSD and stored their data in files too.

Undergraduation

(Parts of this essay began as replies to students who wrote to me with questions.)
Recently I've had several emails from computer science undergrads asking what to do in college. I might not be the best source of advice, because I was a philosophy major in college. But I took so many CS classes that most CS majors thought I was one. I was certainly a hacker, at least.
Hacking
What should you do in college to become a good hacker? There are two main things you can do: become very good at programming, and learn a lot about specific, cool problems. These turn out to be equivalent, because each drives you to do the other.
The way to be good at programming is to work (a) a lot (b) on hard problems. And the way to make yourself work on hard problems is to work on some very engaging project.
Odds are this project won't be a class assignment. My friend Robert learned a lot by writing network software when he was an undergrad. One of his projects was to connect Harvard to the Arpanet; it had been one of the original nodes, but by 1984 the connection had died. [1] Not only was this work not for a class, but because he spent all his time on it and neglected his studies, he was kicked out of school for a year. [2] It all evened out in the end, and now he's a professor at MIT. But you'll probably be happier if you don't go to that extreme; it caused him a lot of worry at the time.
Another way to be good at programming is to find other people who are good at it, and learn what they know. Programmers tend to sort themselves into tribes according to the type of work they do and the tools they use, and some tribes are smarter than others. Look around you and see what the smart people seem to be working on; there's usually a reason.
Some of the smartest people around you are professors. So one way to find interesting work is to volunteer as a research assistant. Professors are especially interested in people who can solve tedious system-administration type problems for them, so that is a way to get a foot in the door. What they fear are flakes and resume padders. It's all too common for an assistant to result in a net increase in work. So you have to make it clear you'll mean a net decrease.
Don't be put off if they say no. Rejection is almost always less personal than the rejectee imagines. Just move on to the next. (This applies to dating too.)
Beware, because although most professors are smart, not all of them work on interesting stuff. Professors have to publish novel results to advance their careers, but there is more competition in more interesting areas of research. So what less ambitious professors do is turn out a series of papers whose conclusions are novel because no one else cares about them. You're better off avoiding these.
I never worked as a research assistant, so I feel a bit dishonest recommending that route. I learned to program by writing stuff of my own, particularly by trying to reverse-engineer Winograd's SHRDLU. I was as obsessed with that program as a mother with a new baby.
Whatever the disadvantages of working by yourself, the advantage is that the project is all your own. You never have to compromise or ask anyone's permission, and if you have a new idea you can just sit down and start implementing it.
In your own projects you don't have to worry about novelty (as professors do) or profitability (as businesses do). All that matters is how hard the project is technically, and that has no correlation to the nature of the application. "Serious" applications like databases are often trivial and dull technically (if you ever suffer from insomnia, try reading the technical literature about databases) while "frivolous" applications like games are often very sophisticated. I'm sure there are game companies out there working on products with more intellectual content than the research at the bottom nine tenths of university CS departments.
If I were in college now I'd probably work on graphics: a network game, for example, or a tool for 3D animation. When I was an undergrad there weren't enough cycles around to make graphics interesting, but it's hard to imagine anything more fun to work on now.
Math
When I was in college, a lot of the professors believed (or at least wished) that computer science was a branch of math. This idea was strongest at Harvard, where there wasn't even a CS major till the 1980s; till then one had to major in applied math. But it was nearly as bad at Cornell. When I told the fearsome Professor Conway that I was interested in AI (a hot topic then), he told me I should major in math. I'm still not sure whether he thought AI required math, or whether he thought AI was nonsense and that majoring in something rigorous would cure me of such stupid ambitions.
In fact, the amount of math you need as a hacker is a lot less than most university departments like to admit. I don't think you need much more than high school math plus a few concepts from the theory of computation. (You have to know what an n^2 algorithm is if you want to avoid writing them.) Unless you're planning to write math applications, of course. Robotics, for example, is all math.
But while you don't literally need math for most kinds of hacking, in the sense of knowing 1001 tricks for differentiating formulas, math is very much worth studying for its own sake. It's a valuable source of metaphors for almost any kind of work.[3] I wish I'd studied more math in college for that reason.
Like a lot of people, I was mathematically abused as a child. I learned to think of math as a collection of formulas that were neither beautiful nor had any relation to my life (despite attempts to translate them into "word problems"), but had to be memorized in order to do well on tests.
One of the most valuable things you could do in college would be to learn what math is really about. This may not be easy, because a lot of good mathematicians are bad teachers. And while there are many popular books on math, few seem good. The best I can think of are W. W. Sawyer's. And of course Euclid. [4]
Everything
Thomas Huxley said "Try to learn something about everything and everything about something." Most universities aim at this ideal.
But what's everything? To me it means, all that people learn in the course of working honestly on hard problems. All such work tends to be related, in that ideas and techniques from one field can often be transplanted successfully to others. Even others that seem quite distant. For example, I write essays the same way I write software: I sit down and blow out a lame version 1 as fast as I can type, then spend several weeks rewriting it.
Working on hard problems is not, by itself, enough. Medieval alchemists were working on a hard problem, but their approach was so bogus that there was little to learn from studying it, except possibly about people's ability to delude themselves. Unfortunately the sort of AI I was trying to learn in college had the same flaw: a very hard problem, blithely approached with hopelessly inadequate techniques. Bold? Closer to fraudulent.
The social sciences are also fairly bogus, because they're so much influenced by intellectual fashions. If a physicist met a colleague from 100 years ago, he could teach him some new things; if a psychologist met a colleague from 100 years ago, they'd just get into an ideological argument. Yes, of course, you'll learn something by taking a psychology class. The point is, you'll learn more by taking a class in another department.
The worthwhile departments, in my opinion, are math, the hard sciences, engineering, history (especially economic and social history, and the history of science), architecture, and the classics. A survey course in art history may be worthwhile. Modern literature is important, but the way to learn about it is just to read. I don't know enough about music to say.
You can skip the social sciences, philosophy, and the various departments created recently in response to political pressures. Many of these fields talk about important problems, certainly. But the way they talk about them is useless. For example, philosophy talks, among other things, about our obligations to one another; but you can learn more about this from a wise grandmother or E. B. White than from an academic philosopher.
I speak here from experience. I should probably have been offended when people laughed at Clinton for saying "It depends on what the meaning of the word 'is' is." I took about five classes in college on what the meaning of "is" is.
Another way to figure out which fields are worth studying is to create the dropout graph. For example, I know many people who switched from math to computer science because they found math too hard, and no one who did the opposite. People don't do hard things gratuitously; no one will work on a harder problem unless it is proportionately (or at least log(n)) more rewarding. So probably math is more worth studying than computer science. By similar comparisons you can make a graph of all the departments in a university. At the bottom you'll find the subjects with least intellectual content.
If you use this method, you'll get roughly the same answer I just gave.
Language courses are an anomaly. I think they're better considered as extracurricular activities, like pottery classes. They'd be far more useful when combined with some time living in a country where the language is spoken. On a whim I studied Arabic as a freshman. It was a lot of work, and the only lasting benefits were a weird ability to identify semitic roots and some insights into how people recognize words.
Studio art and creative writing courses are wildcards. Usually you don't get taught much: you just work (or don't work) on whatever you want, and then sit around offering "crits" of one another's creations under the vague supervision of the teacher. But writing and art are both very hard problems that (some) people work honestly at, so they're worth doing, especially if you can find a good teacher.
Jobs
Of course college students have to think about more than just learning. There are also two practical problems to consider: jobs, and graduate school.
In theory a liberal education is not supposed to supply job training. But everyone knows this is a bit of a fib. Hackers at every college learn practical skills, and not by accident.
What you should learn to get a job depends on the kind you want. If you want to work in a big company, learn how to hack Blub on Windows. If you want to work at a cool little company or research lab, you'll do better to learn Ruby on Linux. And if you want to start your own company, which I think will be more and more common, master the most powerful tools you can find, because you're going to be in a race against your competitors, and they'll be your horse.
There is not a direct correlation between the skills you should learn in college and those you'll use in a job. You should aim slightly high in college.
In workouts a football player may bench press 300 pounds, even though he may never have to exert anything like that much force in the course of a game. Likewise, if your professors try to make you learn stuff that's more advanced than you'll need in a job, it may not just be because they're academics, detached from the real world. They may be trying to make you lift weights with your brain.
The programs you write in classes differ in three critical ways from the ones you'll write in the real world: they're small; you get to start from scratch; and the problem is usually artificial and predetermined. In the real world, programs are bigger, tend to involve existing code, and often require you to figure out what the problem is before you can solve it.
You don't have to wait to leave (or even enter) college to learn these skills. If you want to learn how to deal with existing code, for example, you can contribute to open-source projects. The sort of employer you want to work for will be as impressed by that as good grades on class assignments.
In existing open-source projects you don't get much practice at the third skill, deciding what problems to solve. But there's nothing to stop you starting new projects of your own. And good employers will be even more impressed with that.
What sort of problem should you try to solve? One way to answer that is to ask what you need as a user. For example, I stumbled on a good algorithm for spam filtering because I wanted to stop getting spam. Now what I wish I had was a mail reader that somehow prevented my inbox from filling up. I tend to use my inbox as a todo list. But that's like using a screwdriver to open bottles; what one really wants is a bottle opener.
Grad School
What about grad school? Should you go? And how do you get into a good one?
In principle, grad school is professional training in research, and you shouldn't go unless you want to do research as a career. And yet half the people who get PhDs in CS don't go into research. I didn't go to grad school to become a professor. I went because I wanted to learn more.
So if you're mainly interested in hacking and you go to grad school, you'll find a lot of other people who are similarly out of their element. And if half the people around you are out of their element in the same way you are, are you really out of your element?
There's a fundamental problem in "computer science," and it surfaces in situations like this. No one is sure what "research" is supposed to be. A lot of research is hacking that had to be crammed into the form of an academic paper to yield one more quantum of publication.
So it's kind of misleading to ask whether you'll be at home in grad school, because very few people are quite at home in computer science. The whole field is uncomfortable in its own skin. So the fact that you're mainly interested in hacking shouldn't deter you from going to grad school. Just be warned you'll have to do a lot of stuff you don't like.
Number one will be your dissertation. Almost everyone hates their dissertation by the time they're done with it. The process inherently tends to produce an unpleasant result, like a cake made out of whole wheat flour and baked for twelve hours. Few dissertations are read with pleasure, especially by their authors.
But thousands before you have suffered through writing a dissertation. And aside from that, grad school is close to paradise. Many people remember it as the happiest time of their lives. And nearly all the rest, including me, remember it as a period that would have been, if they hadn't had to write a dissertation. [5]
The danger with grad school is that you don't see the scary part upfront. PhD programs start out as college part 2, with several years of classes. So by the time you face the horror of writing a dissertation, you're already several years in. If you quit now, you'll be a grad-school dropout, and you probably won't like that idea. When Robert got kicked out of grad school for writing the Internet worm of 1988, I envied him enormously for finding a way out without the stigma of failure.
On the whole, grad school is probably better than most alternatives. You meet a lot of smart people, and your glum procrastination will at least be a powerful common bond. And of course you have a PhD at the end. I forgot about that. I suppose that's worth something.
The greatest advantage of a PhD (besides being the union card of academia, of course) may be that it gives you some baseline confidence. For example, the Honeywell thermostats in my house have the most atrocious UI. My mother, who has the same model, diligently spent a day reading the user's manual to learn how to operate hers. She assumed the problem was with her. But I can think to myself "If someone with a PhD in computer science can't understand this thermostat, it must be badly designed."
If you still want to go to grad school after this equivocal recommendation, I can give you solid advice about how to get in. A lot of my friends are CS professors now, so I have the inside story about admissions. It's quite different from college. At most colleges, admissions officers decide who gets in. For PhD programs, the professors do. And they try to do it well, because the people they admit are going to be working for them.
Apparently only recommendations really matter at the best schools. Standardized tests count for nothing, and grades for little. The essay is mostly an opportunity to disqualify yourself by saying something stupid. The only thing professors trust is recommendations, preferably from people they know. [6]
So if you want to get into a PhD program, the key is to impress your professors. And from my friends who are professors I know what impresses them: not merely trying to impress them. They're not impressed by students who get good grades or want to be their research assistants so they can get into grad school. They're impressed by students who get good grades and want to be their research assistants because they're genuinely interested in the topic.
So the best thing you can do in college, whether you want to get into grad school or just be good at hacking, is figure out what you truly like. It's hard to trick professors into letting you into grad school, and impossible to trick problems into letting you solve them. College is where faking stops working. From this point, unless you want to go work for a big company, which is like reverting to high school, the only way forward is through doing what you love.
Notes
[1] No one seems to have minded, which shows how unimportant the Arpanet (which became the Internet) was as late as 1984.
[2] This is why, when I became an employer, I didn't care about GPAs. In fact, we actively sought out people who'd failed out of school. We once put up posters around Harvard saying "Did you just get kicked out for doing badly in your classes because you spent all your time working on some project of your own? Come work for us!" We managed to find a kid who had been, and he was a great hacker.
When Harvard kicks undergrads out for a year, they have to get jobs. The idea is to show them how awful the real world is, so they'll understand how lucky they are to be in college. This plan backfired with the guy who came to work for us, because he had more fun than he'd had in school, and made more that year from stock options than any of his professors did in salary. So instead of crawling back repentant at the end of the year, he took another year off and went to Europe. He did eventually graduate at about 26.
[3] Eric Raymond says the best metaphors for hackers are in set theory, combinatorics, and graph theory.
Trevor Blackwell reminds you to take math classes intended for math majors. "'Math for engineers' classes sucked mightily. In fact any 'x for engineers' sucks, where x includes math, law, writing and visual design."
[4] Other highly recommended books: What is Mathematics?, by Courant and Robbins; Geometry and the Imagination by Hilbert and Cohn-Vossen. And for those interested in graphic design, Byrne's Euclid.
[5] If you wanted to have the perfect life, the thing to do would be to go to grad school, secretly write your dissertation in the first year or two, and then just enjoy yourself for the next three years, dribbling out a chapter at a time. This prospect will make grad students' mouths water, but I know of no one who's had the discipline to pull it off.
[6] One professor friend says that 15-20% of the grad students they admit each year are "long shots." But what he means by long shots are people whose applications are perfect in every way, except that no one on the admissions committee knows the professors who wrote the recommendations.
So if you want to get into grad school in the sciences, you need to go to college somewhere with real research professors. Otherwise you'll seem a risky bet to admissions committees, no matter how good you are.
Which implies a surprising but apparently inevitable consequence: little liberal arts colleges are doomed. Most smart high school kids at least consider going into the sciences, even if they ultimately choose not to. Why go to a college that limits their options?
Thanks to Trevor Blackwell, Alex Lewin, Jessica Livingston, Robert Morris, Eric Raymond, and several anonymous CS professors for reading drafts of this, and to the students whose questions began it.

Writing, Briefly

(A lot of people ask for advice about writing. In the process of answering one, I accidentally wrote a tiny essay on the subject. I usually spend weeks on an essay. This one took 67 minutes-- 23 of writing, and 44 of rewriting. But as an experiment I put it online. It is at least extremely dense.)
I think it's far more important to write well than most people realize. Writing doesn't just communicate ideas; it generates them. If you're bad at writing and don't like to do it, you'll miss out on most of the ideas writing would have generated.
As for how to write well, here's the short version: Write a bad version 1 as fast as you can; rewrite it over and over; cut out everything unnecessary; write in a conversational tone; develop a nose for bad writing, so you can see and fix it in yours; imitate writers you like; if you can't get started, tell someone what you plan to write about, then write down what you said; expect 80% of the ideas in an essay to happen after you start writing it, and 50% of those you start with to be wrong; be confident enough to cut; have friends you trust read your stuff and tell you which bits are confusing or drag; don't (always) make detailed outlines; mull ideas over for a few days before writing; carry a small notebook or scrap paper with you; start writing when you think of the first sentence; if a deadline forces you to start before that, just say the most important sentence first; write about stuff you like; don't try to sound impressive; don't hesitate to change the topic on the fly; use footnotes to contain digressions; use anaphora to knit sentences together; read your essays out loud to see (a) where you stumble over awkward phrases and (b) which bits are boring (the paragraphs you dread reading); try to tell the reader something new and useful; work in fairly big quanta of time; when you restart, begin by rereading what you have so far; when you finish, leave yourself something easy to start with; accumulate notes for topics you plan to cover at the bottom of the file; don't feel obliged to cover any of them; write for a reader who won't read the essay as carefully as you do, just as pop songs are designed to sound ok on crappy car radios; if you say anything mistaken, fix it immediately; ask friends which sentence you'll regret most; go back and tone down harsh remarks; publish stuff online, because an audience makes you write more, and thus generate more ideas; print out drafts instead of just looking at them on the screen; use simple, germanic words; learn to distinguish surprises from digressions; learn to recognize the approach of an ending, and when one appears, grab it.

Return of the Mac

All the best hackers I know are gradually switching to Macs. My friend Robert said his whole research group at MIT recently bought themselves Powerbooks. These guys are not the graphic designers and grandmas who were buying Macs at Apple's low point in the mid 1990s. They're about as hardcore OS hackers as you can get.
The reason, of course, is OS X. Powerbooks are beautifully designed and run FreeBSD. What more do you need to know?
I got a Powerbook at the end of last year. When my IBM Thinkpad's hard disk died soon after, it became my only laptop. And when my friend Trevor showed up at my house recently, he was carrying a Powerbook identical to mine.
For most of us, it's not a switch to Apple, but a return. Hard as this was to believe in the mid 90s, the Mac was in its time the canonical hacker's computer.
In the fall of 1983, the professor in one of my college CS classes got up and announced, like a prophet, that there would soon be a computer with half a MIPS of processing power that would fit under an airline seat and cost so little that we could save enough to buy one from a summer job. The whole room gasped. And when the Mac appeared, it was even better than we'd hoped. It was small and powerful and cheap, as promised. But it was also something we'd never considered a computer could be: fabulously well designed.
I had to have one. And I wasn't alone. In the mid to late 1980s, all the hackers I knew were either writing software for the Mac, or wanted to. Every futon sofa in Cambridge seemed to have the same fat white book lying open on it. If you turned it over, it said "Inside Macintosh."
Then came Linux and FreeBSD, and hackers, who follow the most powerful OS wherever it leads, found themselves switching to Intel boxes. If you cared about design, you could buy a Thinkpad, which was at least not actively repellent, if you could get the Intel and Microsoft stickers off the front. [1]
With OS X, the hackers are back. When I walked into the Apple store in Cambridge, it was like coming home. Much was changed, but there was still that Apple coolness in the air, that feeling that the show was being run by someone who really cared, instead of random corporate deal-makers.
So what, the business world may say. Who cares if hackers like Apple again? How big is the hacker market, after all?
Quite small, but important out of proportion to its size. When it comes to computers, what hackers are doing now, everyone will be doing in ten years. Almost all technology, from Unix to bitmapped displays to the Web, became popular first within CS departments and research labs, and gradually spread to the rest of the world.
I remember telling my father back in 1986 that there was a new kind of computer called a Sun that was a serious Unix machine, but so small and cheap that you could have one of your own to sit in front of, instead of sitting in front of a VT100 connected to a single central Vax. Maybe, I suggested, he should buy some stock in this company. I think he really wishes he'd listened.
In 1994 my friend Koling wanted to talk to his girlfriend in Taiwan, and to save long-distance bills he wrote some software that would convert sound to data packets that could be sent over the Internet. We weren't sure at the time whether this was a proper use of the Internet, which was still then a quasi-government entity. What he was doing is now called VoIP, and it is a huge and rapidly growing business.
If you want to know what ordinary people will be doing with computers in ten years, just walk around the CS department at a good university. Whatever they're doing, you'll be doing.
In the matter of "platforms" this tendency is even more pronounced, because novel software originates with great hackers, and they tend to write it first for whatever computer they personally use. And software sells hardware. Many if not most of the initial sales of the Apple II came from people who bought one to run VisiCalc. And why did Bricklin and Frankston write VisiCalc for the Apple II? Because they personally liked it. They could have chosen any machine to make into a star.
If you want to attract hackers to write software that will sell your hardware, you have to make it something that they themselves use. It's not enough to make it "open." It has to be open and good.
And open and good is what Macs are again, finally. The intervening years have created a situation that is, as far as I know, without precedent: Apple is popular at the low end and the high end, but not in the middle. My seventy year old mother has a Mac laptop. My friends with PhDs in computer science have Mac laptops. [2] And yet Apple's overall market share is still small.
Though unprecedented, I predict this situation is also temporary.
So Dad, there's this company called Apple. They make a new kind of computer that's as well designed as a Bang & Olufsen stereo system, and underneath is the best Unix machine you can buy. Yes, the price to earnings ratio is kind of high, but I think a lot of people are going to want these.
Notes
[1] These horrible stickers are much like the intrusive ads popular on pre-Google search engines. They say to the customer: you are unimportant. We care about Intel and Microsoft, not you.
[2] Y Combinator is (we hope) visited mostly by hackers. The proportions of OSes are: Windows 66.4%, Macintosh 18.8%, Linux 11.4%, and FreeBSD 1.5%. The Mac number is a big change from what it would have been five years ago.

Why Smart People Have Bad Ideas

This summer, as an experiment, some friends and I are giving seed funding to a bunch of new startups. It's an experiment because we're prepared to fund younger founders than most investors would. That's why we're doing it during the summer-- so even college students can participate.
We know from Google and Yahoo that grad students can start successful startups. And we know from experience that some undergrads are as capable as most grad students. The accepted age for startup founders has been creeping downward. We're trying to find the lower bound.
The deadline has now passed, and we're sifting through 227 applications. We expected to divide them into two categories, promising and unpromising. But we quickly saw that we needed a third: promising people with unpromising ideas. [1]
The Artix Phase
We should have expected this. It's very common for a group of founders to go through one lame idea before realizing that a startup has to make something people will pay for. In fact, we ourselves did.
Viaweb wasn't the first startup Robert Morris and I started. In January 1995, we and a couple friends started a company called Artix. The plan was to put art galleries on the Web. In retrospect, I wonder how we could have wasted our time on anything so stupid. Galleries are not especially excited about being on the Web even now, ten years later. They don't want to have their stock visible to any random visitor, like an antique store. [2]
Besides which, art dealers are the most technophobic people on earth. They didn't become art dealers after a difficult choice between that and a career in the hard sciences. Most of them had never seen the Web before we came to tell them why they should be on it. Some didn't even have computers. It doesn't do justice to the situation to describe it as a hard sell; we soon sank to building sites for free, and it was hard to convince galleries even to do that.
Gradually it dawned on us that instead of trying to make Web sites for people who didn't want them, we could make sites for people who did. In fact, software that would let people who wanted sites make their own. So we ditched Artix and started a new company, Viaweb, to make software for building online stores. That one succeeded.
We're in good company here. Microsoft was not the first company Paul Allen and Bill Gates started either. The first was called Traf-o-data. I don't know exactly what happened to Traf-o-data, but it does not seem to have done as well as Micro-soft, as Microsoft was called then.
In Robert's defense, he was skeptical about Artix. I dragged him into it. [3] But there were moments when he was optimistic. And if we, who were 29 and 30 at the time, could get excited about such a thoroughly boneheaded idea, we should not be surprised that hackers aged 21 or 22 are pitching us ideas with little hope of making money.
The Still Life Effect
Why does this happen? Why do good hackers have bad business ideas?
Let's look at our case. One reason we had such a lame idea was that it was the first thing we thought of. I was in New York trying to be a starving artist at the time (the starving part is actually quite easy), so I was haunting galleries anyway. When I learned about the Web, it seemed natural to mix the two. Make Web sites for galleries-- that's the ticket!
If you're going to spend years working on something, you'd think it might be wise to spend at least a couple days considering different ideas, instead of going with the first that comes into your head. You'd think. But people don't. In fact, this is a constant problem when you're painting still lifes. You plonk down a bunch of stuff on a table, and maybe spend five or ten minutes rearranging it to look interesting. But you're so impatient to get started painting that ten minutes of rearranging feels very long. So you start painting. Three days later, having spent twenty hours staring at it, you're kicking yourself for having set up such an awkward and boring composition, but by then it's too late.
Part of the problem is that big projects tend to grow out of small ones. You set up a still life to make a quick sketch when you have a spare hour, and days later you're still working on it. I once spent a month painting three versions of a still life I set up in about four minutes. At each point (a day, a week, a month) I thought I'd already put in so much time that it was too late to change.
So the biggest cause of bad ideas is the still life effect: you come up with a random idea, plunge into it, and then at each point (a day, a week, a month) feel you've put so much time into it that this must be the idea.
How do we fix that? I don't think we should discard plunging. Plunging into an idea is a good thing. The solution is at the other end: to realize that having invested time in something doesn't make it good.
This is clearest in the case of names. Viaweb was originally called Webgen, but we discovered someone else had a product called that. We were so attached to our name that we offered him 5% of the company if he'd let us have it. But he wouldn't, so we had to think of another. [4] The best we could do was Viaweb, which we disliked at first. It was like having a new mother. But within three days we loved it, and Webgen sounded lame and old-fashioned.
If it's hard to change something so simple as a name, imagine how hard it is to garbage-collect an idea. A name only has one point of attachment into your head. An idea for a company gets woven into your thoughts. So you must consciously discount for that. Plunge in, by all means, but remember later to look at your idea in the harsh light of morning and ask: is this something people will pay for? Is this, of all the things we could make, the thing people will pay most for?
Muck
The second mistake we made with Artix is also very common. Putting galleries on the Web seemed cool.
One of the most valuable things my father taught me is an old Yorkshire saying: where there's muck, there's brass. Meaning that unpleasant work pays. And more to the point here, vice versa. Work people like doesn't pay well, for reasons of supply and demand. The most extreme case is developing programming languages, which doesn't pay at all, because people like it so much they do it for free.
When we started Artix, I was still ambivalent about business. I wanted to keep one foot in the art world. Big, big, mistake. Going into business is like a hang-glider launch-- you'd better do it wholeheartedly, or not at all. The purpose of a company, and a startup especially, is to make money. You can't have divided loyalties.
Which is not to say that you have to do the most disgusting sort of work, like spamming, or starting a company whose only purpose is patent litigation. What I mean is, if you're starting a company that will do something cool, the aim had better be to make money and maybe be cool, not to be cool and maybe make money.
It's hard enough to make money that you can't do it by accident. Unless it's your first priority, it's unlikely to happen at all.
Hyenas
When I probe our motives with Artix, I see a third mistake: timidity. If you'd proposed at the time that we go into the e-commerce business, we'd have found the idea terrifying. Surely a field like that would be dominated by fearsome startups with five million dollars of VC money each. Whereas we felt pretty sure that we could hold our own in the slightly less competitive business of generating Web sites for art galleries.
We erred ridiculously far on the side of safety. As it turns out, VC-backed startups are not that fearsome. They're too busy trying to spend all that money to get software written. In 1995, the e-commerce business was very competitive as measured in press releases, but not as measured in software. And really it never was. The big fish like Open Market (rest their souls) were just consulting companies pretending to be product companies [5], and the offerings at our end of the market were a couple hundred lines of Perl scripts. Or could have been implemented as a couple hundred lines of Perl; in fact they were probably tens of thousands of lines of C++ or Java. Once we actually took the plunge into e-commerce, it turned out to be surprisingly easy to compete.
So why were we afraid? We felt we were good at programming, but we lacked confidence in our ability to do a mysterious, undifferentiated thing we called "business." In fact there is no such thing as "business." There's selling, promotion, figuring out what people want, deciding how much to charge, customer support, paying your bills, getting customers to pay you, getting incorporated, raising money, and so on. And the combination is not as hard as it seems, because some tasks (like raising money and getting incorporated) are an O(1) pain in the ass, whether you're big or small, and others (like selling and promotion) depend more on energy and imagination than any kind of special training.
Artix was like a hyena, content to survive on carrion because we were afraid of the lions. Except the lions turned out not to have any teeth, and the business of putting galleries online barely qualified as carrion.
A Familiar Problem
Sum up all these sources of error, and it's no wonder we had such a bad idea for a company. We did the first thing we thought of; we were ambivalent about being in business at all; and we deliberately chose an impoverished market to avoid competition.
Looking at the applications for the Summer Founders Program, I see signs of all three. But the first is by far the biggest problem. Most of the groups applying have not stopped to ask: of all the things we could do, is this the one with the best chance of making money?
If they'd already been through their Artix phase, they'd have learned to ask that. After the reception we got from art dealers, we were ready to. This time, we thought, let's make something people want.
Reading the Wall Street Journal for a week should give anyone ideas for two or three new startups. The articles are full of descriptions of problems that need to be solved. But most of the applicants don't seem to have looked far for ideas.
We expected the most common proposal to be for multiplayer games. We were not far off: this was the second most common. The most common was some combination of a blog, a calendar, a dating site, and Friendster. Maybe there is some new killer app to be discovered here, but it seems perverse to go poking around in this fog when there are valuable, unsolved problems lying about in the open for anyone to see. Why did no one propose a new scheme for micropayments? An ambitious project, perhaps, but I can't believe we've considered every alternative. And newspapers and magazines are (literally) dying for a solution.
Why did so few applicants really think about what customers want? I think the problem with many, as with people in their early twenties generally, is that they've been trained their whole lives to jump through predefined hoops. They've spent 15-20 years solving problems other people have set for them. And how much time deciding what problems would be good to solve? Two or three course projects? They're good at solving problems, but bad at choosing them.
But that, I'm convinced, is just the effect of training. Or more precisely, the effect of grading. To make grading efficient, everyone has to solve the same problem, and that means it has to be decided in advance. It would be great if schools taught students how to choose problems as well as how to solve them, but I don't know how you'd run such a class in practice.
Copper and Tin
The good news is, choosing problems is something that can be learned. I know that from experience. Hackers can learn to make things customers want. [6]
This is a controversial view. One expert on "entrepreneurship" told me that any startup had to include business people, because only they could focus on what customers wanted. I'll probably alienate this guy forever by quoting him, but I have to risk it, because his email was such a perfect example of this view:
80% of MIT spinoffs succeed provided they have at least one management person in the team at the start. The business person represents the "voice of the customer" and that's what keeps the engineers and product development on track.
This is, in my opinion, a crock. Hackers are perfectly capable of hearing the voice of the customer without a business person to amplify the signal for them. Larry Page and Sergey Brin were grad students in computer science, which presumably makes them "engineers." Do you suppose Google is only good because they had some business guy whispering in their ears what customers wanted? It seems to me the business guys who did the most for Google were the ones who obligingly flew Altavista into a hillside just as Google was getting started.
The hard part about figuring out what customers want is figuring out that you need to figure it out. But that's something you can learn quickly. It's like seeing the other interpretation of an ambiguous picture. As soon as someone tells you there's a rabbit as well as a duck, it's hard not to see it.
And compared to the sort of problems hackers are used to solving, giving customers what they want is easy. Anyone who can write an optimizing compiler can design a UI that doesn't confuse users, once they choose to focus on that problem. And once you apply that kind of brain power to petty but profitable questions, you can create wealth very rapidly.
That's the essence of a startup: having brilliant people do work that's beneath them. Big companies try to hire the right person for the job. Startups win because they don't-- because they take people so smart that they would in a big company be doing "research," and set them to work instead on problems of the most immediate and mundane sort. Think Einstein designing refrigerators. [7]
If you want to learn what people want, read Dale Carnegie's How to Win Friends and Influence People. [8] When a friend recommended this book, I couldn't believe he was serious. But he insisted it was good, so I read it, and he was right. It deals with the most difficult problem in human experience: how to see things from other people's point of view, instead of thinking only of yourself.
Most smart people don't do that very well. But adding this ability to raw brainpower is like adding tin to copper. The result is bronze, which is so much harder that it seems a different metal.
A hacker who has learned what to make, and not just how to make, is extraordinarily powerful. And not just at making money: look what a small group of volunteers has achieved with Firefox.
Doing an Artix teaches you to make something people want in the same way that not drinking anything would teach you how much you depend on water. But it would be more convenient for all involved if the Summer Founders didn't learn this on our dime-- if they could skip the Artix phase and go right on to make something customers wanted. That, I think, is going to be the real experiment this summer. How long will it take them to grasp this?
We decided we ought to have T-Shirts for the SFP, and we'd been thinking about what to print on the back. Till now we'd been planning to use
If you can read this, I should be working.
but now we've decided it's going to be
Make something people want.
Notes
[1] SFP applicants: please don't assume that not being accepted means we think your idea is bad. Because we want to keep the number of startups small this first summer, we're going to have to turn down some good proposals too.
[2] Dealers try to give each customer the impression that the stuff they're showing him is something special that only a few people have seen, when in fact it may have been sitting in their racks for years while they tried to unload it on buyer after buyer.
[3] On the other hand, he was skeptical about Viaweb too. I have a precise measure of that, because at one point in the first couple months we made a bet: if he ever made a million dollars out of Viaweb, he'd get his ear pierced. We didn't let him off, either.
[4] I wrote a program to generate all the combinations of "Web" plus a three letter word. I learned from this that most three letter words are bad: Webpig, Webdog, Webfat, Webzit, Webfug. But one of them was Webvia; I swapped them to make Viaweb.
[5] It's much easier to sell services than a product, just as it's easier to make a living playing at weddings than by selling recordings. But the margins are greater on products. So during the Bubble a lot of companies used consulting to generate revenues they could attribute to the sale of products, because it made a better story for an IPO.
[6] Trevor Blackwell presents the following recipe for a startup: "Watch people who have money to spend, see what they're wasting their time on, cook up a solution, and try selling it to them. It's surprising how small a problem can be and still provide a profitable market for a solution."
[7] You need to offer especially large rewards to get great people to do tedious work. That's why startups always pay equity rather than just salary.
[8] Buy an old copy from the 1940s or 50s instead of the current edition, which has been rewritten to suit present fashions. The original edition contained a few unPC ideas, but it's always better to read an original book, bearing in mind that it's a book from a past era, than to read a new version sanitized for your protection.
Thanks to Bill Birch, Trevor Blackwell, Jessica Livingston, and Robert Morris for reading drafts of this.

The Submarine

"Suits make a corporate comeback," says the New York Times. Why does this sound familiar? Maybe because the suit was also back in February, September 2004, June 2004, March 2004, September 2003, November 2002, April 2002, and February 2002.
Why do the media keep running stories saying suits are back? Because PR firms tell them to. One of the most surprising things I discovered during my brief business career was the existence of the PR industry, lurking like a huge, quiet submarine beneath the news. Of the stories you read in traditional media that aren't about politics, crimes, or disasters, more than half probably come from PR firms.
I know because I spent years hunting such "press hits." Our startup spent its entire marketing budget on PR: at a time when we were assembling our own computers to save money, we were paying a PR firm $16,000 a month. And they were worth it. PR is the news equivalent of search engine optimization; instead of buying ads, which readers ignore, you get yourself inserted directly into the stories. [1]
Our PR firm was one of the best in the business. In 18 months, they got press hits in over 60 different publications. And we weren't the only ones they did great things for. In 1997 I got a call from another startup founder considering hiring them to promote his company. I told him they were PR gods, worth every penny of their outrageous fees. But I remember thinking his company's name was odd. Why call an auction site "eBay?"
Symbiosis
PR is not dishonest. Not quite. In fact, the reason the best PR firms are so effective is precisely that they aren't dishonest. They give reporters genuinely valuable information. A good PR firm won't bug reporters just because the client tells them to; they've worked hard to build their credibility with reporters, and they don't want to destroy it by feeding them mere propaganda.
If anyone is dishonest, it's the reporters. The main reason PR firms exist is that reporters are lazy. Or, to put it more nicely, overworked. Really they ought to be out there digging up stories for themselves. But it's so tempting to sit in their offices and let PR firms bring the stories to them. After all, they know good PR firms won't lie to them.
A good flatterer doesn't lie, but tells his victim selective truths (what a nice color your eyes are). Good PR firms use the same strategy: they give reporters stories that are true, but whose truth favors their clients.
For example, our PR firm often pitched stories about how the Web let small merchants compete with big ones. This was perfectly true. But the reason reporters ended up writing stories about this particular truth, rather than some other one, was that small merchants were our target market, and we were paying the piper.
Different publications vary greatly in their reliance on PR firms. At the bottom of the heap are the trade press, who make most of their money from advertising and would give the magazines away for free if advertisers would let them. [2] The average trade publication is a bunch of ads, glued together by just enough articles to make it look like a magazine. They're so desperate for "content" that some will print your press releases almost verbatim, if you take the trouble to write them to read like articles.
At the other extreme are publications like the New York Times and the Wall Street Journal. Their reporters do go out and find their own stories, at least some of the time. They'll listen to PR firms, but briefly and skeptically. We managed to get press hits in almost every publication we wanted, but we never managed to crack the print edition of the Times. [3]
The weak point of the top reporters is not laziness, but vanity. You don't pitch stories to them. You have to approach them as if you were a specimen under their all-seeing microscope, and make it seem as if the story you want them to run is something they thought of themselves.
Our greatest PR coup was a two-part one. We estimated, based on some fairly informal math, that there were about 5000 stores on the Web. We got one paper to print this number, which seemed neutral enough. But once this "fact" was out there in print, we could quote it to other publications, and claim that with 1000 users we had 20% of the online store market.
This was roughly true. We really did have the biggest share of the online store market, and 5000 was our best guess at its size. But the way the story appeared in the press sounded a lot more definite.
Reporters like definitive statements. For example, many of the stories about Jeremy Jaynes's conviction say that he was one of the 10 worst spammers. This "fact" originated in Spamhaus's ROKSO list, which I think even Spamhaus would admit is a rough guess at the top spammers. The first stories about Jaynes cited this source, but now it's simply repeated as if it were part of the indictment. [4]
All you can say with certainty about Jaynes is that he was a fairly big spammer. But reporters don't want to print vague stuff like "fairly big." They want statements with punch, like "top ten." And PR firms give them what they want. Wearing suits, we're told, will make us 3.6 percent more productive.
Buzz
Where the work of PR firms really does get deliberately misleading is in the generation of "buzz." They usually feed the same story to several different publications at once. And when readers see similar stories in multiple places, they think there is some important trend afoot. Which is exactly what they're supposed to think.
When Windows 95 was launched, people waited outside stores at midnight to buy the first copies. None of them would have been there without PR firms, who generated such a buzz in the news media that it became self-reinforcing, like a nuclear chain reaction.
I doubt PR firms realize it yet, but the Web makes it possible to track them at work. If you search for the obvious phrases, you turn up several efforts over the years to place stories about the return of the suit. For example, the Reuters article that got picked up by USA Today in September 2004. "The suit is back," it begins.
Trend articles like this are almost always the work of PR firms. Once you know how to read them, it's straightforward to figure out who the client is. With trend stories, PR firms usually line up one or more "experts" to talk about the industry generally. In this case we get three: the NPD Group, the creative director of GQ, and a research director at Smith Barney. [5] When you get to the end of the experts, look for the client. And bingo, there it is: The Men's Wearhouse.
Not surprising, considering The Men's Wearhouse was at that moment running ads saying "The Suit is Back." Talk about a successful press hit-- a wire service article whose first sentence is your own ad copy.
The secret to finding other press hits from a given pitch is to realize that they all started from the same document back at the PR firm. Search for a few key phrases and the names of the clients and the experts, and you'll turn up other variants of this story.
Casual fridays are out and dress codes are in writes Diane E. Lewis in The Boston Globe. In a remarkable coincidence, Ms. Lewis's industry contacts also include the creative director of GQ.
Ripped jeans and T-shirts are out, writes Mary Kathleen Flynn in US News & World Report. And she too knows the creative director of GQ.
Men's suits are back writes Nicole Ford in Sexbuzz.Com ("the ultimate men's entertainment magazine").
Dressing down loses appeal as men suit up at the office writes Tenisha Mercer of The Detroit News.
Now that so many news articles are online, I suspect you could find a similar pattern for most trend stories placed by PR firms. I propose we call this new sport "PR diving," and I'm sure there are far more striking examples out there than this clump of five stories.
Online
After spending years chasing them, it's now second nature to me to recognize press hits for what they are. But before we hired a PR firm I had no idea where articles in the mainstream media came from. I could tell a lot of them were crap, but I didn't realize why.
Remember the exercises in critical reading you did in school, where you had to look at a piece of writing and step back and ask whether the author was telling the whole truth? If you really want to be a critical reader, it turns out you have to step back one step further, and ask not just whether the author is telling the truth, but why he's writing about this subject at all.
Online, the answer tends to be a lot simpler. Most people who publish online write what they write for the simple reason that they want to. You can't see the fingerprints of PR firms all over the articles, as you can in so many print publications-- which is one of the reasons, though they may not consciously realize it, that readers trust bloggers more than Business Week.
I was talking recently to a friend who works for a big newspaper. He thought the print media were in serious trouble, and that they were still mostly in denial about it. "They think the decline is cyclic," he said. "Actually it's structural."
In other words, the readers are leaving, and they're not coming back.
Why? I think the main reason is that the writing online is more honest. Imagine how incongruous the New York Times article about suits would sound if you read it in a blog:
The urge to look corporate-- sleek, commanding, prudent, yet with just a touch of hubris on your well-cut sleeve-- is an unexpected development in a time of business disgrace.
The problem with this article is not just that it originated in a PR firm. The whole tone is bogus. This is the tone of someone writing down to their audience.
Whatever its flaws, the writing you find online is authentic. It's not mystery meat cooked up out of scraps of pitch letters and press releases, and pressed into molds of zippy journalese. It's people writing what they think.
I didn't realize, till there was an alternative, just how artificial most of the writing in the mainstream media was. I'm not saying I used to believe what I read in Time and Newsweek. Since high school, at least, I've thought of magazines like that more as guides to what ordinary people were being told to think than as sources of information. But I didn't realize till the last few years that writing for publication didn't have to mean writing that way. I didn't realize you could write as candidly and informally as you would if you were writing to a friend.
Readers aren't the only ones who've noticed the change. The PR industry has too. A hilarious article on the site of the PR Society of America gets to the heart of the matter:
Bloggers are sensitive about becoming mouthpieces for other organizations and companies, which is the reason they began blogging in the first place.
PR people fear bloggers for the same reason readers like them. And that means there may be a struggle ahead. As this new kind of writing draws readers away from traditional media, we should be prepared for whatever PR mutates into to compensate. When I think how hard PR firms work to score press hits in the traditional media, I can't imagine they'll work any less hard to feed stories to bloggers, if they can figure out how.
Notes
[1] PR has at least one beneficial feature: it favors small companies. If PR didn't work, the only alternative would be to advertise, and only big companies can afford that.
[2] Advertisers pay less for ads in free publications, because they assume readers ignore something they get for free. This is why so many trade publications nominally have a cover price and yet give away free subscriptions with such abandon.
[3] Different sections of the Times vary so much in their standards that they're practically different papers. Whoever fed the style section reporter this story about suits coming back would have been sent packing by the regular news reporters.
[4] The most striking example I know of this type is the "fact" that the Internet worm of 1988 infected 6000 computers. I was there when it was cooked up, and this was the recipe: someone guessed that there were about 60,000 computers attached to the Internet, and that the worm might have infected ten percent of them.
Actually no one knows how many computers the worm infected, because the remedy was to reboot them, and this destroyed all traces. But people like numbers. And so this one is now replicated all over the Internet, like a little worm of its own.
[5] Not all were necessarily supplied by the PR firm. Reporters sometimes call a few additional sources on their own, like someone adding a few fresh vegetables to a can of soup.
Thanks to Ingrid Basset, Trevor Blackwell, Sarah Harlin, Jessica Livingston, Jackie McDonough, Robert Morris, and Aaron Swartz (who also found the PRSA article) for reading drafts of this.
Correction: Earlier versions used a recent Business Week article mentioning del.icio.us as an example of a press hit, but Joshua Schachter tells me it was spontaneous.

Hiring is Obsolete

(This essay is derived from a talk at the Berkeley CSUA in May 2005.)
The three big powers on the Internet now are Yahoo, Google, and Microsoft. Average age of their founders: 24. So it is pretty well established now that grad students can start successful companies. And if grad students can do it, why not undergrads?
Like everything else in technology, the cost of starting a startup has decreased dramatically. Now it's so low that it has disappeared into the noise. The main cost of starting a Web-based startup is food and rent. Which means it doesn't cost much more to start a company than to be a total slacker. You can probably start a startup on ten thousand dollars of seed funding, if you're prepared to live on ramen.
The less it costs to start a company, the less you need the permission of investors to do it. So a lot of people will be able to start companies now who never could have before.
The most interesting subset may be those in their early twenties. I'm not so excited about founders who have everything investors want except intelligence, or everything except energy. The most promising group to be liberated by the new, lower threshold are those who have everything investors want except experience.
Market Rate
I once claimed that nerds were unpopular in secondary school mainly because they had better things to do than work full-time at being popular. Some said I was just telling people what they wanted to hear. Well, I'm now about to do that in a spectacular way: I think undergraduates are undervalued.
Or more precisely, I think few realize the huge spread in the value of 20 year olds. Some, it's true, are not very capable. But others are more capable than all but a handful of 30 year olds. [1]
Till now the problem has always been that it's difficult to pick them out. Every VC in the world, if they could go back in time, would try to invest in Microsoft. But which would have then? How many would have understood that this particular 19 year old was Bill Gates?
It's hard to judge the young because (a) they change rapidly, (b) there is great variation between them, and (c) they're individually inconsistent. That last one is a big problem. When you're young, you occasionally say and do stupid things even when you're smart. So if the algorithm is to filter out people who say stupid things, as many investors and employers unconsciously do, you're going to get a lot of false positives.
Most organizations who hire people right out of college are only aware of the average value of 22 year olds, which is not that high. And so the idea for most of the twentieth century was that everyone had to begin as a trainee in some entry-level job. Organizations realized there was a lot of variation in the incoming stream, but instead of pursuing this thought they tended to suppress it, in the belief that it was good for even the most promising kids to start at the bottom, so they didn't get swelled heads.
The most productive young people will always be undervalued by large organizations, because the young have no performance to measure yet, and any error in guessing their ability will tend toward the mean.
What's an especially productive 22 year old to do? One thing you can do is go over the heads of organizations, directly to the users. Any company that hires you is, economically, acting as a proxy for the customer. The rate at which they value you (though they may not consciously realize it) is an attempt to guess your value to the user. But there's a way to appeal their judgement. If you want, you can opt to be valued directly by users, by starting your own company.
The market is a lot more discerning than any employer. And it is completely non-discriminatory. On the Internet, nobody knows you're a dog. And more to the point, nobody knows you're 22. All users care about is whether your site or software gives them what they want. They don't care if the person behind it is a high school kid.
If you're really productive, why not make employers pay market rate for you? Why go work as an ordinary employee for a big company, when you could start a startup and make them buy it to get you?
When most people hear the word "startup," they think of the famous ones that have gone public. But most startups that succeed do it by getting bought. And usually the acquirer doesn't just want the technology, but the people who created it as well.
Often big companies buy startups before they're profitable. Obviously in such cases they're not after revenues. What they want is the development team and the software they've built so far. When a startup gets bought for 2 or 3 million six months in, it's really more of a hiring bonus than an acquisition.
I think this sort of thing will happen more and more, and that it will be better for everyone. It's obviously better for the people who start the startup, because they get a big chunk of money up front. But I think it will be better for the acquirers too. The central problem in big companies, and the main reason they're so much less productive than small companies, is the difficulty of valuing each person's work. Buying larval startups solves that problem for them: the acquirer doesn't pay till the developers have proven themselves. They're protected on the downside, and they still get most of the upside.
Product Development
Buying startups also solves another problem afflicting big companies: they can't do product development. Big companies are good at extracting the value from existing products, but bad at creating new ones.
Why? It's worth studying this phenomenon in detail, because this is the raison d'etre of startups.
To start with, most big companies have some kind of turf to protect, and this tends to warp their development decisions. For example, Web-based applications are hot now, but within Microsoft there must be a lot of ambivalence about them, because the very idea of Web-based software threatens the desktop. So any Web-based application that Microsoft ends up with, will probably, like Hotmail, be something developed outside the company.
Another reason big companies are bad at developing new products is that the kind of people who do that tend not to have much power in big companies (unless they happen to be the CEO). Disruptive technologies are developed by disruptive people. And they either don't work for the big company, or have been outmaneuvered by yes-men and have comparatively little influence.
Big companies also lose because they usually only build one of each thing. When you only have one Web browser, you can't do anything really risky with it. If ten different startups design ten different Web browsers and you take the best, you'll probably get something better.
The more general version of this problem is that there are too many new ideas for companies to explore them all. There might be 500 startups right now who think they're making something Microsoft might buy. Even Microsoft probably couldn't manage 500 development projects in-house.
Big companies also don't pay people the right way. People developing a new product at a big company get paid roughly the same whether it succeeds or fails. People at a startup expect to get rich if the product succeeds, and get nothing if it fails. [2] So naturally the people at the startup work a lot harder.
The mere bigness of big companies is an obstacle. In startups, developers are often forced to talk directly to users, whether they want to or not, because there is no one else to do sales and support. It's painful doing sales, but you learn much more from trying to sell people something than reading what they said in focus groups.
And then of course, big companies are bad at product development because they're bad at everything. Everything happens slower in big companies than small ones, and product development is something that has to happen fast, because you have to go through a lot of iterations to get something good.
Trend
I think the trend of big companies buying startups will only accelerate. One of the biggest remaining obstacles is pride. Most companies, at least unconsciously, feel they ought to be able to develop stuff in house, and that buying startups is to some degree an admission of failure. And so, as people generally do with admissions of failure, they put it off for as long as possible. That makes the acquisition very expensive when it finally happens.
What companies should do is go out and discover startups when they're young, before VCs have puffed them up into something that costs hundreds of millions to acquire. Much of what VCs add, the acquirer doesn't need anyway.
Why don't acquirers try to predict the companies they're going to have to buy for hundreds of millions, and grab them early for a tenth or a twentieth of that? Because they can't predict the winners in advance? If they're only paying a twentieth as much, they only have to predict a twentieth as well. Surely they can manage that.
I think companies that acquire technology will gradually learn to go after earlier stage startups. They won't necessarily buy them outright. The solution may be some hybrid of investment and acquisition: for example, to buy a chunk of the company and get an option to buy the rest later.
When companies buy startups, they're effectively fusing recruiting and product development. And I think that's more efficient than doing the two separately, because you always get people who are really committed to what they're working on.
Plus this method yields teams of developers who already work well together. Any conflicts between them have been ironed out under the very hot iron of running a startup. By the time the acquirer gets them, they're finishing one another's sentences. That's valuable in software, because so many bugs occur at the boundaries between different people's code.
Investors
The increasing cheapness of starting a company doesn't just give hackers more power relative to employers. It also gives them more power relative to investors.
The conventional wisdom among VCs is that hackers shouldn't be allowed to run their own companies. The founders are supposed to accept MBAs as their bosses, and themselves take on some title like Chief Technical Officer. There may be cases where this is a good idea. But I think founders will increasingly be able to push back in the matter of control, because they just don't need the investors' money as much as they used to.
Startups are a comparatively new phenomenon. Fairchild Semiconductor is considered the first VC-backed startup, and they were founded in 1959, less than fifty years ago. Measured on the time scale of social change, what we have now is pre-beta. So we shouldn't assume the way startups work now is the way they have to work.
Fairchild needed a lot of money to get started. They had to build actual factories. What does the first round of venture funding for a Web-based startup get spent on today? More money can't get software written faster; it isn't needed for facilities, because those can now be quite cheap; all money can really buy you is sales and marketing. A sales force is worth something, I'll admit. But marketing is increasingly irrelevant. On the Internet, anything genuinely good will spread by word of mouth.
Investors' power comes from money. When startups need less money, investors have less power over them. So future founders may not have to accept new CEOs if they don't want them. The VCs will have to be dragged kicking and screaming down this road, but like many things people have to be dragged kicking and screaming toward, it may actually be good for them.
Google is a sign of the way things are going. As a condition of funding, their investors insisted they hire someone old and experienced as CEO. But from what I've heard the founders didn't just give in and take whoever the VCs wanted. They delayed for an entire year, and when they did finally take a CEO, they chose a guy with a PhD in computer science.
It sounds to me as if the founders are still the most powerful people in the company, and judging by Google's performance, their youth and inexperience doesn't seem to have hurt them. Indeed, I suspect Google has done better than they would have if the founders had given the VCs what they wanted, when they wanted it, and let some MBA take over as soon as they got their first round of funding.
I'm not claiming the business guys installed by VCs have no value. Certainly they have. But they don't need to become the founders' bosses, which is what that title CEO means. I predict that in the future the executives installed by VCs will increasingly be COOs rather than CEOs. The founders will run engineering directly, and the rest of the company through the COO.
The Open Cage
With both employers and investors, the balance of power is slowly shifting towards the young. And yet they seem the last to realize it. Only the most ambitious undergrads even consider starting their own company when they graduate. Most just want to get a job.
Maybe this is as it should be. Maybe if the idea of starting a startup is intimidating, you filter out the uncommitted. But I suspect the filter is set a little too high. I think there are people who could, if they tried, start successful startups, and who instead let themselves be swept into the intake ducts of big companies.
Have you ever noticed that when animals are let out of cages, they don't always realize at first that the door's open? Often they have to be poked with a stick to get them out. Something similar happened with blogs. People could have been publishing online in 1995, and yet blogging has only really taken off in the last couple years. In 1995 we thought only professional writers were entitled to publish their ideas, and that anyone else who did was a crank. Now publishing online is becoming so popular that everyone wants to do it, even print journalists. But blogging has not taken off recently because of any technical innovation; it just took eight years for everyone to realize the cage was open.
I think most undergrads don't realize yet that the economic cage is open. A lot have been told by their parents that the route to success is to get a good job. This was true when their parents were in college, but it's less true now. The route to success is to build something valuable, and you don't have to be working for an existing company to do that. Indeed, you can often do it better if you're not.
When I talk to undergrads, what surprises me most about them is how conservative they are. Not politically, of course. I mean they don't seem to want to take risks. This is a mistake, because the younger you are, the more risk you can take.
Risk
Risk and reward are always proportionate. For example, stocks are riskier than bonds, and over time always have greater returns. So why does anyone invest in bonds? The catch is that phrase "over time." Stocks will generate greater returns over thirty years, but they might lose value from year to year. So what you should invest in depends on how soon you need the money. If you're young, you should take the riskiest investments you can find.
All this talk about investing may seem very theoretical. Most undergrads probably have more debts than assets. They may feel they have nothing to invest. But that's not true: they have their time to invest, and the same rule about risk applies there. Your early twenties are exactly the time to take insane career risks.
The reason risk is always proportionate to reward is that market forces make it so. People will pay extra for stability. So if you choose stability-- by buying bonds, or by going to work for a big company-- it's going to cost you.
Riskier career moves pay better on average, because there is less demand for them. Extreme choices like starting a startup are so frightening that most people won't even try. So you don't end up having as much competition as you might expect, considering the prizes at stake.
The math is brutal. While perhaps 9 out of 10 startups fail, the one that succeeds will pay the founders more than 10 times what they would have made in an ordinary job. [3] That's the sense in which startups pay better "on average."
Remember that. If you start a startup, you'll probably fail. Most startups fail. It's the nature of the business. But it's not necessarily a mistake to try something that has a 90% chance of failing, if you can afford the risk. Failing at 40, when you have a family to support, could be serious. But if you fail at 22, so what? If you try to start a startup right out of college and it tanks, you'll end up at 23 broke and a lot smarter. Which, if you think about it, is roughly what you hope to get from a graduate program.
Even if your startup does tank, you won't harm your prospects with employers. To make sure I asked some friends who work for big companies. I asked managers at Yahoo, Google, Amazon, Cisco and Microsoft how they'd feel about two candidates, both 24, with equal ability, one who'd tried to start a startup that tanked, and another who'd spent the two years since college working as a developer at a big company. Every one responded that they'd prefer the guy who'd tried to start his own company. Zod Nazem, who's in charge of engineering at Yahoo, said:
I actually put more value on the guy with the failed startup. And you can quote me!
So there you have it. Want to get hired by Yahoo? Start your own company.
The Man is the Customer
If even big employers think highly of young hackers who start companies, why don't more do it? Why are undergrads so conservative? I think it's because they've spent so much time in institutions.
The first twenty years of everyone's life consists of being piped from one institution to another. You probably didn't have much choice about the secondary schools you went to. And after high school it was probably understood that you were supposed to go to college. You may have had a few different colleges to choose between, but they were probably pretty similar. So by this point you've been riding on a subway line for twenty years, and the next stop seems to be a job.
Actually college is where the line ends. Superficially, going to work for a company may feel like just the next in a series of institutions, but underneath, everything is different. The end of school is the fulcrum of your life, the point where you go from net consumer to net producer.
The other big change is that now, you're steering. You can go anywhere you want. So it may be worth standing back and understanding what's going on, instead of just doing the default thing.
All through college, and probably long before that, most undergrads have been thinking about what employers want. But what really matters is what customers want, because they're the ones who give employers the money to pay you.
So instead of thinking about what employers want, you're probably better off thinking directly about what users want. To the extent there's any difference between the two, you can even use that to your advantage if you start a company of your own. For example, big companies like docile conformists. But this is merely an artifact of their bigness, not something customers need.
Grad School
I didn't consciously realize all this when I was graduating from college-- partly because I went straight to grad school. Grad school can be a pretty good deal, even if you think of one day starting a startup. You can start one when you're done, or even pull the ripcord part way through, like the founders of Yahoo and Google.
Grad school makes a good launch pad for startups, because you're collected together with a lot of smart people, and you have bigger chunks of time to work on your own projects than an undergrad or corporate employee would. As long as you have a fairly tolerant advisor, you can take your time developing an idea before turning it into a company. David Filo and Jerry Yang started the Yahoo directory in February 1994 and were getting a million hits a day by the fall, but they didn't actually drop out of grad school and start a company till March 1995.
You could also try the startup first, and if it doesn't work, then go to grad school. When startups tank they usually do it fairly quickly. Within a year you'll know if you're wasting your time.
If it fails, that is. If it succeeds, you may have to delay grad school a little longer. But you'll have a much more enjoyable life once there than you would on a regular grad student stipend.
Experience
Another reason people in their early twenties don't start startups is that they feel they don't have enough experience. Most investors feel the same.
I remember hearing a lot of that word "experience" when I was in college. What do people really mean by it? Obviously it's not the experience itself that's valuable, but something it changes in your brain. What's different about your brain after you have "experience," and can you make that change happen faster?
I now have some data on this, and I can tell you what tends to be missing when people lack experience. I've said that every startup needs three things: to start with good people, to make something users want, and not to spend too much money. It's the middle one you get wrong when you're inexperienced. There are plenty of undergrads with enough technical skill to write good software, and undergrads are not especially prone to waste money. If they get something wrong, it's usually not realizing they have to make something people want.
This is not exclusively a failing of the young. It's common for startup founders of all ages to build things no one wants.
Fortunately, this flaw should be easy to fix. If undergrads were all bad programmers, the problem would be a lot harder. It can take years to learn how to program. But I don't think it takes years to learn how to make things people want. My hypothesis is that all you have to do is smack hackers on the side of the head and tell them: Wake up. Don't sit here making up a priori theories about what users need. Go find some users and see what they need.
Most successful startups not only do something very specific, but solve a problem people already know they have.
The big change that "experience" causes in your brain is learning that you need to solve people's problems. Once you grasp that, you advance quickly to the next step, which is figuring out what those problems are. And that takes some effort, because the way software actually gets used, especially by the people who pay the most for it, is not at all what you might expect. For example, the stated purpose of Powerpoint is to present ideas. Its real role is to overcome people's fear of public speaking. It allows you to give an impressive-looking talk about nothing, and it causes the audience to sit in a dark room looking at slides, instead of a bright one looking at you.
This kind of thing is out there for anyone to see. The key is to know to look for it-- to realize that having an idea for a startup is not like having an idea for a class project. The goal in a startup is not to write a cool piece of software. It's to make something people want. And to do that you have to look at users-- forget about hacking, and just look at users. This can be quite a mental adjustment, because little if any of the software you write in school even has users.
A few steps before a Rubik's Cube is solved, it still looks like a mess. I think there are a lot of undergrads whose brains are in a similar position: they're only a few steps away from being able to start successful startups, if they wanted to, but they don't realize it. They have more than enough technical skill. They just haven't realized yet that the way to create wealth is to make what users want, and that employers are just proxies for users in which risk is pooled.
If you're young and smart, you don't need either of those. You don't need someone else to tell you what users want, because you can figure it out yourself. And you don't want to pool risk, because the younger you are, the more risk you should take.
A Public Service Message
I'd like to conclude with a joint message from me and your parents. Don't drop out of college to start a startup. There's no rush. There will be plenty of time to start companies after you graduate. In fact, it may be just as well to go work for an existing company for a couple years after you graduate, to learn how companies work.
And yet, when I think about it, I can't imagine telling Bill Gates at 19 that he should wait till he graduated to start a company. He'd have told me to get lost. And could I have honestly claimed that he was harming his future-- that he was learning less by working at ground zero of the microcomputer revolution than he would have if he'd been taking classes back at Harvard? No, probably not.
And yes, while it is probably true that you'll learn some valuable things by going to work for an existing company for a couple years before starting your own, you'd learn a thing or two running your own company during that time too.
The advice about going to work for someone else would get an even colder reception from the 19 year old Bill Gates. So I'm supposed to finish college, then go work for another company for two years, and then I can start my own? I have to wait till I'm 23? That's four years. That's more than twenty percent of my life so far. Plus in four years it will be way too late to make money writing a Basic interpreter for the Altair.
And he'd be right. The Apple II was launched just two years later. In fact, if Bill had finished college and gone to work for another company as we're suggesting, he might well have gone to work for Apple. And while that would probably have been better for all of us, it wouldn't have been better for him.
So while I stand by our responsible advice to finish college and then go work for a while before starting a startup, I have to admit it's one of those things the old tell the young, but don't expect them to listen to. We say this sort of thing mainly so we can claim we warned you. So don't say I didn't warn you.
Notes
[1] The average B-17 pilot in World War II was in his early twenties. (Thanks to Tad Marko for pointing this out.)
[2] If a company tried to pay employees this way, they'd be called unfair. And yet when they buy some startups and not others, no one thinks of calling that unfair.
[3] The 1/10 success rate for startups is a bit of an urban legend. It's suspiciously neat. My guess is the odds are slightly worse.
Thanks to Jessica Livingston for reading drafts of this, to the friends I promised anonymity to for their opinions about hiring, and to Karen Nguyen and the Berkeley CSUA for organizing this talk.

What Business Can Learn from Open Source

(This essay is derived from a talk at Oscon 2005.)
Lately companies have been paying more attention to open source. Ten years ago there seemed a real danger Microsoft would extend its monopoly to servers. It seems safe to say now that open source has prevented that. A recent survey found 52% of companies are replacing Windows servers with Linux servers. [1]
More significant, I think, is which 52% they are. At this point, anyone proposing to run Windows on servers should be prepared to explain what they know about servers that Google, Yahoo, and Amazon don't.
But the biggest thing business has to learn from open source is not about Linux or Firefox, but about the forces that produced them. Ultimately these will affect a lot more than what software you use.
We may be able to get a fix on these underlying forces by triangulating from open source and blogging. As you've probably noticed, they have a lot in common.
Like open source, blogging is something people do themselves, for free, because they enjoy it. Like open source hackers, bloggers compete with people working for money, and often win. The method of ensuring quality is also the same: Darwinian. Companies ensure quality through rules to prevent employees from screwing up. But you don't need that when the audience can communicate with one another. People just produce whatever they want; the good stuff spreads, and the bad gets ignored. And in both cases, feedback from the audience improves the best work.
Another thing blogging and open source have in common is the Web. People have always been willing to do great work for free, but before the Web it was harder to reach an audience or collaborate on projects.
Amateurs
I think the most important of the new principles business has to learn is that people work a lot harder on stuff they like. Well, that's news to no one. So how can I claim business has to learn it? When I say business doesn't know this, I mean the structure of business doesn't reflect it.
Business still reflects an older model, exemplified by the French word for working: travailler. It has an English cousin, travail, and what it means is torture. [2]
This turns out not to be the last word on work, however. As societies get richer, they learn something about work that's a lot like what they learn about diet. We know now that the healthiest diet is the one our peasant ancestors were forced to eat because they were poor. Like rich food, idleness only seems desirable when you don't get enough of it. I think we were designed to work, just as we were designed to eat a certain amount of fiber, and we feel bad if we don't.
There's a name for people who work for the love of it: amateurs. The word now has such bad connotations that we forget its etymology, though it's staring us in the face. "Amateur" was originally rather a complimentary word. But the thing to be in the twentieth century was professional, which amateurs, by definition, are not.
That's why the business world was so surprised by one lesson from open source: that people working for love often surpass those working for money. Users don't switch from Explorer to Firefox because they want to hack the source. They switch because it's a better browser.
It's not that Microsoft isn't trying. They know controlling the browser is one of the keys to retaining their monopoly. The problem is the same they face in operating systems: they can't pay people enough to build something better than a group of inspired hackers will build for free.
I suspect professionalism was always overrated-- not just in the literal sense of working for money, but also connotations like formality and detachment. Inconceivable as it would have seemed in, say, 1970, I think professionalism was largely a fashion, driven by conditions that happened to exist in the twentieth century.
One of the most powerful of those was the existence of "channels." Revealingly, the same term was used for both products and information: there were distribution channels, and TV and radio channels.
It was the narrowness of such channels that made professionals seem so superior to amateurs. There were only a few jobs as professional journalists, for example, so competition ensured the average journalist was fairly good. Whereas anyone can express opinions about current events in a bar. And so the average person expressing his opinions in a bar sounds like an idiot compared to a journalist writing about the subject.
On the Web, the barrier for publishing your ideas is even lower. You don't have to buy a drink, and they even let kids in. Millions of people are publishing online, and the average level of what they're writing, as you might expect, is not very good. This has led some in the media to conclude that blogs don't present much of a threat-- that blogs are just a fad.
Actually, the fad is the word "blog," at least the way the print media now use it. What they mean by "blogger" is not someone who publishes in a weblog format, but anyone who publishes online. That's going to become a problem as the Web becomes the default medium for publication. So I'd like to suggest an alternative word for someone who publishes online. How about "writer?"
Those in the print media who dismiss the writing online because of its low average quality are missing an important point: no one reads the average blog. In the old world of channels, it meant something to talk about average quality, because that's what you were getting whether you liked it or not. But now you can read any writer you want. So the average quality of writing online isn't what the print media are competing against. They're competing against the best writing online. And, like Microsoft, they're losing.
I know that from my own experience as a reader. Though most print publications are online, I probably read two or three articles on individual people's sites for every one I read on the site of a newspaper or magazine.
And when I read, say, New York Times stories, I never reach them through the Times front page. Most I find through aggregators like Google News or Slashdot or Delicious. Aggregators show how much better you can do than the channel. The New York Times front page is a list of articles written by people who work for the New York Times. Delicious is a list of articles that are interesting. And it's only now that you can see the two side by side that you notice how little overlap there is.
Most articles in the print media are boring. For example, the president notices that a majority of voters now think invading Iraq was a mistake, so he makes an address to the nation to drum up support. Where is the man bites dog in that? I didn't hear the speech, but I could probably tell you exactly what he said. A speech like that is, in the most literal sense, not news: there is nothing new in it. [3]
Nor is there anything new, except the names and places, in most "news" about things going wrong. A child is abducted; there's a tornado; a ferry sinks; someone gets bitten by a shark; a small plane crashes. And what do you learn about the world from these stories? Absolutely nothing. They're outlying data points; what makes them gripping also makes them irrelevant.
As in software, when professionals produce such crap, it's not surprising if amateurs can do better. Live by the channel, die by the channel: if you depend on an oligopoly, you sink into bad habits that are hard to overcome when you suddenly get competition. [4]
Workplaces
Another thing blogs and open source software have in common is that they're often made by people working at home. That may not seem surprising. But it should be. It's the architectural equivalent of a home-made aircraft shooting down an F-18. Companies spend millions to build office buildings for a single purpose: to be a place to work. And yet people working in their own homes, which aren't even designed to be workplaces, end up being more productive.
This proves something a lot of us have suspected. The average office is a miserable place to get work done. And a lot of what makes offices bad are the very qualities we associate with professionalism. The sterility of offices is supposed to suggest efficiency. But suggesting efficiency is a different thing from actually being efficient.
The atmosphere of the average workplace is to productivity what flames painted on the side of a car are to speed. And it's not just the way offices look that's bleak. The way people act is just as bad.
Things are different in a startup. Often as not a startup begins in an apartment. Instead of matching beige cubicles they have an assortment of furniture they bought used. They work odd hours, wearing the most casual of clothing. They look at whatever they want online without worrying whether it's "work safe." The cheery, bland language of the office is replaced by wicked humor. And you know what? The company at this stage is probably the most productive it's ever going to be.
Maybe it's not a coincidence. Maybe some aspects of professionalism are actually a net lose.
To me the most demoralizing aspect of the traditional office is that you're supposed to be there at certain times. There are usually a few people in a company who really have to, but the reason most employees work fixed hours is that the company can't measure their productivity.
The basic idea behind office hours is that if you can't make people work, you can at least prevent them from having fun. If employees have to be in the building a certain number of hours a day, and are forbidden to do non-work things while there, then they must be working. In theory. In practice they spend a lot of their time in a no-man's land, where they're neither working nor having fun.
If you could measure how much work people did, many companies wouldn't need any fixed workday. You could just say: this is what you have to do. Do it whenever you like, wherever you like. If your work requires you to talk to other people in the company, then you may need to be here a certain amount. Otherwise we don't care.
That may seem utopian, but it's what we told people who came to work for our company. There were no fixed office hours. I never showed up before 11 in the morning. But we weren't saying this to be benevolent. We were saying: if you work here we expect you to get a lot done. Don't try to fool us just by being here a lot.
The problem with the facetime model is not just that it's demoralizing, but that the people pretending to work interrupt the ones actually working. I'm convinced the facetime model is the main reason large organizations have so many meetings. Per capita, large organizations accomplish very little. And yet all those people have to be on site at least eight hours a day. When so much time goes in one end and so little achievement comes out the other, something has to give. And meetings are the main mechanism for taking up the slack.
For one year I worked at a regular nine to five job, and I remember well the strange, cozy feeling that comes over one during meetings. I was very aware, because of the novelty, that I was being paid for programming. It seemed just amazing, as if there was a machine on my desk that spat out a dollar bill every two minutes no matter what I did. Even while I was in the bathroom! But because the imaginary machine was always running, I felt I always ought to be working. And so meetings felt wonderfully relaxing. They counted as work, just like programming, but they were so much easier. All you had to do was sit and look attentive.
Meetings are like an opiate with a network effect. So is email, on a smaller scale. And in addition to the direct cost in time, there's the cost in fragmentation-- breaking people's day up into bits too small to be useful.
You can see how dependent you've become on something by removing it suddenly. So for big companies I propose the following experiment. Set aside one day where meetings are forbidden-- where everyone has to sit at their desk all day and work without interruption on things they can do without talking to anyone else. Some amount of communication is necessary in most jobs, but I'm sure many employees could find eight hours worth of stuff they could do by themselves. You could call it "Work Day."
The other problem with pretend work is that it often looks better than real work. When I'm writing or hacking I spend as much time just thinking as I do actually typing. Half the time I'm sitting drinking a cup of tea, or walking around the neighborhood. This is a critical phase-- this is where ideas come from-- and yet I'd feel guilty doing this in most offices, with everyone else looking busy.
It's hard to see how bad some practice is till you have something to compare it to. And that's one reason open source, and even blogging in some cases, are so important. They show us what real work looks like.
We're funding eight new startups at the moment. A friend asked what they were doing for office space, and seemed surprised when I said we expected them to work out of whatever apartments they found to live in. But we didn't propose that to save money. We did it because we want their software to be good. Working in crappy informal spaces is one of the things startups do right without realizing it. As soon as you get into an office, work and life start to drift apart.
That is one of the key tenets of professionalism. Work and life are supposed to be separate. But that part, I'm convinced, is a mistake.
Bottom-Up
The third big lesson we can learn from open source and blogging is that ideas can bubble up from the bottom, instead of flowing down from the top. Open source and blogging both work bottom-up: people make what they want, and the best stuff prevails.
Does this sound familiar? It's the principle of a market economy. Ironically, though open source and blogs are done for free, those worlds resemble market economies, while most companies, for all their talk about the value of free markets, are run internally like communist states.
There are two forces that together steer design: ideas about what to do next, and the enforcement of quality. In the channel era, both flowed down from the top. For example, newspaper editors assigned stories to reporters, then edited what they wrote.
Open source and blogging show us things don't have to work that way. Ideas and even the enforcement of quality can flow bottom-up. And in both cases the results are not merely acceptable, but better. For example, open source software is more reliable precisely because it's open source; anyone can find mistakes.
The same happens with writing. As we got close to publication, I found I was very worried about the essays in Hackers & Painters that hadn't been online. Once an essay has had a couple thousand page views I feel reasonably confident about it. But these had had literally orders of magnitude less scrutiny. It felt like releasing software without testing it.
That's what all publishing used to be like. If you got ten people to read a manuscript, you were lucky. But I'd become so used to publishing online that the old method now seemed alarmingly unreliable, like navigating by dead reckoning once you'd gotten used to a GPS.
The other thing I like about publishing online is that you can write what you want and publish when you want. Earlier this year I wrote something that seemed suitable for a magazine, so I sent it to an editor I know. As I was waiting to hear back, I found to my surprise that I was hoping they'd reject it. Then I could put it online right away. If they accepted it, it wouldn't be read by anyone for months, and in the meantime I'd have to fight word-by-word to save it from being mangled by some twenty five year old copy editor. [5]
Many employees would like to build great things for the companies they work for, but more often than not management won't let them. How many of us have heard stories of employees going to management and saying, please let us build this thing to make money for you-- and the company saying no? The most famous example is probably Steve Wozniak, who originally wanted to build microcomputers for his then-employer, HP. And they turned him down. On the blunderometer, this episode ranks with IBM accepting a non-exclusive license for DOS. But I think this happens all the time. We just don't hear about it usually, because to prove yourself right you have to quit and start your own company, like Wozniak did.
Startups
So these, I think, are the three big lessons open source and blogging have to teach business: (1) that people work harder on stuff they like, (2) that the standard office environment is very unproductive, and (3) that bottom-up often works better than top-down.
I can imagine managers at this point saying: what is this guy talking about? What good does it do me to know that my programmers would be more productive working at home on their own projects? I need their asses in here working on version 3.2 of our software, or we're never going to make the release date.
And it's true, the benefit that specific manager could derive from the forces I've described is near zero. When I say business can learn from open source, I don't mean any specific business can. I mean business can learn about new conditions the same way a gene pool does. I'm not claiming companies can get smarter, just that dumb ones will die.
So what will business look like when it has assimilated the lessons of open source and blogging? I think the big obstacle preventing us from seeing the future of business is the assumption that people working for you have to be employees. But think about what's going on underneath: the company has some money, and they pay it to the employee in the hope that he'll make something worth more than they paid him. Well, there are other ways to arrange that relationship. Instead of paying the guy money as a salary, why not give it to him as investment? Then instead of coming to your office to work on your projects, he can work wherever he wants on projects of his own.
Because few of us know any alternative, we have no idea how much better we could do than the traditional employer-employee relationship. Such customs evolve with glacial slowness. Our employer-employee relationship still retains a big chunk of master-servant DNA. [6]
I dislike being on either end of it. I'll work my ass off for a customer, but I resent being told what to do by a boss. And being a boss is also horribly frustrating; half the time it's easier just to do stuff yourself than to get someone else to do it for you. I'd rather do almost anything than give or receive a performance review.
On top of its unpromising origins, employment has accumulated a lot of cruft over the years. The list of what you can't ask in job interviews is now so long that for convenience I assume it's infinite. Within the office you now have to walk on eggshells lest anyone say or do something that makes the company prey to a lawsuit. And God help you if you fire anyone.
Nothing shows more clearly that employment is not an ordinary economic relationship than companies being sued for firing people. In any purely economic relationship you're free to do what you want. If you want to stop buying steel pipe from one supplier and start buying it from another, you don't have to explain why. No one can accuse you of unjustly switching pipe suppliers. Justice implies some kind of paternal obligation that isn't there in transactions between equals.
Most of the legal restrictions on employers are intended to protect employees. But you can't have action without an equal and opposite reaction. You can't expect employers to have some kind of paternal responsibility toward employees without putting employees in the position of children. And that seems a bad road to go down.
Next time you're in a moderately large city, drop by the main post office and watch the body language of the people working there. They have the same sullen resentment as children made to do something they don't want to. Their union has exacted pay increases and work restrictions that would have been the envy of previous generations of postal workers, and yet they don't seem any happier for it. It's demoralizing to be on the receiving end of a paternalistic relationship, no matter how cozy the terms. Just ask any teenager.
I see the disadvantages of the employer-employee relationship because I've been on both sides of a better one: the investor-founder relationship. I wouldn't claim it's painless. When I was running a startup, the thought of our investors used to keep me up at night. And now that I'm an investor, the thought of our startups keeps me up at night. All the pain of whatever problem you're trying to solve is still there. But the pain hurts less when it isn't mixed with resentment.
I had the misfortune to participate in what amounted to a controlled experiment to prove that. After Yahoo bought our startup I went to work for them. I was doing exactly the same work, except with bosses. And to my horror I started acting like a child. The situation pushed buttons I'd forgotten I had.
The big advantage of investment over employment, as the examples of open source and blogging suggest, is that people working on projects of their own are enormously more productive. And a startup is a project of one's own in two senses, both of them important: it's creatively one's own, and also economically ones's own.
Google is a rare example of a big company in tune with the forces I've described. They've tried hard to make their offices less sterile than the usual cube farm. They give employees who do great work large grants of stock to simulate the rewards of a startup. They even let hackers spend 20% of their time on their own projects.
Why not let people spend 100% of their time on their own projects, and instead of trying to approximate the value of what they create, give them the actual market value? Impossible? That is in fact what venture capitalists do.
So am I claiming that no one is going to be an employee anymore-- that everyone should go and start a startup? Of course not. But more people could do it than do it now. At the moment, even the smartest students leave school thinking they have to get a job. Actually what they need to do is make something valuable. A job is one way to do that, but the more ambitious ones will ordinarily be better off taking money from an investor than an employer.
Hackers tend to think business is for MBAs. But business administration is not what you're doing in a startup. What you're doing is business creation. And the first phase of that is mostly product creation-- that is, hacking. That's the hard part. It's a lot harder to create something people love than to take something people love and figure out how to make money from it.
Another thing that keeps people away from starting startups is the risk. Someone with kids and a mortgage should think twice before doing it. But most young hackers have neither.
And as the example of open source and blogging suggests, you'll enjoy it more, even if you fail. You'll be working on your own thing, instead of going to some office and doing what you're told. There may be more pain in your own company, but it won't hurt as much.
That may be the greatest effect, in the long run, of the forces underlying open source and blogging: finally ditching the old paternalistic employer-employee relationship, and replacing it with a purely economic one, between equals.
Notes
[1] Survey by Forrester Research reported in the cover story of Business Week, 31 Jan 2005. Apparently someone believed you have to replace the actual server in order to switch the operating system.
[2] It derives from the late Latin trepalium, a torture device so called because it consisted of three stakes. I don't know how the stakes were used. "Travel" has the same root.
[3] It would be much bigger news, in that sense, if the president faced unscripted questions by giving a press conference.
[4] One measure of the incompetence of newspapers is that so many still make you register to read stories. I have yet to find a blog that tried that.
[5] They accepted the article, but I took so long to send them the final version that by the time I did the section of the magazine they'd accepted it for had disappeared in a reorganization.
[6] The word "boss" is derived from the Dutch baas, meaning "master."
Thanks to Sarah Harlin, Jessica Livingston, and Robert Morris for reading drafts of this.

After the Ladder

Thirty years ago, one was supposed to work one's way up the corporate ladder. That's less the rule now. Our generation wants to get paid up front. Instead of developing a product for some big company in the expectation of getting job security in return, we develop the product ourselves, in a startup, and sell it to the big company. At the very least we want options.
Among other things, this shift has created the appearance of a rapid increase in economic inequality. But really the two cases are not as different as they look in economic statistics.
Economic statistics are misleading because they ignore the value of safe jobs. An easy job from which one can't be fired is worth money; exchanging the two is one of the commonest forms of corruption. A sinecure is, in effect, an annuity. Except sinecures don't appear in economic statistics. If they did, it would be clear that in practice socialist countries have nontrivial disparities of wealth, because they usually have a class of powerful bureaucrats who are paid mostly by seniority and can never be fired.
While not a sinecure, a position on the corporate ladder was genuinely valuable, because big companies tried not to fire people, and promoted from within based largely on seniority. A position on the corporate ladder had a value analogous to the "goodwill" that is a very real element in the valuation of companies. It meant one could expect future high paying jobs.
One of main causes of the decay of the corporate ladder is the trend for takeovers that began in the 1980s. Why waste your time climbing a ladder that might disappear before you reach the top?
And, by no coincidence, the corporate ladder was one of the reasons the early corporate raiders were so successful. It's not only economic statistics that ignore the value of safe jobs. Corporate balance sheets do too. One reason it was profitable to carve up 1980s companies and sell them for parts was that they hadn't formally acknowledged their implicit debt to employees who had done good work and expected to be rewarded with high-paying executive jobs when their time came.
In the movie Wall Street, Gordon Gekko ridicules a company overloaded with vice presidents. But the company may not be as corrupt as it seems; those VPs' cushy jobs were probably payment for work done earlier.
I like the new model better. For one thing, it seems a bad plan to treat jobs as rewards. Plenty of good engineers got made into bad managers that way. And the old system meant people had to deal with a lot more corporate politics, in order to protect the work they'd invested in a position on the ladder.
The big disadvantage of the new system is that it involves more risk. If you develop ideas in a startup instead of within a big company, any number of random factors could sink you before you can finish. But maybe the older generation would laugh at me for saying that the way we do things is riskier. After all, projects within big companies were always getting cancelled as a result of arbitrary decisions from higher up. My father's entire industry (breeder reactors) disappeared that way.
For better or worse, the idea of the corporate ladder is probably gone for good. The new model seems more liquid, and more efficient. But it is less of a change, financially, than one might think. Our fathers weren't that stupid.

Inequality and Risk

(This essay is derived from a talk at Defcon 2005.)
Suppose you wanted to get rid of economic inequality. There are two ways to do it: give money to the poor, or take it away from the rich. But they amount to the same thing, because if you want to give money to the poor, you have to get it from somewhere. You can't get it from the poor, or they just end up where they started. You have to get it from the rich.
There is of course a way to make the poor richer without simply shifting money from the rich. You could help the poor become more productive-- for example, by improving access to education. Instead of taking money from engineers and giving it to checkout clerks, you could enable people who would have become checkout clerks to become engineers.
This is an excellent strategy for making the poor richer. But the evidence of the last 200 years shows that it doesn't reduce economic inequality, because it makes the rich richer too. If there are more engineers, then there are more opportunities to hire them and to sell them things. Henry Ford couldn't have made a fortune building cars in a society in which most people were still subsistence farmers; he would have had neither workers nor customers.
If you want to reduce economic inequality instead of just improving the overall standard of living, it's not enough just to raise up the poor. What if one of your newly minted engineers gets ambitious and goes on to become another Bill Gates? Economic inequality will be as bad as ever. If you actually want to compress the gap between rich and poor, you have to push down on the top as well as pushing up on the bottom.
How do you push down on the top? You could try to decrease the productivity of the people who make the most money: make the best surgeons operate with their left hands, force popular actors to overeat, and so on. But this approach is hard to implement. The only practical solution is to let people do the best work they can, and then (either by taxation or by limiting what they can charge) to confiscate whatever you deem to be surplus.
So let's be clear what reducing economic inequality means. It is identical with taking money from the rich.
When you transform a mathematical expression into another form, you often notice new things. So it is in this case. Taking money from the rich turns out to have consequences one might not foresee when one phrases the same idea in terms of "reducing inequality."
The problem is, risk and reward have to be proportionate. A bet with only a 10% chance of winning has to pay more than one with a 50% chance of winning, or no one will take it. So if you lop off the top of the possible rewards, you thereby decrease people's willingness to take risks.
Transposing into our original expression, we get: decreasing economic inequality means decreasing the risk people are willing to take.
There are whole classes of risks that are no longer worth taking if the maximum return is decreased. One reason high tax rates are disastrous is that this class of risks includes starting new companies.
Investors
Startups are intrinsically risky. A startup is like a small boat in the open sea. One big wave and you're sunk. A competing product, a downturn in the economy, a delay in getting funding or regulatory approval, a patent suit, changing technical standards, the departure of a key employee, the loss of a big account---any one of these can destroy you overnight. It seems only about 1 in 10 startups succeeds. [1]
Our startup paid its first round of outside investors 36x. Which meant, with current US tax rates, that it made sense to invest in us if we had better than a 1 in 24 chance of succeeding. That sounds about right. That's probably roughly how we looked when we were a couple of nerds with no business experience operating out of an apartment.
If that kind of risk doesn't pay, venture investing, as we know it, doesn't happen.
That might be ok if there were other sources of capital for new companies. Why not just have the government, or some large almost-government organization like Fannie Mae, do the venture investing instead of private funds?
I'll tell you why that wouldn't work. Because then you're asking government or almost-government employees to do the one thing they are least able to do: take risks.
As anyone who has worked for the government knows, the important thing is not to make the right choices, but to make choices that can be justified later if they fail. If there is a safe option, that's the one a bureaucrat will choose. But that is exactly the wrong way to do venture investing. The nature of the business means that you want to make terribly risky choices, if the upside looks good enough.
VCs are currently paid in a way that makes them focus on the upside: they get a percentage of the fund's gains. And that helps overcome their understandable fear of investing in a company run by nerds who look like (and perhaps are) college students.
If VCs weren't allowed to get rich, they'd behave like bureaucrats. Without hope of gain, they'd have only fear of loss. And so they'd make the wrong choices. They'd turn down the nerds in favor of the smooth-talking MBA in a suit, because that investment would be easier to justify later if it failed.
Founders
But even if you could somehow redesign venture funding to work without allowing VCs to become rich, there's another kind of investor you simply cannot replace: the startups' founders and early employees.
What they invest is their time and ideas. But these are equivalent to money; the proof is that investors are willing (if forced) to treat them as interchangeable, granting the same status to "sweat equity" and the equity they've purchased with cash.
The fact that you're investing time doesn't change the relationship between risk and reward. If you're going to invest your time in something with a small chance of succeeding, you'll only do it if there is a proportionately large payoff. [2] If large payoffs aren't allowed, you may as well play it safe.
Like many startup founders, I did it to get rich. But not because I wanted to buy expensive things. What I wanted was security. I wanted to make enough money that I didn't have to worry about money. If I'd been forbidden to make enough from a startup to do this, I would have sought security by some other means: for example, by going to work for a big, stable organization from which it would be hard to get fired. Instead of busting my ass in a startup, I would have tried to get a nice, low-stress job at a big research lab, or tenure at a university.
That's what everyone does in societies where risk isn't rewarded. If you can't ensure your own security, the next best thing is to make a nest for yourself in some large organization where your status depends mostly on seniority. [3]
Even if we could somehow replace investors, I don't see how we could replace founders. Investors mainly contribute money, which in principle is the same no matter what the source. But the founders contribute ideas. You can't replace those.
Let's rehearse the chain of argument so far. I'm heading for a conclusion to which many readers will have to be dragged kicking and screaming, so I've tried to make each link unbreakable. Decreasing economic inequality means taking money from the rich. Since risk and reward are equivalent, decreasing potential rewards automatically decreases people's appetite for risk. Startups are intrinsically risky. Without the prospect of rewards proportionate to the risk, founders will not invest their time in a startup. Founders are irreplaceable. So eliminating economic inequality means eliminating startups.
Economic inequality is not just a consequence of startups. It's the engine that drives them, in the same way a fall of water drives a water mill. People start startups in the hope of becoming much richer than they were before. And if your society tries to prevent anyone from being much richer than anyone else, it will also prevent one person from being much richer at t2 than t1.
Growth
This argument applies proportionately. It's not just that if you eliminate economic inequality, you get no startups. To the extent you reduce economic inequality, you decrease the number of startups. [4] Increase taxes, and willingness to take risks decreases in proportion.
And that seems bad for everyone. New technology and new jobs both come disproportionately from new companies. Indeed, if you don't have startups, pretty soon you won't have established companies either, just as, if you stop having kids, pretty soon you won't have any adults.
It sounds benevolent to say we ought to reduce economic inequality. When you phrase it that way, who can argue with you? Inequality has to be bad, right? It sounds a good deal less benevolent to say we ought to reduce the rate at which new companies are founded. And yet the one implies the other.
Indeed, it may be that reducing investors' appetite for risk doesn't merely kill off larval startups, but kills off the most promising ones especially. Startups yield faster growth at greater risk than established companies. Does this trend also hold among startups? That is, are the riskiest startups the ones that generate most growth if they succeed? I suspect the answer is yes. And that's a chilling thought, because it means that if you cut investors' appetite for risk, the most beneficial startups are the first to go.
Not all rich people got that way from startups, of course. What if we let people get rich by starting startups, but taxed away all other surplus wealth? Wouldn't that at least decrease inequality?
Less than you might think. If you made it so that people could only get rich by starting startups, people who wanted to get rich would all start startups. And that might be a great thing. But I don't think it would have much effect on the distribution of wealth. People who want to get rich will do whatever they have to. If startups are the only way to do it, you'll just get far more people starting startups. (If you write the laws very carefully, that is. More likely, you'll just get a lot of people doing things that can be made to look on paper like startups.)
If we're determined to eliminate economic inequality, there is still one way out: we could say that we're willing to go ahead and do without startups. What would happen if we did?
At a minimum, we'd have to accept lower rates of technological growth. If you believe that large, established companies could somehow be made to develop new technology as fast as startups, the ball is in your court to explain how. (If you can come up with a remotely plausible story, you can make a fortune writing business books and consulting for large companies.) [5]
Ok, so we get slower growth. Is that so bad? Well, one reason it's bad in practice is that other countries might not agree to slow down with us. If you're content to develop new technologies at a slower rate than the rest of the world, what happens is that you don't invent anything at all. Anything you might discover has already been invented elsewhere. And the only thing you can offer in return is raw materials and cheap labor. Once you sink that low, other countries can do whatever they like with you: install puppet governments, siphon off your best workers, use your women as prostitutes, dump their toxic waste on your territory-- all the things we do to poor countries now. The only defense is to isolate yourself, as communist countries did in the twentieth century. But the problem then is, you have to become a police state to enforce it.
Wealth and Power
I realize startups are not the main target of those who want to eliminate economic inequality. What they really dislike is the sort of wealth that becomes self-perpetuating through an alliance with power. For example, construction firms that fund politicians' campaigns in return for government contracts, or rich parents who get their children into good colleges by sending them to expensive schools designed for that purpose. But if you try to attack this type of wealth through economic policy, it's hard to hit without destroying startups as collateral damage.
The problem here is not wealth, but corruption. So why not go after corruption?
We don't need to prevent people from being rich if we can prevent wealth from translating into power. And there has been progress on that front. Before he died of drink in 1925, Commodore Vanderbilt's wastrel grandson Reggie ran down pedestrians on five separate occasions, killing two of them. By 1969, when Ted Kennedy drove off the bridge at Chappaquiddick, the limit seemed to be down to one. Today it may well be zero. But what's changed is not variation in wealth. What's changed is the ability to translate wealth into power.
How do you break the connection between wealth and power? Demand transparency. Watch closely how power is exercised, and demand an account of how decisions are made. Why aren't all police interrogations videotaped? Why did 36% of Princeton's class of 2007 come from prep schools, when only 1.7% of American kids attend them? Why did the US really invade Iraq? Why don't government officials disclose more about their finances, and why only during their term of office?
A friend of mine who knows a lot about computer security says the single most important step is to log everything. Back when he was a kid trying to break into computers, what worried him most was the idea of leaving a trail. He was more inconvenienced by the need to avoid that than by any obstacle deliberately put in his path.
Like all illicit connections, the connection between wealth and power flourishes in secret. Expose all transactions, and you will greatly reduce it. Log everything. That's a strategy that already seems to be working, and it doesn't have the side effect of making your whole country poor.
I don't think many people realize there is a connection between economic inequality and risk. I didn't fully grasp it till recently. I'd known for years of course that if one didn't score in a startup, the other alternative was to get a cozy, tenured research job. But I didn't understand the equation governing my behavior. Likewise, it's obvious empirically that a country that doesn't let people get rich is headed for disaster, whether it's Diocletian's Rome or Harold Wilson's Britain. But I did not till recently understand the role risk played.
If you try to attack wealth, you end up nailing risk as well, and with it growth. If we want a fairer world, I think we're better off attacking one step downstream, where wealth turns into power.
Notes
[1] Success here is defined from the initial investors' point of view: either an IPO, or an acquisition for more than the valuation at the last round of funding. The conventional 1 in 10 success rate is suspiciously neat, but conversations with VCs suggest it's roughly correct for startups overall. Top VC firms expect to do better.
[2] I'm not claiming founders sit down and calculate the expected after-tax return from a startup. They're motivated by examples of other people who did it. And those examples do reflect after-tax returns.
[3] Conjecture: The variation in wealth in a (non-corrupt) country or organization will be inversely proportional to the prevalence of systems of seniority. So if you suppress variation in wealth, seniority will become correspondingly more important. So far, I know of no counterexamples, though in very corrupt countries you may get both simultaneously. (Thanks to Daniel Sobral for pointing this out.)
[4] In a country with a truly feudal economy, you might be able to redistribute wealth successfully, because there are no startups to kill.
[5] The speed at which startups develop new techology is the other reason they pay so well. As I explained in "How to Make Wealth" (in Hackers & Painters), what you do in a startup is compress a lifetime's worth of work into a few years. It seems as dumb to discourage that as to discourage risk-taking.
Thanks to Chris Anderson, Trevor Blackwell, Dan Giffin, Jessica Livingston, and Evan Williams for reading drafts of this essay, and to Langley Steinert, Sangam Pant, and Mike Moritz for information about venture investing.

What I Did this Summer

The first Summer Founders Program has just finished. We were surprised how well it went. Overall only about 10% of startups succeed, but if I had to guess now, I'd predict three or four of the eight startups we funded will make it.
Of the startups that needed further funding, I believe all have either closed a round or are likely to soon. Two have already turned down (lowball) acquisition offers.
We would have been happy if just one of the eight seemed promising by the end of the summer. What's going on? Did some kind of anomaly make this summer's applicants especially good? We worry about that, but we can't think of one. We'll find out this winter.
The whole summer was full of surprises. The best was that the hypothesis we were testing seems to be correct. Young hackers can start viable companies. This is good news for two reasons: (a) it's an encouraging thought, and (b) it means that Y Combinator, which is predicated on the idea, is not hosed.
Age
More precisely, the hypothesis was that success in a startup depends mainly on how smart and energetic you are, and much less on how old you are or how much business experience you have. The results so far bear this out. The 2005 summer founders ranged in age from 18 to 28 (average 23), and there is no correlation between their ages and how well they're doing.
This should not really be surprising. Bill Gates and Michael Dell were both 19 when they started the companies that made them famous. Young founders are not a new phenomenon: the trend began as soon as computers got cheap enough for college kids to afford them.
Another of our hypotheses was that you can start a startup on less money than most people think. Other investors were surprised to hear the most we gave any group was $20,000. But we knew it was possible to start on that little because we started Viaweb on $10,000.
And so it proved this summer. Three months' funding is enough to get into second gear. We had a demo day for potential investors ten weeks in, and seven of the eight groups had a prototype ready by that time. One, Reddit, had already launched, and were able to give a demo of their live site.
A researcher who studied the SFP startups said the one thing they had in common was that they all worked ridiculously hard. People this age are commonly seen as lazy. I think in some cases it's not so much that they lack the appetite for work, but that the work they're offered is unappetizing.
The experience of the SFP suggests that if you let motivated people do real work, they work hard, whatever their age. As one of the founders said "I'd read that starting a startup consumed your life, but I had no idea what that meant until I did it."
I'd feel guilty if I were a boss making people work this hard. But we're not these people's bosses. They're working on their own projects. And what makes them work is not us but their competitors. Like good athletes, they don't work hard because the coach yells at them, but because they want to win.
We have less power than bosses, and yet the founders work harder than employees. It seems like a win for everyone. The only catch is that we get on average only about 5-7% of the upside, while an employer gets nearly all of it. (We're counting on it being 5-7% of a much larger number.)
As well as working hard, the groups all turned out to be extraordinarily responsible. I can't think of a time when one failed to do something they'd promised to, even by being late for an appointment. This is another lesson the world has yet to learn. One of the founders discovered that the hardest part of arranging a meeting with executives at a big cell phone carrier was getting a rental company to rent him a car, because he was too young.
I think the problem here is much the same as with the apparent laziness of people this age. They seem lazy because the work they're given is pointless, and they act irresponsible because they're not given any power. Some of them, anyway. We only have a sample size of about twenty, but it seems so far that if you let people in their early twenties be their own bosses, they rise to the occasion.
Morale
The summer founders were as a rule very idealistic. They also wanted very much to get rich. These qualities might seem incompatible, but they're not. These guys want to get rich, but they want to do it by changing the world. They wouldn't (well, seven of the eight groups wouldn't) be interested in making money by speculating in stocks. They want to make something people use.
I think this makes them more effective as founders. As hard as people will work for money, they'll work harder for a cause. And since success in a startup depends so much on motivation, the paradoxical result is that the people likely to make the most money are those who aren't in it just for the money.
The founders of Kiko, for example, are working on an Ajax calendar. They want to get rich, but they pay more attention to design than they would if that were their only motivation. You can tell just by looking at it.
I never considered it till this summer, but this might be another reason startups run by hackers tend to do better than those run by MBAs. Perhaps it's not just that hackers understand technology better, but that they're driven by more powerful motivations. Microsoft, as I've said before, is a dangerously misleading example. Their mean corporate culture only works for monopolies. Google is a better model.
Considering that the summer founders are the sharks in this ocean, we were surprised how frightened most of them were of competitors. But now that I think of it, we were just as frightened when we started Viaweb. For the first year, our initial reaction to news of a competitor was always: we're doomed. Just as a hypochondriac magnifies his symptoms till he's convinced he has some terrible disease, when you're not used to competitors you magnify them into monsters.
Here's a handy rule for startups: competitors are rarely as dangerous as they seem. Most will self-destruct before you can destroy them. And it certainly doesn't matter how many of them there are, any more than it matters to the winner of a marathon how many runners are behind him.
"It's a crowded market," I remember one founder saying worriedly.
"Are you the current leader?" I asked.
"Yes."
"Is anyone able to develop software faster than you?"
"Probably not."
"Well, if you're ahead now, and you're the fastest, then you'll stay ahead. What difference does it make how many others there are?"
Another group was worried when they realized they had to rewrite their software from scratch. I told them it would be a bad sign if they didn't. The main function of your initial version is to be rewritten.
That's why we advise groups to ignore issues like scalability, internationalization, and heavy-duty security at first. [1] I can imagine an advocate of "best practices" saying these ought to be considered from the start. And he'd be right, except that they interfere with the primary function of software in a startup: to be a vehicle for experimenting with its own design. Having to retrofit internationalization or scalability is a pain, certainly. The only bigger pain is not needing to, because your initial version was too big and rigid to evolve into something users wanted.
I suspect this is another reason startups beat big companies. Startups can be irresponsible and release version 1s that are light enough to evolve. In big companies, all the pressure is in the direction of over-engineering.
What Got Learned
One thing we were curious about this summer was where these groups would need help. That turned out to vary a lot. Some we helped with technical advice-- for example, about how to set up an application to run on multiple servers. Most we helped with strategy questions, like what to patent, and what to charge for and what to give away. Nearly all wanted advice about dealing with future investors: how much money should they take and what kind of terms should they expect?
However, all the groups quickly learned how to deal with stuff like patents and investors. These problems aren't intrinsically difficult, just unfamiliar.
It was surprising-- slightly frightening even-- how fast they learned. The weekend before the demo day for investors, we had a practice session where all the groups gave their presentations. They were all terrible. We tried to explain how to make them better, but we didn't have much hope. So on demo day I told the assembled angels and VCs that these guys were hackers, not MBAs, and so while their software was good, we should not expect slick presentations from them.
The groups then proceeded to give fabulously slick presentations. Gone were the mumbling recitations of lists of features. It was as if they'd spent the past week at acting school. I still don't know how they did it.
Perhaps watching each others' presentations helped them see what they'd been doing wrong. Just as happens in college, the summer founders learned a lot from one another-- maybe more than they learned from us. A lot of the problems they face are the same, from dealing with investors to hacking Javascript.
I don't want to give the impression there were no problems this summer. A lot went wrong, as usually happens with startups. One group got an "exploding term-sheet" from some VCs. Pretty much all the groups who had dealings with big companies found that big companies do everything infinitely slowly. (This is to be expected. If big companies weren't incapable, there would be no room for startups to exist.) And of course there were the usual nightmares associated with servers.
In short, the disasters this summer were just the usual childhood diseases. Some of this summer's eight startups will probably die eventually; it would be extraordinary if all eight succeeded. But what kills them will not be dramatic, external threats, but a mundane, internal one: not getting enough done.
So far, though, the news is all good. In fact, we were surprised how much fun the summer was for us. The main reason was how much we liked the founders. They're so earnest and hard-working. They seem to like us too. And this illustrates another advantage of investing over hiring: our relationship with them is way better than it would be between a boss and an employee. Y Combinator ends up being more like an older brother than a parent.
I was surprised how much time I spent making introductions. Fortunately I discovered that when a startup needed to talk to someone, I could usually get to the right person by at most one hop. I remember wondering, how did my friends get to be so eminent? and a second later realizing: shit, I'm forty.
Another surprise was that the three-month batch format, which we were forced into by the constraints of the summer, turned out to be an advantage. When we started Y Combinator, we planned to invest the way other venture firms do: as proposals came in, we'd evaluate them and decide yes or no. The SFP was just an experiment to get things started. But it worked so well that we plan to do all our investing this way, one cycle in the summer and one in winter. It's more efficient for us, and better for the startups too.
Several groups said our weekly dinners saved them from a common problem afflicting startups: working so hard that one has no social life. (I remember that part all too well.) This way, they were guaranteed a social event at least once a week.
Independence
I've heard Y Combinator described as an "incubator." Actually we're the opposite: incubators exert more control than ordinary VCs, and we make a point of exerting less. Among other things, incubators usually make you work in their office-- that's where the word "incubator" comes from. That seems the wrong model. If investors get too involved, they smother one of the most powerful forces in a startup: the feeling that it's your own company.
Incubators were conspicuous failures during the Bubble. There's still debate about whether this was because of the Bubble, or because they're a bad idea. My vote is they're a bad idea. I think they fail because they select for the wrong people. When we were starting a startup, we would never have taken funding from an "incubator." We can find office space, thanks; just give us the money. And people with that attitude are the ones likely to succeed in startups.
Indeed, one quality all the founders shared this summer was a spirit of independence. I've been wondering about that. Are some people just a lot more independent than others, or would everyone be this way if they were allowed to?
As with most nature/nurture questions, the answer is probably: some of each. But my main conclusion from the summer is that there's more environment in the mix than most people realize. I could see that from how the founders' attitudes changed during the summer. Most were emerging from twenty or so years of being told what to do. They seemed a little surprised at having total freedom. But they grew into it really quickly; some of these guys now seem about four inches taller (metaphorically) than they did at the beginning of the summer.
When we asked the summer founders what surprised them most about starting a company, one said "the most shocking thing is that it worked."
It will take more experience to know for sure, but my guess is that a lot of hackers could do this-- that if you put people in a position of independence, they develop the qualities they need. Throw them off a cliff, and most will find on the way down that they have wings.
The reason this is news to anyone is that the same forces work in the other direction too. Most hackers are employees, and this molds you into someone to whom starting a startup seems impossible as surely as starting a startup molds you into someone who can handle it.
If I'm right, "hacker" will mean something different in twenty years than it does now. Increasingly it will mean the people who run the company. Y Combinator is just accelerating a process that would have happened anyway. Power is shifting from the people who deal with money to the people who create technology, and if our experience this summer is any guide, this will be a good thing.
Notes
[1] By heavy-duty security I mean efforts to protect against truly determined attackers.
The image shows us, the 2005 summer founders, and Smartleaf co-founders Mark Nitzberg and Olin Shivers at the 30-foot table Kate Courteau designed for us. Photo by Alex Lewin.
Thanks to Sarah Harlin, Steve Huffman, Jessica Livingston, Zak Stone, and Aaron Swartz for reading drafts of this.

Ideas for Startups

(This essay is derived from a talk at the 2005 Startup School.)
How do you get good ideas for startups? That's probably the number one question people ask me.
I'd like to reply with another question: why do people think it's hard to come up with ideas for startups?
That might seem a stupid thing to ask. Why do they think it's hard? If people can't do it, then it is hard, at least for them. Right?
Well, maybe not. What people usually say is not that they can't think of ideas, but that they don't have any. That's not quite the same thing. It could be the reason they don't have any is that they haven't tried to generate them.
I think this is often the case. I think people believe that coming up with ideas for startups is very hard-- that it must be very hard-- and so they don't try do to it. They assume ideas are like miracles: they either pop into your head or they don't.
I also have a theory about why people think this. They overvalue ideas. They think creating a startup is just a matter of implementing some fabulous initial idea. And since a successful startup is worth millions of dollars, a good idea is therefore a million dollar idea.
If coming up with an idea for a startup equals coming up with a million dollar idea, then of course it's going to seem hard. Too hard to bother trying. Our instincts tell us something so valuable would not be just lying around for anyone to discover.
Actually, startup ideas are not million dollar ideas, and here's an experiment you can try to prove it: just try to sell one. Nothing evolves faster than markets. The fact that there's no market for startup ideas suggests there's no demand. Which means, in the narrow sense of the word, that startup ideas are worthless.
Questions
The fact is, most startups end up nothing like the initial idea. It would be closer to the truth to say the main value of your initial idea is that, in the process of discovering it's broken, you'll come up with your real idea.
The initial idea is just a starting point-- not a blueprint, but a question. It might help if they were expressed that way. Instead of saying that your idea is to make a collaborative, web-based spreadsheet, say: could one make a collaborative, web-based spreadsheet? A few grammatical tweaks, and a woefully incomplete idea becomes a promising question to explore.
There's a real difference, because an assertion provokes objections in a way a question doesn't. If you say: I'm going to build a web-based spreadsheet, then critics-- the most dangerous of which are in your own head-- will immediately reply that you'd be competing with Microsoft, that you couldn't give people the kind of UI they expect, that users wouldn't want to have their data on your servers, and so on.
A question doesn't seem so challenging. It becomes: let's try making a web-based spreadsheet and see how far we get. And everyone knows that if you tried this you'd be able to make something useful. Maybe what you'd end up with wouldn't even be a spreadsheet. Maybe it would be some kind of new spreasheet-like collaboration tool that doesn't even have a name yet. You wouldn't have thought of something like that except by implementing your way toward it.
Treating a startup idea as a question changes what you're looking for. If an idea is a blueprint, it has to be right. But if it's a question, it can be wrong, so long as it's wrong in a way that leads to more ideas.
One valuable way for an idea to be wrong is to be only a partial solution. When someone's working on a problem that seems too big, I always ask: is there some way to bite off some subset of the problem, then gradually expand from there? That will generally work unless you get trapped on a local maximum, like 1980s-style AI, or C.
Upwind
So far, we've reduced the problem from thinking of a million dollar idea to thinking of a mistaken question. That doesn't seem so hard, does it?
To generate such questions you need two things: to be familiar with promising new technologies, and to have the right kind of friends. New technologies are the ingredients startup ideas are made of, and conversations with friends are the kitchen they're cooked in.
Universities have both, and that's why so many startups grow out of them. They're filled with new technologies, because they're trying to produce research, and only things that are new count as research. And they're full of exactly the right kind of people to have ideas with: the other students, who will be not only smart but elastic-minded to a fault.
The opposite extreme would be a well-paying but boring job at a big company. Big companies are biased against new technologies, and the people you'd meet there would be wrong too.
In an essay I wrote for high school students, I said a good rule of thumb was to stay upwind-- to work on things that maximize your future options. The principle applies for adults too, though perhaps it has to be modified to: stay upwind for as long as you can, then cash in the potential energy you've accumulated when you need to pay for kids.
I don't think people consciously realize this, but one reason downwind jobs like churning out Java for a bank pay so well is precisely that they are downwind. The market price for that kind of work is higher because it gives you fewer options for the future. A job that lets you work on exciting new stuff will tend to pay less, because part of the compensation is in the form of the new skills you'll learn.
Grad school is the other end of the spectrum from a coding job at a big company: the pay's low but you spend most of your time working on new stuff. And of course, it's called "school," which makes that clear to everyone, though in fact all jobs are some percentage school.
The right environment for having startup ideas need not be a university per se. It just has to be a situation with a large percentage of school.
It's obvious why you want exposure to new technology, but why do you need other people? Can't you just think of new ideas yourself? The empirical answer is: no. Even Einstein needed people to bounce ideas off. Ideas get developed in the process of explaining them to the right kind of person. You need that resistance, just as a carver needs the resistance of the wood.
This is one reason Y Combinator has a rule against investing in startups with only one founder. Practically every successful company has at least two. And because startup founders work under great pressure, it's critical they be friends.
I didn't realize it till I was writing this, but that may help explain why there are so few female startup founders. I read on the Internet (so it must be true) that only 1.7% of VC-backed startups are founded by women. The percentage of female hackers is small, but not that small. So why the discrepancy?
When you realize that successful startups tend to have multiple founders who were already friends, a possible explanation emerges. People's best friends are likely to be of the same sex, and if one group is a minority in some population, pairs of them will be a minority squared. [1]
Doodling
What these groups of co-founders do together is more complicated than just sitting down and trying to think of ideas. I suspect the most productive setup is a kind of together-alone-together sandwich. Together you talk about some hard problem, probably getting nowhere. Then, the next morning, one of you has an idea in the shower about how to solve it. He runs eagerly to to tell the others, and together they work out the kinks.
What happens in that shower? It seems to me that ideas just pop into my head. But can we say more than that?
Taking a shower is like a form of meditation. You're alert, but there's nothing to distract you. It's in a situation like this, where your mind is free to roam, that it bumps into new ideas.
What happens when your mind wanders? It may be like doodling. Most people have characteristic ways of doodling. This habit is unconscious, but not random: I found my doodles changed after I started studying painting. I started to make the kind of gestures I'd make if I were drawing from life. They were atoms of drawing, but arranged randomly. [2]
Perhaps letting your mind wander is like doodling with ideas. You have certain mental gestures you've learned in your work, and when you're not paying attention, you keep making these same gestures, but somewhat randomly. In effect, you call the same functions on random arguments. That's what a metaphor is: a function applied to an argument of the wrong type.
Conveniently, as I was writing this, my mind wandered: would it be useful to have metaphors in a programming language? I don't know; I don't have time to think about this. But it's convenient because this is an example of what I mean by habits of mind. I spend a lot of time thinking about language design, and my habit of always asking "would x be useful in a programming language" just got invoked.
If new ideas arise like doodles, this would explain why you have to work at something for a while before you have any. It's not just that you can't judge ideas till you're an expert in a field. You won't even generate ideas, because you won't have any habits of mind to invoke.
Of course the habits of mind you invoke on some field don't have to be derived from working in that field. In fact, it's often better if they're not. You're not just looking for good ideas, but for good new ideas, and you have a better chance of generating those if you combine stuff from distant fields. As hackers, one of our habits of mind is to ask, could one open-source x? For example, what if you made an open-source operating system? A fine idea, but not very novel. Whereas if you ask, could you make an open-source play? you might be onto something.
Are some kinds of work better sources of habits of mind than others? I suspect harder fields may be better sources, because to attack hard problems you need powerful solvents. I find math is a good source of metaphors-- good enough that it's worth studying just for that. Related fields are also good sources, especially when they're related in unexpected ways. Everyone knows computer science and electrical engineering are related, but precisely because everyone knows it, importing ideas from one to the other doesn't yield great profits. It's like importing something from Wisconsin to Michigan. Whereas (I claim) hacking and painting are also related, in the sense that hackers and painters are both makers, and this source of new ideas is practically virgin territory.
Problems
In theory you could stick together ideas at random and see what you came up with. What if you built a peer-to-peer dating site? Would it be useful to have an automatic book? Could you turn theorems into a commodity? When you assemble ideas at random like this, they may not be just stupid, but semantically ill-formed. What would it even mean to make theorems a commodity? You got me. I didn't think of that idea, just its name.
You might come up with something useful this way, but I never have. It's like knowing a fabulous sculpture is hidden inside a block of marble, and all you have to do is remove the marble that isn't part of it. It's an encouraging thought, because it reminds you there is an answer, but it's not much use in practice because the search space is too big.
I find that to have good ideas I need to be working on some problem. You can't start with randomness. You have to start with a problem, then let your mind wander just far enough for new ideas to form.
In a way, it's harder to see problems than their solutions. Most people prefer to remain in denial about problems. It's obvious why: problems are irritating. They're problems! Imagine if people in 1700 saw their lives the way we'd see them. It would have been unbearable. This denial is such a powerful force that, even when presented with possible solutions, people often prefer to believe they wouldn't work.
I saw this phenomenon when I worked on spam filters. In 2002, most people preferred to ignore spam, and most of those who didn't preferred to believe the heuristic filters then available were the best you could do.
I found spam intolerable, and I felt it had to be possible to recognize it statistically. And it turns out that was all you needed to solve the problem. The algorithm I used was ridiculously simple. Anyone who'd really tried to solve the problem would have found it. It was just that no one had really tried to solve the problem. [3]
Let me repeat that recipe: finding the problem intolerable and feeling it must be possible to solve it. Simple as it seems, that's the recipe for a lot of startup ideas.
Wealth
So far most of what I've said applies to ideas in general. What's special about startup ideas? Startup ideas are ideas for companies, and companies have to make money. And the way to make money is to make something people want.
Wealth is what people want. I don't mean that as some kind of philosophical statement; I mean it as a tautology.
So an idea for a startup is an idea for something people want. Wouldn't any good idea be something people want? Unfortunately not. I think new theorems are a fine thing to create, but there is no great demand for them. Whereas there appears to be great demand for celebrity gossip magazines. Wealth is defined democratically. Good ideas and valuable ideas are not quite the same thing; the difference is individual tastes.
But valuable ideas are very close to good ideas, especially in technology. I think they're so close that you can get away with working as if the goal were to discover good ideas, so long as, in the final stage, you stop and ask: will people actually pay for this? Only a few ideas are likely to make it that far and then get shot down; RPN calculators might be one example.
One way to make something people want is to look at stuff people use now that's broken. Dating sites are a prime example. They have millions of users, so they must be promising something people want. And yet they work horribly. Just ask anyone who uses them. It's as if they used the worse-is-better approach but stopped after the first stage and handed the thing over to marketers.
Of course, the most obvious breakage in the average computer user's life is Windows itself. But this is a special case: you can't defeat a monopoly by a frontal attack. Windows can and will be overthrown, but not by giving people a better desktop OS. The way to kill it is to redefine the problem as a superset of the current one. The problem is not, what operating system should people use on desktop computers? but how should people use applications? There are answers to that question that don't even involve desktop computers.
Everyone thinks Google is going to solve this problem, but it is a very subtle one, so subtle that a company as big as Google might well get it wrong. I think the odds are better than 50-50 that the Windows killer-- or more accurately, Windows transcender-- will come from some little startup.
Another classic way to make something people want is to take a luxury and make it into a commmodity. People must want something if they pay a lot for it. And it is a very rare product that can't be made dramatically cheaper if you try.
This was Henry Ford's plan. He made cars, which had been a luxury item, into a commodity. But the idea is much older than Henry Ford. Water mills transformed mechanical power from a luxury into a commodity, and they were used in the Roman empire. Arguably pastoralism transformed a luxury into a commodity.
When you make something cheaper you can sell more of them. But if you make something dramatically cheaper you often get qualitative changes, because people start to use it in different ways. For example, once computers get so cheap that most people can have one of their own, you can use them as communication devices.
Often to make something dramatically cheaper you have to redefine the problem. The Model T didn't have all the features previous cars did. It only came in black, for example. But it solved the problem people cared most about, which was getting from place to place.
One of the most useful mental habits I know I learned from Michael Rabin: that the best way to solve a problem is often to redefine it. A lot of people use this technique without being consciously aware of it, but Rabin was spectacularly explicit. You need a big prime number? Those are pretty expensive. How about if I give you a big number that only has a 10 to the minus 100 chance of not being prime? Would that do? Well, probably; I mean, that's probably smaller than the chance that I'm imagining all this anyway.
Redefining the problem is a particularly juicy heuristic when you have competitors, because it's so hard for rigid-minded people to follow. You can work in plain sight and they don't realize the danger. Don't worry about us. We're just working on search. Do one thing and do it well, that's our motto.
Making things cheaper is actually a subset of a more general technique: making things easier. For a long time it was most of making things easier, but now that the things we build are so complicated, there's another rapidly growing subset: making things easier to use.
This is an area where there's great room for improvement. What you want to be able to say about technology is: it just works. How often do you say that now?
Simplicity takes effort-- genius, even. The average programmer seems to produce UI designs that are almost willfully bad. I was trying to use the stove at my mother's house a couple weeks ago. It was a new one, and instead of physical knobs it had buttons and an LED display. I tried pressing some buttons I thought would cause it to get hot, and you know what it said? "Err." Not even "Error." "Err." You can't just say "Err" to the user of a stove. You should design the UI so that errors are impossible. And the boneheads who designed this stove even had an example of such a UI to work from: the old one. You turn one knob to set the temperature and another to set the timer. What was wrong with that? It just worked.
It seems that, for the average engineer, more options just means more rope to hang yourself. So if you want to start a startup, you can take almost any existing technology produced by a big company, and assume you could build something way easier to use.
Design for Exit
Success for a startup approximately equals getting bought. You need some kind of exit strategy, because you can't get the smartest people to work for you without giving them options likely to be worth something. Which means you either have to get bought or go public, and the number of startups that go public is very small.
If success probably means getting bought, should you make that a conscious goal? The old answer was no: you were supposed to pretend that you wanted to create a giant, public company, and act surprised when someone made you an offer. Really, you want to buy us? Well, I suppose we'd consider it, for the right price.
I think things are changing. If 98% of the time success means getting bought, why not be open about it? If 98% of the time you're doing product development on spec for some big company, why not think of that as your task? One advantage of this approach is that it gives you another source of ideas: look at big companies, think what they should be doing, and do it yourself. Even if they already know it, you'll probably be done faster.
Just be sure to make something multiple acquirers will want. Don't fix Windows, because the only potential acquirer is Microsoft, and when there's only one acquirer, they don't have to hurry. They can take their time and copy you instead of buying you. If you want to get market price, work on something where there's competition.
If an increasing number of startups are created to do product development on spec, it will be a natural counterweight to monopolies. Once some type of technology is captured by a monopoly, it will only evolve at big company rates instead of startup rates, whereas alternatives will evolve with especial speed. A free market interprets monopoly as damage and routes around it.
The Woz Route
The most productive way to generate startup ideas is also the most unlikely-sounding: by accident. If you look at how famous startups got started, a lot of them weren't initially supposed to be startups. Lotus began with a program Mitch Kapor wrote for a friend. Apple got started because Steve Wozniak wanted to build microcomputers, and his employer, Hewlett-Packard, wouldn't let him do it at work. Yahoo began as David Filo's personal collection of links.
This is not the only way to start startups. You can sit down and consciously come up with an idea for a company; we did. But measured in total market cap, the build-stuff-for-yourself model might be more fruitful. It certainly has to be the most fun way to come up with startup ideas. And since a startup ought to have multiple founders who were already friends before they decided to start a company, the rather surprising conclusion is that the best way to generate startup ideas is to do what hackers do for fun: cook up amusing hacks with your friends.
It seems like it violates some kind of conservation law, but there it is: the best way to get a "million dollar idea" is just to do what hackers enjoy doing anyway.
Notes
[1] This phenomenon may account for a number of discrepancies currently blamed on various forbidden isms. Never attribute to malice what can be explained by math.
[2] A lot of classic abstract expressionism is doodling of this type: artists trained to paint from life using the same gestures but without using them to represent anything. This explains why such paintings are (slightly) more interesting than random marks would be.
[3] Bill Yerazunis had solved the problem, but he got there by another path. He made a general-purpose file classifier so good that it also worked for spam.

The Venture Capital Squeeze

In the next few years, venture capital funds will find themselves squeezed from four directions. They're already stuck with a seller's market, because of the huge amounts they raised at the end of the Bubble and still haven't invested. This by itself is not the end of the world. In fact, it's just a more extreme version of the norm in the VC business: too much money chasing too few deals.
Unfortunately, those few deals now want less and less money, because it's getting so cheap to start a startup. The four causes: open source, which makes software free; Moore's law, which makes hardware geometrically closer to free; the Web, which makes promotion free if you're good; and better languages, which make development a lot cheaper.
When we started our startup in 1995, the first three were our biggest expenses. We had to pay $5000 for the Netscape Commerce Server, the only software that then supported secure http connections. We paid $3000 for a server with a 90 MHz processor and 32 meg of memory. And we paid a PR firm about $30,000 to promote our launch.
Now you could get all three for nothing. You can get the software for free; people throw away computers more powerful than our first server; and if you make something good you can generate ten times as much traffic by word of mouth online than our first PR firm got through the print media.
And of course another big change for the average startup is that programming languages have improved-- or rather, the median language has. At most startups ten years ago, software development meant ten programmers writing code in C++. Now the same work might be done by one or two using Python or Ruby.
During the Bubble, a lot of people predicted that startups would outsource their development to India. I think a better model for the future is David Heinemeier Hansson, who outsourced his development to a more powerful language instead. A lot of well-known applications are now, like BaseCamp, written by just one programmer. And one guy is more than 10x cheaper than ten, because (a) he won't waste any time in meetings, and (b) since he's probably a founder, he can pay himself nothing.
Because starting a startup is so cheap, venture capitalists now often want to give startups more money than the startups want to take. VCs like to invest several million at a time. But as one VC told me after a startup he funded would only take about half a million, "I don't know what we're going to do. Maybe we'll just have to give some of it back." Meaning give some of the fund back to the institutional investors who supplied it, because it wasn't going to be possible to invest it all.
Into this already bad situation comes the third problem: Sarbanes-Oxley. Sarbanes-Oxley is a law, passed after the Bubble, that drastically increases the regulatory burden on public companies. And in addition to the cost of compliance, which is at least two million dollars a year, the law introduces frightening legal exposure for corporate officers. An experienced CFO I know said flatly: "I would not want to be CFO of a public company now."
You might think that responsible corporate governance is an area where you can't go too far. But you can go too far in any law, and this remark convinced me that Sarbanes-Oxley must have. This CFO is both the smartest and the most upstanding money guy I know. If Sarbanes-Oxley deters people like him from being CFOs of public companies, that's proof enough that it's broken.
Largely because of Sarbanes-Oxley, few startups go public now. For all practical purposes, succeeding now equals getting bought. Which means VCs are now in the business of finding promising little 2-3 man startups and pumping them up into companies that cost $100 million to acquire. They didn't mean to be in this business; it's just what their business has evolved into.
Hence the fourth problem: the acquirers have begun to realize they can buy wholesale. Why should they wait for VCs to make the startups they want more expensive? Most of what the VCs add, acquirers don't want anyway. The acquirers already have brand recognition and HR departments. What they really want is the software and the developers, and that's what the startup is in the early phase: concentrated software and developers.
Google, typically, seems to have been the first to figure this out. "Bring us your startups early," said Google's speaker at the Startup School. They're quite explicit about it: they like to acquire startups at just the point where they would do a Series A round. (The Series A round is the first round of real VC funding; it usually happens in the first year.) It is a brilliant strategy, and one that other big technology companies will no doubt try to duplicate. Unless they want to have still more of their lunch eaten by Google.
Of course, Google has an advantage in buying startups: a lot of the people there are rich, or expect to be when their options vest. Ordinary employees find it very hard to recommend an acquisition; it's just too annoying to see a bunch of twenty year olds get rich when you're still working for salary. Even if it's the right thing for your company to do.
The Solution(s)
Bad as things look now, there is a way for VCs to save themselves. They need to do two things, one of which won't surprise them, and another that will seem an anathema.
Let's start with the obvious one: lobby to get Sarbanes-Oxley loosened. This law was created to prevent future Enrons, not to destroy the IPO market. Since the IPO market was practically dead when it passed, few saw what bad effects it would have. But now that technology has recovered from the last bust, we can see clearly what a bottleneck Sarbanes-Oxley has become.
Startups are fragile plants—seedlings, in fact. These seedlings are worth protecting, because they grow into the trees of the economy. Much of the economy's growth is their growth. I think most politicians realize that. But they don't realize just how fragile startups are, and how easily they can become collateral damage of laws meant to fix some other problem.
Still more dangerously, when you destroy startups, they make very little noise. If you step on the toes of the coal industry, you'll hear about it. But if you inadvertantly squash the startup industry, all that happens is that the founders of the next Google stay in grad school instead of starting a company.
My second suggestion will seem shocking to VCs: let founders cash out partially in the Series A round. At the moment, when VCs invest in a startup, all the stock they get is newly issued and all the money goes to the company. They could buy some stock directly from the founders as well.
Most VCs have an almost religious rule against doing this. They don't want founders to get a penny till the company is sold or goes public. VCs are obsessed with control, and they worry that they'll have less leverage over the founders if the founders have any money.
This is a dumb plan. In fact, letting the founders sell a little stock early would generally be better for the company, because it would cause the founders' attitudes toward risk to be aligned with the VCs'. As things currently work, their attitudes toward risk tend to be diametrically opposed: the founders, who have nothing, would prefer a 100% chance of $1 million to a 20% chance of $10 million, while the VCs can afford to be "rational" and prefer the latter.
Whatever they say, the reason founders are selling their companies early instead of doing Series A rounds is that they get paid up front. That first million is just worth so much more than the subsequent ones. If founders could sell a little stock early, they'd be happy to take VC money and bet the rest on a bigger outcome.
So why not let the founders have that first million, or at least half million? The VCs would get same number of shares for the money. So what if some of the money would go to the founders instead of the company?
Some VCs will say this is unthinkable—that they want all their money to be put to work growing the company. But the fact is, the huge size of current VC investments is dictated by the structure of VC funds, not the needs of startups. Often as not these large investments go to work destroying the company rather than growing it.
The angel investors who funded our startup let the founders sell some stock directly to them, and it was a good deal for everyone. The angels made a huge return on that investment, so they're happy. And for us founders it blunted the terrifying all-or-nothingness of a startup, which in its raw form is more a distraction than a motivator.
If VCs are frightened at the idea of letting founders partially cash out, let me tell them something still more frightening: you are now competing directly with Google.
Thanks to Trevor Blackwell, Sarah Harlin, Jessica Livingston, and Robert Morris for reading drafts of this.

How to Fund a Startup

(This article is meant to be a complete summary of funding options for startup founders. In effect we're open-sourcing the kernel of what we tell founders about funding at Y Combinator.)
Venture funding works like gears. A typical startup goes through several rounds of funding, and at each round you want to take just enough money to reach the speed where you can shift into the next gear.
Few startups get it quite right. Many are underfunded. A few are overfunded, which is like trying to start driving in third gear.
I think it would help founders to understand funding better-- not just the mechanics of it, but what investors are thinking. I was surprised recently when I realized that all the worst problems we faced in our startup were due not to competitors, but investors. Dealing with competitors was easy by comparison.
I don't mean to suggest that our investors were nothing but a drag on us. They were helpful in negotiating deals, for example. I mean more that conflicts with investors are particularly nasty. Competitors punch you in the jaw, but investors have you by the balls.
Apparently our situation was not unusual. And if trouble with investors is one of the biggest threats to a startup, managing them is one of the most important skills founders need to learn.
Let's start by talking about the five sources of startup funding. Then we'll trace the life of a hypothetical (very fortunate) startup as it shifts gears through successive rounds.
Friends and Family
A lot of startups get their first funding from friends and family. Excite did, for example: after the founders graduated from college, they borrowed $15,000 from their parents to start a company. With the help of some part-time jobs they made it last 18 months.
If your friends or family happen to be rich, the line blurs between them and angel investors. At Viaweb we got our first $10,000 of seed money from our friend Julian, but he was sufficiently rich that it's hard to say whether he should be classified as a friend or angel. He was also a lawyer, which was great, because it meant we didn't have to pay legal bills out of that initial small sum.
The advantage of raising money from friends and family is that they're easy to find. You already know them. There are three main disadvantages: you mix together your business and personal life; they will probably not be as well connected as angels or venture firms; and they may not be accredited investors, which could complicate your life later.
The SEC defines an "accredited investor" as someone with over a million dollars in liquid assets or an income of over $200,000 a year. The regulatory burden is much lower if a company's shareholders are all accredited investors. Once you take money from the general public you're more restricted in what you can do. [1]
A startup's life will be more complicated, legally, if any of the investors aren't accredited. In an IPO, it might not merely add expense, but change the outcome. A lawyer I asked about it said:
When the company goes public, the SEC will carefully study all prior issuances of stock by the company and demand that it take immediate action to cure any past violations of securities laws. Those remedial actions can delay, stall or even kill the IPO.
Of course the odds of any given startup doing an IPO are small. But not as small as they might seem. A lot of startups that end up going public didn't seem likely to at first. (Who could have guessed that the company Wozniak and Jobs started in their spare time selling plans for microcomputers would yield one of the biggest IPOs of the decade?) Much of the value of a startup consists of that tiny probability multiplied by the huge outcome.
It wasn't because they weren't accredited investors that I didn't ask my parents for seed money, though. When we were starting Viaweb, I didn't know about the concept of an accredited investor, and didn't stop to think about the value of investors' connections. The reason I didn't take money from my parents was that I didn't want them to lose it.
Consulting
Another way to fund a startup is to get a job. The best sort of job is a consulting project in which you can build whatever software you wanted to sell as a startup. Then you can gradually transform yourself from a consulting company into a product company, and have your clients pay your development expenses.
This is a good plan for someone with kids, because it takes most of the risk out of starting a startup. There never has to be a time when you have no revenues. Risk and reward are usually proportionate, however: you should expect a plan that cuts the risk of starting a startup also to cut the average return. In this case, you trade decreased financial risk for increased risk that your company won't succeed as a startup.
But isn't the consulting company itself startup? No, not generally. A company has to be more than small and newly founded to be a startup. There are millions of small businesses in America, but only a few thousand are startups. To be a startup, a company has to be a product business, not a service business. By which I mean not that it has to make something physical, but that it has to have one thing it sells to many people, rather than doing custom work for individual clients. Custom work doesn't scale. To be a startup you need to be the band that sells a million copies of a song, not the band that makes money by playing at individual weddings and bar mitzvahs.
The trouble with consulting is that clients have an awkward habit of calling you on the phone. Most startups operate close to the margin of failure, and the distraction of having to deal with clients could be enough to put you over the edge. Especially if you have competitors who get to work full time on just being a startup.
So you have to be very disciplined if you take the consulting route. You have to work actively to prevent your company growing into a "weed tree," dependent on this source of easy but low-margin money. [2]
Indeed, the biggest danger of consulting may be that it gives you an excuse for failure. In a startup, as in grad school, a lot of what ends up driving you are the expectations of your family and friends. Once you start a startup and tell everyone that's what you're doing, you're now on a path labelled "get rich or bust." You now have to get rich, or you've failed.
Fear of failure is an extraordinarily powerful force. Usually it prevents people from starting things, but once you publish some definite ambition, it switches directions and starts working in your favor. I think it's a pretty clever piece of jiujitsu to set this irresistible force against the slightly less immovable object of becoming rich. You won't have it driving you if your stated ambition is merely to start a consulting company that you will one day morph into a startup.
An advantage of consulting, as a way to develop a product, is that you know you're making something at least one customer wants. But if you have what it takes to start a startup you should have sufficient vision not to need this crutch.
Angel Investors
Angels are individual rich people. The word was first used for backers of Broadway plays, but now applies to individual investors generally. Angels who've made money in technology are preferable, for two reasons: they understand your situation, and they're a source of contacts and advice.
The contacts and advice can be more important than the money. When del.icio.us took money from investors, they took money from, among others, Tim O'Reilly. The amount he put in was small compared to the VCs who led the round, but Tim is a smart and influential guy and it's good to have him on your side.
You can do whatever you want with money from consulting or friends and family. With angels we're now talking about venture funding proper, so it's time to introduce the concept of exit strategy. Younger would-be founders are often surprised that investors expect them either to sell the company or go public. The reason is that investors need to get their capital back. They'll only consider companies that have an exit strategy-- meaning companies that could get bought or go public.
This is not as selfish as it sounds. There are few large, private technology companies. Those that don't fail all seem to get bought or go public. The reason is that employees are investors too-- of their time-- and they want just as much to be able to cash out. If your competitors offer employees stock options that might make them rich, while you make it clear you plan to stay private, your competitors will get the best people. So the principle of an "exit" is not just something forced on startups by investors, but part of what it means to be a startup.
Another concept we need to introduce now is valuation. When someone buys shares in a company, that implicitly establishes a value for it. If someone pays $20,000 for 10% of a company, the company is in theory worth $200,000. I say "in theory" because in early stage investing, valuations are voodoo. As a company gets more established, its valuation gets closer to an actual market value. But in a newly founded startup, the valuation number is just an artifact of the respective contributions of everyone involved.
Startups often "pay" investors who will help the company in some way by letting them invest at low valuations. If I had a startup and Steve Jobs wanted to invest in it, I'd give him the stock for $10, just to be able to brag that he was an investor. Unfortunately, it's impractical (if not illegal) to adjust the valuation of the company up and down for each investor. Startups' valuations are supposed to rise over time. So if you're going to sell cheap stock to eminent angels, do it early, when it's natural for the company to have a low valuation.
Some angel investors join together in syndicates. Any city where people start startups will have one or more of them. In Boston the biggest is the Common Angels. In the Bay Area it's the Band of Angels. You can find groups near you through the Angel Capital Association. [3] However, most angel investors don't belong to these groups. In fact, the more prominent the angel, the less likely they are to belong to a group.
Some angel groups charge you money to pitch your idea to them. Needless to say, you should never do this.
One of the dangers of taking investment from individual angels, rather than through an angel group or investment firm, is that they have less reputation to protect. A big-name VC firm will not screw you too outrageously, because other founders would avoid them if word got out. With individual angels you don't have this protection, as we found to our dismay in our own startup. In many startups' lives there comes a point when you're at the investors' mercy-- when you're out of money and the only place to get more is your existing investors. When we got into such a scrape, our investors took advantage of it in a way that a name-brand VC probably wouldn't have.
Angels have a corresponding advantage, however: they're also not bound by all the rules that VC firms are. And so they can, for example, allow founders to cash out partially in a funding round, by selling some of their stock directly to the investors. I think this will become more common; the average founder is eager to do it, and selling, say, half a million dollars worth of stock will not, as VCs fear, cause most founders to be any less committed to the business.
The same angels who tried to screw us also let us do this, and so on balance I'm grateful rather than angry. (As in families, relations between founders and investors can be complicated.)
The best way to find angel investors is through personal introductions. You could try to cold-call angel groups near you, but angels, like VCs, will pay more attention to deals recommended by someone they respect.
Deal terms with angels vary a lot. There are no generally accepted standards. Sometimes angels' deal terms are as fearsome as VCs'. Other angels, particularly in the earliest stages, will invest based on a two-page agreement.
Angels who only invest occasionally may not themselves know what terms they want. They just want to invest in this startup. What kind of anti-dilution protection do they want? Hell if they know. In these situations, the deal terms tend to be random: the angel asks his lawyer to create a vanilla agreement, and the terms end up being whatever the lawyer considers vanilla. Which in practice usually means, whatever existing agreement he finds lying around his firm. (Few legal documents are created from scratch.)
These heaps o' boilerplate are a problem for small startups, because they tend to grow into the union of all preceding documents. I know of one startup that got from an angel investor what amounted to a five hundred pound handshake: after deciding to invest, the angel presented them with a 70-page agreement. The startup didn't have enough money to pay a lawyer even to read it, let alone negotiate the terms, so the deal fell through.
One solution to this problem would be to have the startup's lawyer produce the agreement, instead of the angel's. Some angels might balk at this, but others would probably welcome it.
Inexperienced angels often get cold feet when the time comes to write that big check. In our startup, one of the two angels in the initial round took months to pay us, and only did after repeated nagging from our lawyer, who was also, fortunately, his lawyer.
It's obvious why investors delay. Investing in startups is risky! When a company is only two months old, every day you wait gives you 1.7% more data about their trajectory. But the investor is already being compensated for that risk in the low price of the stock, so it is unfair to delay.
Fair or not, investors do it if you let them. Even VCs do it. And funding delays are a big distraction for founders, who ought to be working on their company, not worrying about investors. What's a startup to do? With both investors and acquirers, the only leverage you have is competition. If an investor knows you have other investors lined up, he'll be a lot more eager to close-- and not just because he'll worry about losing the deal, but because if other investors are interested, you must be worth investing in. It's the same with acquisitions. No one wants to buy you till someone else wants to buy you, and then everyone wants to buy you.
The key to closing deals is never to stop pursuing alternatives. When an investor says he wants to invest in you, or an acquirer says they want to buy you, don't believe it till you get the check. Your natural tendency when an investor says yes will be to relax and go back to writing code. Alas, you can't; you have to keep looking for more investors, if only to get this one to act. [4]
Seed Funding Firms
Seed firms are like angels in that they invest relatively small amounts at early stages, but like VCs in that they're companies that do it as a business, rather than individuals making occasional investments on the side.
Till now, nearly all seed firms have been so-called "incubators," so Y Combinator gets called one too, though the only thing we have in common is that we invest in the earliest phase.
According to the National Association of Business Incubators, there are about 800 incubators in the US. This is an astounding number, because I know the founders of a lot of startups, and I can't think of one that began in an incubator.
What is an incubator? I'm not sure myself. The defining quality seems to be that you work in their space. That's where the name "incubator" comes from. They seem to vary a great deal in other respects. At one extreme is the sort of pork-barrel project where a town gets money from the state government to renovate a vacant building as a "high-tech incubator," as if it were merely lack of the right sort of office space that had till now prevented the town from becoming a startup hub. At the other extreme are places like Idealab, which generates ideas for new startups internally and hires people to work for them.
The classic Bubble incubators, most of which now seem to be dead, were like VC firms except that they took a much bigger role in the startups they funded. In addition to working in their space, you were supposed to use their office staff, lawyers, accountants, and so on.
Whereas incubators tend (or tended) to exert more control than VCs, Y Combinator exerts less. We just supply seed money, advice, and introductions. We don't want any control over the startups we fund. And we think it's better if startups operate out of their own premises, however crappy, than the offices of their investors. So it's annoying that we keep getting called an "incubator," but perhaps inevitable, because there's only one of us so far and no word yet for what we are. If we have to be called something, the obvious name would be "excubator." (The name is more excusable if one considers it as meaning that we enable people to escape cubicles.)
Because seed firms are companies rather than individual people, reaching them is easier than reaching angels. Just go to their web site and send them an email. The importance of personal introductions varies, but is less than with angels or VCs.
The fact that seed firms are companies also means the investment process is more standardized. (This is generally true with angel groups too.) Seed firms will probably have set deal terms they use for every startup they fund. The fact that the deal terms are standard doesn't mean they're favorable to you, but if other startups have signed the same agreements and things went well for them, it's a sign the terms are reasonable.
Seed firms differ from angels and VCs in that they invest exclusively in the earliest phases-- often when the company is still just an idea. Angels and even VC firms occasionally do this, but they also invest at later stages.
The problems are different in the early stages. For example, in the first couple months a startup may completely redefine their idea. So seed investors usually care less about the idea than the people. This is true of all venture funding, but especially so in the seed stage.
Like VCs, one of the advantages of seed firms is the advice they offer. But because seed firms operate in an earlier phase, they need to offer different kinds of advice. For example, a seed firm should be able to give advice about how to approach VCs, which VCs obviously don't need to do; whereas VCs should be able to give advice about how to hire an "executive team," which is not an issue in the seed stage.
In the earliest phases, a lot of the problems are technical, so seed firms should be able to help with technical as well as business problems.
Seed firms and angel investors generally want to invest in the initial phases of a startup, then hand them off to VC firms for the next round. Occasionally startups go from seed funding direct to acquisition, however, and I expect this to become increasingly common.
Google has been aggressively pursuing this route, and now Yahoo is too. Both now compete directly with VCs. And this is a smart move. Why wait for further funding rounds to jack up a startup's price? When a startup reaches the point where VCs have enough information to invest in it, the acquirer should have enough information to buy it. More information, in fact; with their technical depth, the acquirers should be better at picking winners than VCs.
Venture Capital Funds
VC firms are like seed firms in that they're actual companies, but they invest other people's money, and much larger amounts of it. VC investments average several million dollars. So they tend to come later in the life of a startup, are harder to get, and come with tougher terms.
The word "venture capitalist" is sometimes used loosely for any venture investor, but there is a sharp difference between VCs and other investors: VC firms are organized as funds, much like hedge funds or mutual funds. The fund managers, who are called "general partners," get about 2% of the fund annually as a management fee, plus about 20% of the fund's gains.
There is a very sharp dropoff in performance among VC firms, because in the VC business both success and failure are self-perpetuating. When an investment scores spectacularly, as Google did for Kleiner and Sequoia, it generates a lot of good publicity for the VCs. And many founders prefer to take money from successful VC firms, because of the legitimacy it confers. Hence a vicious (for the losers) cycle: VC firms that have been doing badly will only get the deals the bigger fish have rejected, causing them to continue to do badly.
As a result, of the thousand or so VC funds in the US now, only about 50 are likely to make money, and it is very hard for a new fund to break into this group.
In a sense, the lower-tier VC firms are a bargain for founders. They may not be quite as smart or as well connected as the big-name firms, but they are much hungrier for deals. This means you should be able to get better terms from them.
Better how? The most obvious is valuation: they'll take less of your company. But as well as money, there's power. I think founders will increasingly be able to stay on as CEO, and on terms that will make it fairly hard to fire them later.
The most dramatic change, I predict, is that VCs will allow founders to cash out partially by selling some of their stock direct to the VC firm. VCs have traditionally resisted letting founders get anything before the ultimate "liquidity event." But they're also desperate for deals. And since I know from my own experience that the rule against buying stock from founders is a stupid one, this is a natural place for things to give as venture funding becomes more and more a seller's market.
The disadvantage of taking money from less known firms is that people will assume, correctly or not, that you were turned down by the more exalted ones. But, like where you went to college, the name of your VC stops mattering once you have some performance to measure. So the more confident you are, the less you need a brand-name VC. We funded Viaweb entirely with angel money; it never occurred to us that the backing of a well known VC firm would make us seem more impressive. [5]
Another danger of less known firms is that, like angels, they have less reputation to protect. I suspect it's the lower-tier firms that are responsible for most of the tricks that have given VCs such a bad reputation among hackers. They are doubly hosed: the general partners themselves are less able, and yet they have harder problems to solve, because the top VCs skim off all the best deals, leaving the lower-tier firms exactly the startups that are likely to blow up.
For example, lower-tier firms are much more likely to pretend to want to do a deal with you just to lock you up while they decide if they really want to. One experienced CFO said:
The better ones usually will not give a term sheet unless they really want to do a deal. The second or third tier firms have a much higher break rate-- it could be as high as 50%.
It's obvious why: the lower-tier firms' biggest fear, when chance throws them a bone, is that one of the big dogs will notice and take it away. The big dogs don't have worry about that.
Falling victim to this trick could really hurt you. As one VC told me:
If you were talking to four VCs, told three of them that you accepted a term sheet, and then have to call them back to tell them you were just kidding, you are absolutely damaged goods.
Here's a partial solution: when a VC offers you a term sheet, ask how many of their last 10 term sheets turned into deals. This will at least force them to lie outright if they want to mislead you.
Not all the people who work at VC firms are partners. Most firms also have a handful of junior employees called something like associates or analysts. If you get a call from a VC firm, go to their web site and check whether the person you talked to is a partner. Odds are it will be a junior person; they scour the web looking for startups their bosses could invest in. The junior people will tend to seem very positive about your company. They're not pretending; they want to believe you're a hot prospect, because it would be a huge coup for them if their firm invested in a company they discovered. Don't be misled by this optimism. It's the partners who decide, and they view things with a colder eye.
Because VCs invest large amounts, the money comes with more restrictions. Most only come into effect if the company gets into trouble. For example, VCs generally write it into the deal that in any sale, they get their investment back first. So if the company gets sold at a low price, the founders could get nothing. Some VCs now require that in any sale they get 4x their investment back before the common stock holders (that is, you) get anything, but this is an abuse that should be resisted.
Another difference with large investments is that the founders are usually required to accept "vesting"-- to surrender their stock and earn it back over the next 4-5 years. VCs don't want to invest millions in a company the founders could just walk away from. Financially, vesting has little effect, but in some situations it could mean founders will have less power. If VCs got de facto control of the company and fired one of the founders, he'd lose any unvested stock unless there was specific protection against this. So vesting would in that situation force founders to toe the line.
The most noticeable change when a startup takes serious funding is that the founders will no longer have complete control. Ten years ago VCs used to insist that founders step down as CEO and hand the job over to a business guy they supplied. This is less the rule now, partly because the disasters of the Bubble showed that generic business guys don't make such great CEOs.
But while founders will increasingly be able to stay on as CEO, they'll have to cede some power, because the board of directors will become more powerful. In the seed stage, the board is generally a formality; if you want to talk to the other board members, you just yell into the next room. This stops with VC-scale money. In a typical VC funding deal, the board of directors might be composed of two VCs, two founders, and one outside person acceptable to both. The board will have ultimate power, which means the founders now have to convince instead of commanding.
This is not as bad as it sounds, however. Bill Gates is in the same position; he doesn't have majority control of Microsoft; in principle he also has to convince instead of commanding. And yet he seems pretty commanding, doesn't he? As long as things are going smoothly, boards don't interfere much. The danger comes when there's a bump in the road, as happened to Steve Jobs at Apple.
Like angels, VCs prefer to invest in deals that come to them through people they know. So while nearly all VC funds have some address you can send your business plan to, VCs privately admit the chance of getting funding by this route is near zero. One recently told me that he did not know a single startup that got funded this way.
I suspect VCs accept business plans "over the transom" more as a way to keep tabs on industry trends than as a source of deals. In fact, I would strongly advise against mailing your business plan randomly to VCs, because they treat this as evidence of laziness. Do the extra work of getting personal introductions. As one VC put it:
I'm not hard to find. I know a lot of people. If you can't find some way to reach me, how are you going to create a successful company?
One of the most difficult problems for startup founders is deciding when to approach VCs. You really only get one chance, because they rely heavily on first impressions. And you can't approach some and save others for later, because (a) they ask who else you've talked to and when and (b) they talk among themselves. If you're talking to one VC and he finds out that you were rejected by another several months ago, you'll definitely seem shopworn.
So when do you approach VCs? When you can convince them. If the founders have impressive resumes and the idea isn't hard to understand, you could approach VCs quite early. Whereas if the founders are unknown and the idea is very novel, you might have to launch the thing and show that users loved it before VCs would be convinced.
If several VCs are interested in you, they will sometimes be willing to split the deal between them. They're more likely to do this if they're close in the VC pecking order. Such deals may be a net win for founders, because you get multiple VCs interested in your success, and you can ask each for advice about the other. One founder I know wrote:
Two-firm deals are great. It costs you a little more equity, but being able to play the two firms off each other (as well as ask one if the other is being out of line) is invaluable.
When you do negotiate with VCs, remember that they've done this a lot more than you have. They've invested in dozens of startups, whereas this is probably the first you've founded. But don't let them or the situation intimidate you. The average founder is smarter than the average VC. So just do what you'd do in any complex, unfamiliar situation: proceed deliberately, and question anything that seems odd.
It is, unfortunately, common for VCs to put terms in an agreement whose consequences surprise founders later, and also common for VCs to defend things they do by saying that they're standard in the industry. Standard, schmandard; the whole industry is only a few decades old, and rapidly evolving. The concept of "standard" is a useful one when you're operating on a small scale (Y Combinator uses identical terms for every deal because for tiny seed-stage investments it's not worth the overhead of negotiating individual deals), but it doesn't apply at the VC level. On that scale, every negotiation is unique.
Most successful startups get money from more than one of the preceding five sources. [6] And, confusingly, the names of funding sources also tend to be used as the names of different rounds. The best way to explain how it all works is to follow the case of a hypothetical startup.
Stage 1: Seed Round
Our startup begins when a group of three friends have an idea-- either an idea for something they might build, or simply the idea "let's start a company." Presumably they already have some source of food and shelter. But if you have food and shelter, you probably also have something you're supposed to be working on: either classwork, or a job. So if you want to work full-time on a startup, your money situation will probably change too.
A lot of startup founders say they started the company without any idea of what they planned to do. This is actually less common than it seems: many have to claim they thought of the idea after quitting because otherwise their former employer would own it.
The three friends decide to take the leap. Since most startups are in competitive businesses, you not only want to work full-time on them, but more than full-time. So some or all of the friends quit their jobs or leave school. (Some of the founders in a startup can stay in grad school, but at least one has to make the company his full-time job.)
They're going to run the company out of one of their apartments at first, and since they don't have any users they don't have to pay much for infrastructure. Their main expenses are setting up the company, which costs a couple thousand dollars in legal work and registration fees, and the living expenses of the founders.
The phrase "seed investment" covers a broad range. To some VC firms it means $500,000, but to most startups it means several months' living expenses. We'll suppose our group of friends start with $15,000 from their friend's rich uncle, who they give 5% of the company in return. There's only common stock at this stage. They leave 20% as an options pool for later employees (but they set things up so that they can issue this stock to themselves if they get bought early and most is still unissued), and the three founders each get 25%.
By living really cheaply they think they can make the remaining money last five months. When you have five months' runway left, how soon do you need to start looking for your next round? Answer: immediately. It takes time to find investors, and time (always more than you expect) for the deal to close even after they say yes. So if our group of founders know what they're doing they'll start sniffing around for angel investors right away. But of course their main job is to build version 1 of their software.
The friends might have liked to have more money in this first phase, but being slightly underfunded teaches them an important lesson. For a startup, cheapness is power. The lower your costs, the more options you have-- not just at this stage, but at every point till you're profitable. When you have a high "burn rate," you're always under time pressure, which means (a) you don't have time for your ideas to evolve, and (b) you're often forced to take deals you don't like.
Every startup's rule should be: spend little, and work fast.
After ten weeks' work the three friends have built a prototype that gives one a taste of what their product will do. It's not what they originally set out to do-- in the process of writing it, they had some new ideas. And it only does a fraction of what the finished product will do, but that fraction includes stuff that no one else has done before.
They've also written at least a skeleton business plan, addressing the five fundamental questions: what they're going to do, why users need it, how large the market is, how they'll make money, and who the competitors are and why this company is going to beat them. (That last has to be more specific than "they suck" or "we'll work really hard.")
If you have to choose between spending time on the demo or the business plan, spend most on the demo. Software is not only more convincing, but a better way to explore ideas.
Stage 2: Angel Round
While writing the prototype, the group has been traversing their network of friends in search of angel investors. They find some just as the prototype is demoable. When they demo it, one of the angels is willing to invest. Now the group is looking for more money: they want enough to last for a year, and maybe to hire a couple friends. So they're going to raise $200,000.
The angel agrees to invest at a pre-money valuation of $1 million. The company issues $200,000 worth of new shares to the angel; if there were 1000 shares before the deal, this means 200 additional shares. The angel now owns 200/1200 shares, or a sixth of the company, and all the previous shareholders' percentage ownership is diluted by a sixth. After the deal, the capitalization table looks like this:
shareholder shares percent ------------------------------- angel 200 16.7 uncle 50 4.2 each founder 250 20.8 option pool 200 16.7 ---- ----- total 1200 100
To keep things simple, I had the angel do a straight cash for stock deal. In reality the angel might be more likely to make the investment in the form of a convertible loan. A convertible loan is a loan that can be converted into stock later; it works out the same as a stock purchase in the end, but gives the angel more protection against being squashed by VCs in future rounds.
Who pays the legal bills for this deal? The startup, remember, only has a couple thousand left. In practice this turns out to be a sticky problem that usually gets solved in some improvised way. Maybe the startup can find lawyers who will do it cheaply in the hope of future work if the startup succeeds. Maybe someone has a lawyer friend. Maybe the angel pays for his lawyer to represent both sides. (Make sure if you take the latter route that the lawyer is representing you rather than merely advising you, or his only duty is to the investor.)
An angel investing $200k would probably expect a seat on the board of directors. He might also want preferred stock, meaning a special class of stock that has some additional rights over the common stock everyone else has. Typically these rights include vetoes over major strategic decisions, protection against being diluted in future rounds, and the right to get one's investment back first if the company is sold.
Some investors might expect the founders to accept vesting for a sum this size, and others wouldn't. VCs are more likely to require vesting than angels. At Viaweb we managed to raise $2.5 million from angels without ever accepting vesting, largely because we were so inexperienced that we were appalled at the idea. In practice this turned out to be good, because it made us harder to push around.
Our experience was unusual; vesting is the norm for amounts that size. Y Combinator doesn't require vesting, because (a) we invest such small amounts, and (b) we think it's unnecessary, and that the hope of getting rich is enough motivation to keep founders at work. But maybe if we were investing millions we would think differently.
I should add that vesting is also a way for founders to protect themselves against one another. It solves the problem of what to do if one of the founders quits. So some founders impose it on themselves when they start the company.
The angel deal takes two weeks to close, so we are now three months into the life of the company.
The point after you get the first big chunk of angel money will usually be the happiest phase in a startup's life. It's a lot like being a postdoc: you have no immediate financial worries, and few responsibilities. You get to work on juicy kinds of work, like designing software. You don't have to spend time on bureaucratic stuff, because you haven't hired any bureaucrats yet. Enjoy it while it lasts, and get as much done as you can, because you will never again be so productive.
With an apparently inexhaustible sum of money sitting safely in the bank, the founders happily set to work turning their prototype into something they can release. They hire one of their friends-- at first just as a consultant, so they can try him out-- and then a month later as employee #1. They pay him the smallest salary he can live on, plus 3% of the company in restricted stock, vesting over four years. (So after this the option pool is down to 13.7%). [7] They also spend a little money on a freelance graphic designer.
How much stock do you give early employees? That varies so much that there's no conventional number. If you get someone really good, really early, it might be wise to give him as much stock as the founders. The one universal rule is that the amount of stock an employee gets decreases polynomially with the age of the company. In other words, you get rich as a power of how early you were. So if some friends want you to come work for their startup, don't wait several months before deciding.
A month later, at the end of month four, our group of founders have something they can launch. Gradually through word of mouth they start to get users. Seeing the system in use by real users-- people they don't know-- gives them lots of new ideas. Also they find they now worry obsessively about the status of their server. (How relaxing founders' lives must have been when startups wrote VisiCalc.)
By the end of month six, the system is starting to have a solid core of features, and a small but devoted following. People start to write about it, and the founders are starting to feel like experts in their field.
We'll assume that their startup is one that could put millions more to use. Perhaps they need to spend a lot on marketing, or build some kind of expensive infrastructure, or hire highly paid salesmen. So they decide to start talking to VCs. They get introductions to VCs from various sources: their angel investor connects them with a couple; they meet a few at conferences; a couple VCs call them after reading about them.
Step 3: Series A Round
Armed with their now somewhat fleshed-out business plan and able to demo a real, working system, the founders visit the VCs they have introductions to. They find the VCs intimidating and inscrutable. They all ask the same question: who else have you pitched to? (VCs are like high school girls: they're acutely aware of their position in the VC pecking order, and their interest in a company is a function of the interest other VCs show in it.)
One of the VC firms says they want to invest and offers the founders a term sheet. A term sheet is a summary of what the deal terms will be when and if they do a deal; lawyers will fill in the details later. By accepting the term sheet, the startup agrees to turn away other VCs for some set amount of time while this firm does the "due diligence" required for the deal. Due diligence is the corporate equivalent of a background check: the purpose is to uncover any hidden bombs that might sink the company later, like serious design flaws in the product, pending lawsuits against the company, intellectual property issues, and so on. VCs' legal and financial due diligence is pretty thorough, but the technical due diligence is generally a joke. [8]
The due diligence discloses no ticking bombs, and six weeks later they go ahead with the deal. Here are the terms: a $2 million investment at a pre-money valuation of $4 million, meaning that after the deal closes the VCs will own a third of the company (2 / (4 + 2)). The VCs also insist that prior to the deal the option pool be enlarged by an additional hundred shares. So the total number of new shares issued is 750, and the cap table becomes:
shareholder shares percent ------------------------------- VCs 650 33.3 angel 200 10.3 uncle 50 2.6 each founder 250 12.8 employee 36* 1.8 *unvested option pool 264 13.5 ---- ----- total 1950 100
This picture is unrealistic in several respects. For example, while the percentages might end up looking like this, it's unlikely that the VCs would keep the existing numbers of shares. In fact, every bit of the startup's paperwork would probably be replaced, as if the company were being founded anew. Also, the money might come in several tranches, the later ones subject to various conditions-- though this is apparently more common in deals with lower-tier VCs (whose lot in life is to fund more dubious startups) than with the top firms.
And of course any VCs reading this are probably rolling on the floor laughing at how my hypothetical VCs let the angel keep his 10.3 of the company. I admit, this is the Bambi version; in simplifying the picture, I've also made everyone nicer. In the real world, VCs regard angels the way a jealous husband feels about his wife's previous boyfriends. To them the company didn't exist before they invested in it. [9]
I don't want to give the impression you have to do an angel round before going to VCs. In this example I stretched things out to show multiple sources of funding in action. Some startups could go directly from seed funding to a VC round; one of the companies in the 2005 SFP did.
The founders are required to vest their shares over four years, and the board is now reconstituted to consist of two VCs, two founders, and a fifth person acceptable to both. The angel investor cheerfully surrenders his board seat.
At this point there is nothing new our startup can teach us about funding-- or at least, nothing good. [10] The startup will almost certainly hire more people at this point; those millions must be put to work, after all. The company may do additional funding rounds, presumably at higher valuations. They may if they are extraordinarily fortunate do an IPO, which we should remember is also in principle a round of funding, regardless of its de facto purpose. But that, if not beyond the bounds of possibility, is beyond the scope of this article.
Deals Fall Through
Anyone who's been through a startup will find the preceding portrait to be missing something: disasters. If there's one thing all startups have in common, it's that something is always going wrong. And nowhere more than in matters of funding.
For example, our hypothetical startup never spent more than half of one round before securing the next. That's more ideal than typical. Many startups-- even successful ones-- come close to running out of money at some point. Terrible things happen to startups when they run out of money, because they're designed for growth, not adversity.
But the most unrealistic thing about the series of deals I've described is that they all closed. In the startup world, closing is not what deals do. What deals do is fall through. If you're starting a startup you would do well to remember that. Birds fly; fish swim; deals fall through.

Why? Partly the reason deals seem to fall through so often is that you lie to yourself. You want the deal to close, so you start to believe it will. But even correcting for this, startup deals fall through alarmingly often-- far more often than, say, deals to buy real estate. The reason is that it's such a risky environment. People about to fund or acquire a startup are prone to wicked cases of buyer's remorse. They don't really grasp the risk they're taking till the deal's about to close. And then they panic. And not just inexperienced angel investors, but big companies too.
So if you're a startup founder wondering why some angel investor isn't returning your phone calls, you can at least take comfort in the thought that the same thing is happening to other deals a hundred times the size.
The example of a startup's history that I've presented is like a skeleton-- accurate so far as it goes, but needing to be fleshed out to be a complete picture. To get a complete picture, just add in every possible disaster.
A frightening prospect? In a way. And yet also in a way encouraging. The very uncertainty of startups frightens away almost everyone. People overvalue stability-- especially young people, who ironically need it least. And so in starting a startup, as in any really bold undertaking, merely deciding to do it gets you halfway there. On the day of the race, most of the other runners won't show up.
Notes
[1] The aim of such regulations is to protect widows and orphans from crooked investment schemes; people with a million dollars in liquid assets are assumed to be able to protect themselves. The unintended consequence is that the investments that generate the highest returns, like hedge funds, are available only to the rich.
[2] Consulting is where product companies go to die. IBM is the most famous example. So starting as a consulting company is like starting out in the grave and trying to work your way up into the world of the living.
[3] If "near you" doesn't mean the Bay Area, Boston, or Seattle, consider moving. It's not a coincidence you haven't heard of many startups from Philadelphia.
[4] Investors are often compared to sheep. And they are like sheep, but that's a rational response to their situation. Sheep act the way they do for a reason. If all the other sheep head for a certain field, it's probably good grazing. And when a wolf appears, is he going to eat a sheep in the middle of the flock, or one near the edge?
[5] This was partly confidence, and partly simple ignorance. We didn't know ourselves which VC firms were the impressive ones. We thought software was all that mattered. But that turned out to be the right direction to be naive in: it's much better to overestimate than underestimate the importance of making a good product.
[6] I've omitted one source: government grants. I don't think these are even worth thinking about for the average startup. Governments may mean well when they set up grant programs to encourage startups, but what they give with one hand they take away with the other: the process of applying is inevitably so arduous, and the restrictions on what you can do with the money so burdensome, that it would be easier to take a job to get the money.
You should be especially suspicious of grants whose purpose is some kind of social engineering-- e.g. to encourage more startups to be started in Mississippi. Free money to start a startup in a place where few succeed is hardly free.
Some government agencies run venture funding groups, which make investments rather than giving grants. For example, the CIA runs a venture fund called In-Q-Tel that is modelled on private sector funds and apparently generates good returns. They would probably be worth approaching-- if you don't mind taking money from the CIA.
[7] Options have largely been replaced with restricted stock, which amounts to the same thing. Instead of earning the right to buy stock, the employee gets the stock up front, and earns the right not to have to give it back. The shares set aside for this purpose are still called the "option pool."
[8] First-rate technical people do not generally hire themselves out to do technical due diligence for VCs. So the most difficult part for startup founders is often responding politely to the inane questions of the "expert" they send to look you over.
[9] VCs regularly wipe out angels by issuing arbitrary amounts of new stock. They seem to have a standard piece of casuistry for this situation: that the angels are no longer working to help the company, and so don't deserve to keep their stock. This of course reflects a willful misunderstanding of what investment means; like any investor, the angel is being compensated for risks he took earlier. By a similar logic, one could argue that the VCs should be deprived of their shares when the company goes public.
[10] One new thing the company might encounter is a down round, or a funding round at valuation lower than the previous round. Down rounds are bad news; it is generally the common stock holders who take the hit. Some of the most fearsome provisions in VC deal terms have to do with down rounds-- like "full ratchet anti-dilution," which is as frightening as it sounds.
Founders are tempted to ignore these clauses, because they think the company will either be a big success or a complete bust. VCs know otherwise: it's not uncommon for startups to have moments of adversity before they ultimately succeed. So it's worth negotiating anti-dilution provisions, even though you don't think you need to, and VCs will try to make you feel that you're being gratuitously troublesome.
Thanks to Sam Altman, Hutch Fishman, Steve Huffman, Jessica Livingston, Sesha Pratap, Stan Reiss, Andy Singleton, Zak Stone, and Aaron Swartz for reading drafts of this.

Web 2.0

Does "Web 2.0" mean anything? Till recently I thought it didn't, but the truth turns out to be more complicated. Originally, yes, it was meaningless. Now it seems to have acquired a meaning. And yet those who dislike the term are probably right, because if it means what I think it does, we don't need it.
I first heard the phrase "Web 2.0" in the name of the Web 2.0 conference in 2004. At the time it was supposed to mean using "the web as a platform," which I took to refer to web-based applications. [1]
So I was surprised at a conference this summer when Tim O'Reilly led a session intended to figure out a definition of "Web 2.0." Didn't it already mean using the web as a platform? And if it didn't already mean something, why did we need the phrase at all?
Origins
Tim says the phrase "Web 2.0" first arose in "a brainstorming session between O'Reilly and Medialive International." What is Medialive International? "Producers of technology tradeshows and conferences," according to their site. So presumably that's what this brainstorming session was about. O'Reilly wanted to organize a conference about the web, and they were wondering what to call it.
I don't think there was any deliberate plan to suggest there was a new version of the web. They just wanted to make the point that the web mattered again. It was a kind of semantic deficit spending: they knew new things were coming, and the "2.0" referred to whatever those might turn out to be.
And they were right. New things were coming. But the new version number led to some awkwardness in the short term. In the process of developing the pitch for the first conference, someone must have decided they'd better take a stab at explaining what that "2.0" referred to. Whatever it meant, "the web as a platform" was at least not too constricting.
The story about "Web 2.0" meaning the web as a platform didn't live much past the first conference. By the second conference, what "Web 2.0" seemed to mean was something about democracy. At least, it did when people wrote about it online. The conference itself didn't seem very grassroots. It cost $2800, so the only people who could afford to go were VCs and people from big companies.
And yet, oddly enough, Ryan Singel's article about the conference in Wired News spoke of "throngs of geeks." When a friend of mine asked Ryan about this, it was news to him. He said he'd originally written something like "throngs of VCs and biz dev guys" but had later shortened it just to "throngs," and that this must have in turn been expanded by the editors into "throngs of geeks." After all, a Web 2.0 conference would presumably be full of geeks, right?
Well, no. There were about 7. Even Tim O'Reilly was wearing a suit, a sight so alien I couldn't even parse it at first. I saw him walk by and said to one of the O'Reilly people "that guy looks just like Tim."
"Oh, that's Tim. He bought a suit."
I ran after him, and sure enough, it was. He explained that he'd just bought it in Thailand.
The 2005 Web 2.0 conference reminded me of Internet trade shows during the Bubble, full of prowling VCs looking for the next hot startup. There was that same odd atmosphere created by a large number of people determined not to miss out. Miss out on what? They didn't know. Whatever was going to happen-- whatever Web 2.0 turned out to be.
I wouldn't quite call it "Bubble 2.0" just because VCs are eager to invest again. The Internet is a genuinely big deal. The bust was as much an overreaction as the boom. It's to be expected that once we started to pull out of the bust, there would be a lot of growth in this area, just as there was in the industries that spiked the sharpest before the Depression.
The reason this won't turn into a second Bubble is that the IPO market is gone. Venture investors are driven by exit strategies. The reason they were funding all those laughable startups during the late 90s was that they hoped to sell them to gullible retail investors; they hoped to be laughing all the way to the bank. Now that route is closed. Now the default exit strategy is to get bought, and acquirers are less prone to irrational exuberance than IPO investors. The closest you'll get to Bubble valuations is Rupert Murdoch paying $580 million for Myspace. That's only off by a factor of 10 or so.
1. Ajax
Does "Web 2.0" mean anything more than the name of a conference yet? I don't like to admit it, but it's starting to. When people say "Web 2.0" now, I have some idea what they mean. And the fact that I both despise the phrase and understand it is the surest proof that it has started to mean something.
One ingredient of its meaning is certainly Ajax, which I can still only just bear to use without scare quotes. Basically, what "Ajax" means is "Javascript now works." And that in turn means that web-based applications can now be made to work much more like desktop ones.
As you read this, a whole new generation of software is being written to take advantage of Ajax. There hasn't been such a wave of new applications since microcomputers first appeared. Even Microsoft sees it, but it's too late for them to do anything more than leak "internal" documents designed to give the impression they're on top of this new trend.
In fact the new generation of software is being written way too fast for Microsoft even to channel it, let alone write their own in house. Their only hope now is to buy all the best Ajax startups before Google does. And even that's going to be hard, because Google has as big a head start in buying microstartups as it did in search a few years ago. After all, Google Maps, the canonical Ajax application, was the result of a startup they bought.
So ironically the original description of the Web 2.0 conference turned out to be partially right: web-based applications are a big component of Web 2.0. But I'm convinced they got this right by accident. The Ajax boom didn't start till early 2005, when Google Maps appeared and the term "Ajax" was coined.
2. Democracy
The second big element of Web 2.0 is democracy. We now have several examples to prove that amateurs can surpass professionals, when they have the right kind of system to channel their efforts. Wikipedia may be the most famous. Experts have given Wikipedia middling reviews, but they miss the critical point: it's good enough. And it's free, which means people actually read it. On the web, articles you have to pay for might as well not exist. Even if you were willing to pay to read them yourself, you can't link to them. They're not part of the conversation.
Another place democracy seems to win is in deciding what counts as news. I never look at any news site now except Reddit. [2] I know if something major happens, or someone writes a particularly interesting article, it will show up there. Why bother checking the front page of any specific paper or magazine? Reddit's like an RSS feed for the whole web, with a filter for quality. Similar sites include Digg, a technology news site that's rapidly approaching Slashdot in popularity, and del.icio.us, the collaborative bookmarking network that set off the "tagging" movement. And whereas Wikipedia's main appeal is that it's good enough and free, these sites suggest that voters do a significantly better job than human editors.
The most dramatic example of Web 2.0 democracy is not in the selection of ideas, but their production. I've noticed for a while that the stuff I read on individual people's sites is as good as or better than the stuff I read in newspapers and magazines. And now I have independent evidence: the top links on Reddit are generally links to individual people's sites rather than to magazine articles or news stories.
My experience of writing for magazines suggests an explanation. Editors. They control the topics you can write about, and they can generally rewrite whatever you produce. The result is to damp extremes. Editing yields 95th percentile writing-- 95% of articles are improved by it, but 5% are dragged down. 5% of the time you get "throngs of geeks."
On the web, people can publish whatever they want. Nearly all of it falls short of the editor-damped writing in print publications. But the pool of writers is very, very large. If it's large enough, the lack of damping means the best writing online should surpass the best in print. [3] And now that the web has evolved mechanisms for selecting good stuff, the web wins net. Selection beats damping, for the same reason market economies beat centrally planned ones.
Even the startups are different this time around. They are to the startups of the Bubble what bloggers are to the print media. During the Bubble, a startup meant a company headed by an MBA that was blowing through several million dollars of VC money to "get big fast" in the most literal sense. Now it means a smaller, younger, more technical group that just decided to make something great. They'll decide later if they want to raise VC-scale funding, and if they take it, they'll take it on their terms.
3. Don't Maltreat Users
I think everyone would agree that democracy and Ajax are elements of "Web 2.0." I also see a third: not to maltreat users. During the Bubble a lot of popular sites were quite high-handed with users. And not just in obvious ways, like making them register, or subjecting them to annoying ads. The very design of the average site in the late 90s was an abuse. Many of the most popular sites were loaded with obtrusive branding that made them slow to load and sent the user the message: this is our site, not yours. (There's a physical analog in the Intel and Microsoft stickers that come on some laptops.)
I think the root of the problem was that sites felt they were giving something away for free, and till recently a company giving anything away for free could be pretty high-handed about it. Sometimes it reached the point of economic sadism: site owners assumed that the more pain they caused the user, the more benefit it must be to them. The most dramatic remnant of this model may be at salon.com, where you can read the beginning of a story, but to get the rest you have sit through a movie.
At Y Combinator we advise all the startups we fund never to lord it over users. Never make users register, unless you need to in order to store something for them. If you do make users register, never make them wait for a confirmation link in an email; in fact, don't even ask for their email address unless you need it for some reason. Don't ask them any unnecessary questions. Never send them email unless they explicitly ask for it. Never frame pages you link to, or open them in new windows. If you have a free version and a pay version, don't make the free version too restricted. And if you find yourself asking "should we allow users to do x?" just answer "yes" whenever you're unsure. Err on the side of generosity.
In How to Start a Startup I advised startups never to let anyone fly under them, meaning never to let any other company offer a cheaper, easier solution. Another way to fly low is to give users more power. Let users do what they want. If you don't and a competitor does, you're in trouble.
iTunes is Web 2.0ish in this sense. Finally you can buy individual songs instead of having to buy whole albums. The recording industry hated the idea and resisted it as long as possible. But it was obvious what users wanted, so Apple flew under the labels. [4] Though really it might be better to describe iTunes as Web 1.5. Web 2.0 applied to music would probably mean individual bands giving away DRMless songs for free.
The ultimate way to be nice to users is to give them something for free that competitors charge for. During the 90s a lot of people probably thought we'd have some working system for micropayments by now. In fact things have gone in the other direction. The most successful sites are the ones that figure out new ways to give stuff away for free. Craigslist has largely destroyed the classified ad sites of the 90s, and OkCupid looks likely to do the same to the previous generation of dating sites.
Serving web pages is very, very cheap. If you can make even a fraction of a cent per page view, you can make a profit. And technology for targeting ads continues to improve. I wouldn't be surprised if ten years from now eBay had been supplanted by an ad-supported freeBay (or, more likely, gBay).
Odd as it might sound, we tell startups that they should try to make as little money as possible. If you can figure out a way to turn a billion dollar industry into a fifty million dollar industry, so much the better, if all fifty million go to you. Though indeed, making things cheaper often turns out to generate more money in the end, just as automating things often turns out to generate more jobs.
The ultimate target is Microsoft. What a bang that balloon is going to make when someone pops it by offering a free web-based alternative to MS Office. [5] Who will? Google? They seem to be taking their time. I suspect the pin will be wielded by a couple of 20 year old hackers who are too naive to be intimidated by the idea. (How hard can it be?)
The Common Thread
Ajax, democracy, and not dissing users. What do they all have in common? I didn't realize they had anything in common till recently, which is one of the reasons I disliked the term "Web 2.0" so much. It seemed that it was being used as a label for whatever happened to be new-- that it didn't predict anything.
But there is a common thread. Web 2.0 means using the web the way it's meant to be used. The "trends" we're seeing now are simply the inherent nature of the web emerging from under the broken models that got imposed on it during the Bubble.
I realized this when I read an as-yet unpublished interview with Joe Kraus, the co-founder of Excite. [6]
Excite really never got the business model right at all. We fell into the classic problem of how when a new medium comes out it adopts the practices, the content, the business models of the old medium-- which fails, and then the more appropriate models get figured out.
It may have seemed as if not much was happening during the years after the Bubble burst. But in retrospect, something was happening: the web was finding its natural angle of repose. The democracy component, for example-- that's not an innovation, in the sense of something someone made happen. That's what the web naturally tends to produce.
Ditto for the idea of delivering desktop-like applications over the web. That idea is almost as old as the web. But the first time around it was co-opted by Sun, and we got Java applets. Java has since been remade into a generic replacement for C++, but in 1996 the story about Java was that it represented a new model of software. Instead of desktop applications, you'd run Java "applets" delivered from a server.
This plan collapsed under its own weight. Microsoft helped kill it, but it would have died anyway. There was no uptake among hackers. When you find PR firms promoting something as the next development platform, you can be sure it's not. If it were, you wouldn't need PR firms to tell you, because hackers would already be writing stuff on top of it, the way sites like Busmonster used Google Maps as a platform before Google even meant it to be one.
The proof that Ajax is the next hot platform is that thousands of hackers have spontaneously started building things on top of it. Mikey likes it.
There's another thing all three components of Web 2.0 have in common. Here's a clue. Suppose you approached investors with the following idea for a Web 2.0 startup:
Sites like del.icio.us and flickr allow users to "tag" content with descriptive tokens. But there is also huge source of implicit tags that they ignore: the text within web links. Moreover, these links represent a social network connecting the individuals and organizations who created the pages, and by using graph theory we can compute from this network an estimate of the reputation of each member. We plan to mine the web for these implicit tags, and use them together with the reputation hierarchy they embody to enhance web searches.
How long do you think it would take them on average to realize that it was a description of Google?
Google was a pioneer in all three components of Web 2.0: their core business sounds crushingly hip when described in Web 2.0 terms, "Don't maltreat users" is a subset of "Don't be evil," and of course Google set off the whole Ajax boom with Google Maps.
Web 2.0 means using the web as it was meant to be used, and Google does. That's their secret. The web naturally has a certain grain, and Google is aligned with it. That's why their success seems so effortless. They're sailing with the wind, instead of sitting becalmed praying for a business model, like the print media, or trying to tack upwind by suing their customers, like Microsoft and the record labels. [7]
Google doesn't try to force things to happen their way. They try to figure out what's going to happen, and arrange to be standing there when it does. That's the way to approach technology-- and as business includes an ever larger technological component, the right way to do business.
The fact that Google is a "Web 2.0" company shows that, while meaningful, the term is also rather bogus. It's like the word "allopathic." It just means doing things right, and it's a bad sign when you have a special word for that.
Notes
[1] From the conference site, June 2004: "While the first wave of the Web was closely tied to the browser, the second wave extends applications across the web and enables a new generation of services and business opportunities." To the extent this means anything, it seems to be about web-based applications.
[2] Disclosure: Reddit was funded by Y Combinator. But although I started using it out of loyalty to the home team, I've become a genuine addict. While we're at it, I'm also an investor in !MSFT, having sold all my shares earlier this year.
[3] I'm not against editing. I spend more time editing than writing, and I have a group of picky friends who proofread almost everything I write. What I dislike is editing done after the fact by someone else.
[4] Obvious is an understatement. Users had been climbing in through the window for years before Apple finally moved the door.
[5] Hint: the way to create a web-based alternative to Office may not be to write every component yourself, but to establish a protocol for web-based apps to share a virtual home directory spread across multiple servers. Or it may be to write it all yourself.
[6] The interview is from Jessica Livingston's Founders at Work, to be published by O'Reilly in 2006.
[7] Microsoft didn't sue their customers directly, but they seem to have done all they could to help SCO sue them.
Thanks to Trevor Blackwell, Sarah Harlin, Jessica Livingston, Peter Norvig, Aaron Swartz, and Jeff Weiner for reading drafts of this, and to the guys at O'Reilly and Adaptive Path for answering my questions.

How to Make Wealth

If you wanted to get rich, how would you do it? I think your best bet would be to start or join a startup. That's been a reliable way to get rich for hundreds of years. The word "startup" dates from the 1960s, but what happens in one is very similar to the venture-backed trading voyages of the Middle Ages.
Startups usually involve technology, so much so that the phrase "high-tech startup" is almost redundant. A startup is a small company that takes on a hard technical problem.
Lots of people get rich knowing nothing more than that. You don't have to know physics to be a good pitcher. But I think it could give you an edge to understand the underlying principles. Why do startups have to be small? Will a startup inevitably stop being a startup as it grows larger? And why do they so often work on developing new technology? Why are there so many startups selling new drugs or computer software, and none selling corn oil or laundry detergent?
The Proposition
Economically, you can think of a startup as a way to compress your whole working life into a few years. Instead of working at a low intensity for forty years, you work as hard as you possibly can for four. This pays especially well in technology, where you earn a premium for working fast.
Here is a brief sketch of the economic proposition. If you're a good hacker in your mid twenties, you can get a job paying about $80,000 per year. So on average such a hacker must be able to do at least $80,000 worth of work per year for the company just to break even. You could probably work twice as many hours as a corporate employee, and if you focus you can probably get three times as much done in an hour. [1] You should get another multiple of two, at least, by eliminating the drag of the pointy-haired middle manager who would be your boss in a big company. Then there is one more multiple: how much smarter are you than your job description expects you to be? Suppose another multiple of three. Combine all these multipliers, and I'm claiming you could be 36 times more productive than you're expected to be in a random corporate job. [2] If a fairly good hacker is worth $80,000 a year at a big company, then a smart hacker working very hard without any corporate bullshit to slow him down should be able to do work worth about $3 million a year.
Like all back-of-the-envelope calculations, this one has a lot of wiggle room. I wouldn't try to defend the actual numbers. But I stand by the structure of the calculation. I'm not claiming the multiplier is precisely 36, but it is certainly more than 10, and probably rarely as high as 100.
If $3 million a year seems high, remember that we're talking about the limit case: the case where you not only have zero leisure time but indeed work so hard that you endanger your health.
Startups are not magic. They don't change the laws of wealth creation. They just represent a point at the far end of the curve. There is a conservation law at work here: if you want to make a million dollars, you have to endure a million dollars' worth of pain. For example, one way to make a million dollars would be to work for the Post Office your whole life, and save every penny of your salary. Imagine the stress of working for the Post Office for fifty years. In a startup you compress all this stress into three or four years. You do tend to get a certain bulk discount if you buy the economy-size pain, but you can't evade the fundamental conservation law. If starting a startup were easy, everyone would do it.
Millions, not Billions
If $3 million a year seems high to some people, it will seem low to others. Three million? How do I get to be a billionaire, like Bill Gates?
So let's get Bill Gates out of the way right now. It's not a good idea to use famous rich people as examples, because the press only write about the very richest, and these tend to be outliers. Bill Gates is a smart, determined, and hardworking man, but you need more than that to make as much money as he has. You also need to be very lucky.
There is a large random factor in the success of any company. So the guys you end up reading about in the papers are the ones who are very smart, totally dedicated, and win the lottery. Certainly Bill is smart and dedicated, but Microsoft also happens to have been the beneficiary of one of the most spectacular blunders in the history of business: the licensing deal for DOS. No doubt Bill did everything he could to steer IBM into making that blunder, and he has done an excellent job of exploiting it, but if there had been one person with a brain on IBM's side, Microsoft's future would have been very different. Microsoft at that stage had little leverage over IBM. They were effectively a component supplier. If IBM had required an exclusive license, as they should have, Microsoft would still have signed the deal. It would still have meant a lot of money for them, and IBM could easily have gotten an operating system elsewhere.
Instead IBM ended up using all its power in the market to give Microsoft control of the PC standard. From that point, all Microsoft had to do was execute. They never had to bet the company on a bold decision. All they had to do was play hardball with licensees and copy more innovative products reasonably promptly.
If IBM hadn't made this mistake, Microsoft would still have been a successful company, but it could not have grown so big so fast. Bill Gates would be rich, but he'd be somewhere near the bottom of the Forbes 400 with the other guys his age.
There are a lot of ways to get rich, and this essay is about only one of them. This essay is about how to make money by creating wealth and getting paid for it. There are plenty of other ways to get money, including chance, speculation, marriage, inheritance, theft, extortion, fraud, monopoly, graft, lobbying, counterfeiting, and prospecting. Most of the greatest fortunes have probably involved several of these.
The advantage of creating wealth, as a way to get rich, is not just that it's more legitimate (many of the other methods are now illegal) but that it's more straightforward. You just have to do something people want.
Money Is Not Wealth
If you want to create wealth, it will help to understand what it is. Wealth is not the same thing as money. [3] Wealth is as old as human history. Far older, in fact; ants have wealth. Money is a comparatively recent invention.
Wealth is the fundamental thing. Wealth is stuff we want: food, clothes, houses, cars, gadgets, travel to interesting places, and so on. You can have wealth without having money. If you had a magic machine that could on command make you a car or cook you dinner or do your laundry, or do anything else you wanted, you wouldn't need money. Whereas if you were in the middle of Antarctica, where there is nothing to buy, it wouldn't matter how much money you had.
Wealth is what you want, not money. But if wealth is the important thing, why does everyone talk about making money? It is a kind of shorthand: money is a way of moving wealth, and in practice they are usually interchangeable. But they are not the same thing, and unless you plan to get rich by counterfeiting, talking about making money can make it harder to understand how to make money.
Money is a side effect of specialization. In a specialized society, most of the things you need, you can't make for yourself. If you want a potato or a pencil or a place to live, you have to get it from someone else.
How do you get the person who grows the potatoes to give you some? By giving him something he wants in return. But you can't get very far by trading things directly with the people who need them. If you make violins, and none of the local farmers wants one, how will you eat?
The solution societies find, as they get more specialized, is to make the trade into a two-step process. Instead of trading violins directly for potatoes, you trade violins for, say, silver, which you can then trade again for anything else you need. The intermediate stuff-- the medium of exchange-- can be anything that's rare and portable. Historically metals have been the most common, but recently we've been using a medium of exchange, called the dollar, that doesn't physically exist. It works as a medium of exchange, however, because its rarity is guaranteed by the U.S. Government.
The advantage of a medium of exchange is that it makes trade work. The disadvantage is that it tends to obscure what trade really means. People think that what a business does is make money. But money is just the intermediate stage-- just a shorthand-- for whatever people want. What most businesses really do is make wealth. They do something people want. [4]
The Pie Fallacy
A surprising number of people retain from childhood the idea that there is a fixed amount of wealth in the world. There is, in any normal family, a fixed amount of money at any moment. But that's not the same thing.
When wealth is talked about in this context, it is often described as a pie. "You can't make the pie larger," say politicians. When you're talking about the amount of money in one family's bank account, or the amount available to a government from one year's tax revenue, this is true. If one person gets more, someone else has to get less.
I can remember believing, as a child, that if a few rich people had all the money, it left less for everyone else. Many people seem to continue to believe something like this well into adulthood. This fallacy is usually there in the background when you hear someone talking about how x percent of the population have y percent of the wealth. If you plan to start a startup, then whether you realize it or not, you're planning to disprove the Pie Fallacy.
What leads people astray here is the abstraction of money. Money is not wealth. It's just something we use to move wealth around. So although there may be, in certain specific moments (like your family, this month) a fixed amount of money available to trade with other people for things you want, there is not a fixed amount of wealth in the world. You can make more wealth. Wealth has been getting created and destroyed (but on balance, created) for all of human history.
Suppose you own a beat-up old car. Instead of sitting on your butt next summer, you could spend the time restoring your car to pristine condition. In doing so you create wealth. The world is-- and you specifically are-- one pristine old car the richer. And not just in some metaphorical way. If you sell your car, you'll get more for it.
In restoring your old car you have made yourself richer. You haven't made anyone else poorer. So there is obviously not a fixed pie. And in fact, when you look at it this way, you wonder why anyone would think there was. [5]
Kids know, without knowing they know, that they can create wealth. If you need to give someone a present and don't have any money, you make one. But kids are so bad at making things that they consider home-made presents to be a distinct, inferior, sort of thing to store-bought ones-- a mere expression of the proverbial thought that counts. And indeed, the lumpy ashtrays we made for our parents did not have much of a resale market.
Craftsmen
The people most likely to grasp that wealth can be created are the ones who are good at making things, the craftsmen. Their hand-made objects become store-bought ones. But with the rise of industrialization there are fewer and fewer craftsmen. One of the biggest remaining groups is computer programmers.
A programmer can sit down in front of a computer and create wealth. A good piece of software is, in itself, a valuable thing. There is no manufacturing to confuse the issue. Those characters you type are a complete, finished product. If someone sat down and wrote a web browser that didn't suck (a fine idea, by the way), the world would be that much richer. [5b]
Everyone in a company works together to create wealth, in the sense of making more things people want. Many of the employees (e.g. the people in the mailroom or the personnel department) work at one remove from the actual making of stuff. Not the programmers. They literally think the product, one line at a time. And so it's clearer to programmers that wealth is something that's made, rather than being distributed, like slices of a pie, by some imaginary Daddy.
It's also obvious to programmers that there are huge variations in the rate at which wealth is created. At Viaweb we had one programmer who was a sort of monster of productivity. I remember watching what he did one long day and estimating that he had added several hundred thousand dollars to the market value of the company. A great programmer, on a roll, could create a million dollars worth of wealth in a couple weeks. A mediocre programmer over the same period will generate zero or even negative wealth (e.g. by introducing bugs).
This is why so many of the best programmers are libertarians. In our world, you sink or swim, and there are no excuses. When those far removed from the creation of wealth-- undergraduates, reporters, politicians-- hear that the richest 5% of the people have half the total wealth, they tend to think injustice! An experienced programmer would be more likely to think is that all? The top 5% of programmers probably write 99% of the good software.
Wealth can be created without being sold. Scientists, till recently at least, effectively donated the wealth they created. We are all richer for knowing about penicillin, because we're less likely to die from infections. Wealth is whatever people want, and not dying is certainly something we want. Hackers often donate their work by writing open source software that anyone can use for free. I am much the richer for the operating system FreeBSD, which I'm running on the computer I'm using now, and so is Yahoo, which runs it on all their servers.
What a Job Is
In industrialized countries, people belong to one institution or another at least until their twenties. After all those years you get used to the idea of belonging to a group of people who all get up in the morning, go to some set of buildings, and do things that they do not, ordinarily, enjoy doing. Belonging to such a group becomes part of your identity: name, age, role, institution. If you have to introduce yourself, or someone else describes you, it will be as something like, John Smith, age 10, a student at such and such elementary school, or John Smith, age 20, a student at such and such college.
When John Smith finishes school he is expected to get a job. And what getting a job seems to mean is joining another institution. Superficially it's a lot like college. You pick the companies you want to work for and apply to join them. If one likes you, you become a member of this new group. You get up in the morning and go to a new set of buildings, and do things that you do not, ordinarily, enjoy doing. There are a few differences: life is not as much fun, and you get paid, instead of paying, as you did in college. But the similarities feel greater than the differences. John Smith is now John Smith, 22, a software developer at such and such corporation.
In fact John Smith's life has changed more than he realizes. Socially, a company looks much like college, but the deeper you go into the underlying reality, the more different it gets.
What a company does, and has to do if it wants to continue to exist, is earn money. And the way most companies make money is by creating wealth. Companies can be so specialized that this similarity is concealed, but it is not only manufacturing companies that create wealth. A big component of wealth is location. Remember that magic machine that could make you cars and cook you dinner and so on? It would not be so useful if it delivered your dinner to a random location in central Asia. If wealth means what people want, companies that move things also create wealth. Ditto for many other kinds of companies that don't make anything physical. Nearly all companies exist to do something people want.
And that's what you do, as well, when you go to work for a company. But here there is another layer that tends to obscure the underlying reality. In a company, the work you do is averaged together with a lot of other people's. You may not even be aware you're doing something people want. Your contribution may be indirect. But the company as a whole must be giving people something they want, or they won't make any money. And if they are paying you x dollars a year, then on average you must be contributing at least x dollars a year worth of work, or the company will be spending more than it makes, and will go out of business.
Someone graduating from college thinks, and is told, that he needs to get a job, as if the important thing were becoming a member of an institution. A more direct way to put it would be: you need to start doing something people want. You don't need to join a company to do that. All a company is is a group of people working together to do something people want. It's doing something people want that matters, not joining the group. [6]
For most people the best plan probably is to go to work for some existing company. But it is a good idea to understand what's happening when you do this. A job means doing something people want, averaged together with everyone else in that company.
Working Harder
That averaging gets to be a problem. I think the single biggest problem afflicting large companies is the difficulty of assigning a value to each person's work. For the most part they punt. In a big company you get paid a fairly predictable salary for working fairly hard. You're expected not to be obviously incompetent or lazy, but you're not expected to devote your whole life to your work.
It turns out, though, that there are economies of scale in how much of your life you devote to your work. In the right kind of business, someone who really devoted himself to work could generate ten or even a hundred times as much wealth as an average employee. A programmer, for example, instead of chugging along maintaining and updating an existing piece of software, could write a whole new piece of software, and with it create a new source of revenue.
Companies are not set up to reward people who want to do this. You can't go to your boss and say, I'd like to start working ten times as hard, so will you please pay me ten times as much? For one thing, the official fiction is that you are already working as hard as you can. But a more serious problem is that the company has no way of measuring the value of your work.
Salesmen are an exception. It's easy to measure how much revenue they generate, and they're usually paid a percentage of it. If a salesman wants to work harder, he can just start doing it, and he will automatically get paid proportionally more.
There is one other job besides sales where big companies can hire first-rate people: in the top management jobs. And for the same reason: their performance can be measured. The top managers are held responsible for the performance of the entire company. Because an ordinary employee's performance can't usually be measured, he is not expected to do more than put in a solid effort. Whereas top management, like salespeople, have to actually come up with the numbers. The CEO of a company that tanks cannot plead that he put in a solid effort. If the company does badly, he's done badly.
A company that could pay all its employees so straightforwardly would be enormously successful. Many employees would work harder if they could get paid for it. More importantly, such a company would attract people who wanted to work especially hard. It would crush its competitors.
Unfortunately, companies can't pay everyone like salesmen. Salesmen work alone. Most employees' work is tangled together. Suppose a company makes some kind of consumer gadget. The engineers build a reliable gadget with all kinds of new features; the industrial designers design a beautiful case for it; and then the marketing people convince everyone that it's something they've got to have. How do you know how much of the gadget's sales are due to each group's efforts? Or, for that matter, how much is due to the creators of past gadgets that gave the company a reputation for quality? There's no way to untangle all their contributions. Even if you could read the minds of the consumers, you'd find these factors were all blurred together.
If you want to go faster, it's a problem to have your work tangled together with a large number of other people's. In a large group, your performance is not separately measurable-- and the rest of the group slows you down.
Measurement and Leverage
To get rich you need to get yourself in a situation with two things, measurement and leverage. You need to be in a position where your performance can be measured, or there is no way to get paid more by doing more. And you have to have leverage, in the sense that the decisions you make have a big effect.
Measurement alone is not enough. An example of a job with measurement but not leverage is doing piecework in a sweatshop. Your performance is measured and you get paid accordingly, but you have no scope for decisions. The only decision you get to make is how fast you work, and that can probably only increase your earnings by a factor of two or three.
An example of a job with both measurement and leverage would be lead actor in a movie. Your performance can be measured in the gross of the movie. And you have leverage in the sense that your performance can make or break it.
CEOs also have both measurement and leverage. They're measured, in that the performance of the company is their performance. And they have leverage in that their decisions set the whole company moving in one direction or another.
I think everyone who gets rich by their own efforts will be found to be in a situation with measurement and leverage. Everyone I can think of does: CEOs, movie stars, hedge fund managers, professional athletes. A good hint to the presence of leverage is the possibility of failure. Upside must be balanced by downside, so if there is big potential for gain there must also be a terrifying possibility of loss. CEOs, stars, fund managers, and athletes all live with the sword hanging over their heads; the moment they start to suck, they're out. If you're in a job that feels safe, you are not going to get rich, because if there is no danger there is almost certainly no leverage.
But you don't have to become a CEO or a movie star to be in a situation with measurement and leverage. All you need to do is be part of a small group working on a hard problem.
Smallness = Measurement
If you can't measure the value of the work done by individual employees, you can get close. You can measure the value of the work done by small groups.
One level at which you can accurately measure the revenue generated by employees is at the level of the whole company. When the company is small, you are thereby fairly close to measuring the contributions of individual employees. A viable startup might only have ten employees, which puts you within a factor of ten of measuring individual effort.
Starting or joining a startup is thus as close as most people can get to saying to one's boss, I want to work ten times as hard, so please pay me ten times as much. There are two differences: you're not saying it to your boss, but directly to the customers (for whom your boss is only a proxy after all), and you're not doing it individually, but along with a small group of other ambitious people.
It will, ordinarily, be a group. Except in a few unusual kinds of work, like acting or writing books, you can't be a company of one person. And the people you work with had better be good, because it's their work that yours is going to be averaged with.
A big company is like a giant galley driven by a thousand rowers. Two things keep the speed of the galley down. One is that individual rowers don't see any result from working harder. The other is that, in a group of a thousand people, the average rower is likely to be pretty average.
If you took ten people at random out of the big galley and put them in a boat by themselves, they could probably go faster. They would have both carrot and stick to motivate them. An energetic rower would be encouraged by the thought that he could have a visible effect on the speed of the boat. And if someone was lazy, the others would be more likely to notice and complain.
But the real advantage of the ten-man boat shows when you take the ten best rowers out of the big galley and put them in a boat together. They will have all the extra motivation that comes from being in a small group. But more importantly, by selecting that small a group you can get the best rowers. Each one will be in the top 1%. It's a much better deal for them to average their work together with a small group of their peers than to average it with everyone.
That's the real point of startups. Ideally, you are getting together with a group of other people who also want to work a lot harder, and get paid a lot more, than they would in a big company. And because startups tend to get founded by self-selecting groups of ambitious people who already know one another (at least by reputation), the level of measurement is more precise than you get from smallness alone. A startup is not merely ten people, but ten people like you.
Steve Jobs once said that the success or failure of a startup depends on the first ten employees. I agree. If anything, it's more like the first five. Being small is not, in itself, what makes startups kick butt, but rather that small groups can be select. You don't want small in the sense of a village, but small in the sense of an all-star team.
The larger a group, the closer its average member will be to the average for the population as a whole. So all other things being equal, a very able person in a big company is probably getting a bad deal, because his performance is dragged down by the overall lower performance of the others. Of course, all other things often are not equal: the able person may not care about money, or may prefer the stability of a large company. But a very able person who does care about money will ordinarily do better to go off and work with a small group of peers.
Technology = Leverage
Startups offer anyone a way to be in a situation with measurement and leverage. They allow measurement because they're small, and they offer leverage because they make money by inventing new technology.
What is technology? It's technique. It's the way we all do things. And when you discover a new way to do things, its value is multiplied by all the people who use it. It is the proverbial fishing rod, rather than the fish. That's the difference between a startup and a restaurant or a barber shop. You fry eggs or cut hair one customer at a time. Whereas if you solve a technical problem that a lot of people care about, you help everyone who uses your solution. That's leverage.
If you look at history, it seems that most people who got rich by creating wealth did it by developing new technology. You just can't fry eggs or cut hair fast enough. What made the Florentines rich in 1200 was the discovery of new techniques for making the high-tech product of the time, fine woven cloth. What made the Dutch rich in 1600 was the discovery of shipbuilding and navigation techniques that enabled them to dominate the seas of the Far East.
Fortunately there is a natural fit between smallness and solving hard problems. The leading edge of technology moves fast. Technology that's valuable today could be worthless in a couple years. Small companies are more at home in this world, because they don't have layers of bureaucracy to slow them down. Also, technical advances tend to come from unorthodox approaches, and small companies are less constrained by convention.
Big companies can develop technology. They just can't do it quickly. Their size makes them slow and prevents them from rewarding employees for the extraordinary effort required. So in practice big companies only get to develop technology in fields where large capital requirements prevent startups from competing with them, like microprocessors, power plants, or passenger aircraft. And even in those fields they depend heavily on startups for components and ideas.
It's obvious that biotech or software startups exist to solve hard technical problems, but I think it will also be found to be true in businesses that don't seem to be about technology. McDonald's, for example, grew big by designing a system, the McDonald's franchise, that could then be reproduced at will all over the face of the earth. A McDonald's franchise is controlled by rules so precise that it is practically a piece of software. Write once, run everywhere. Ditto for Wal-Mart. Sam Walton got rich not by being a retailer, but by designing a new kind of store.
Use difficulty as a guide not just in selecting the overall aim of your company, but also at decision points along the way. At Viaweb one of our rules of thumb was run upstairs. Suppose you are a little, nimble guy being chased by a big, fat, bully. You open a door and find yourself in a staircase. Do you go up or down? I say up. The bully can probably run downstairs as fast as you can. Going upstairs his bulk will be more of a disadvantage. Running upstairs is hard for you but even harder for him.
What this meant in practice was that we deliberately sought hard problems. If there were two features we could add to our software, both equally valuable in proportion to their difficulty, we'd always take the harder one. Not just because it was more valuable, but because it was harder. We delighted in forcing bigger, slower competitors to follow us over difficult ground. Like guerillas, startups prefer the difficult terrain of the mountains, where the troops of the central government can't follow. I can remember times when we were just exhausted after wrestling all day with some horrible technical problem. And I'd be delighted, because something that was hard for us would be impossible for our competitors.
This is not just a good way to run a startup. It's what a startup is. Venture capitalists know about this and have a phrase for it: barriers to entry. If you go to a VC with a new idea and ask him to invest in it, one of the first things he'll ask is, how hard would this be for someone else to develop? That is, how much difficult ground have you put between yourself and potential pursuers? [7] And you had better have a convincing explanation of why your technology would be hard to duplicate. Otherwise as soon as some big company becomes aware of it, they'll make their own, and with their brand name, capital, and distribution clout, they'll take away your market overnight. You'd be like guerillas caught in the open field by regular army forces.
One way to put up barriers to entry is through patents. But patents may not provide much protection. Competitors commonly find ways to work around a patent. And if they can't, they may simply violate it and invite you to sue them. A big company is not afraid to be sued; it's an everyday thing for them. They'll make sure that suing them is expensive and takes a long time. Ever heard of Philo Farnsworth? He invented television. The reason you've never heard of him is that his company was not the one to make money from it. [8] The company that did was RCA, and Farnsworth's reward for his efforts was a decade of patent litigation.
Here, as so often, the best defense is a good offense. If you can develop technology that's simply too hard for competitors to duplicate, you don't need to rely on other defenses. Start by picking a hard problem, and then at every decision point, take the harder choice. [9]
The Catch(es)
If it were simply a matter of working harder than an ordinary employee and getting paid proportionately, it would obviously be a good deal to start a startup. Up to a point it would be more fun. I don't think many people like the slow pace of big companies, the interminable meetings, the water-cooler conversations, the clueless middle managers, and so on.
Unfortunately there are a couple catches. One is that you can't choose the point on the curve that you want to inhabit. You can't decide, for example, that you'd like to work just two or three times as hard, and get paid that much more. When you're running a startup, your competitors decide how hard you work. And they pretty much all make the same decision: as hard as you possibly can.
The other catch is that the payoff is only on average proportionate to your productivity. There is, as I said before, a large random multiplier in the success of any company. So in practice the deal is not that you're 30 times as productive and get paid 30 times as much. It is that you're 30 times as productive, and get paid between zero and a thousand times as much. If the mean is 30x, the median is probably zero. Most startups tank, and not just the dogfood portals we all heard about during the Internet Bubble. It's common for a startup to be developing a genuinely good product, take slightly too long to do it, run out of money, and have to shut down.
A startup is like a mosquito. A bear can absorb a hit and a crab is armored against one, but a mosquito is designed for one thing: to score. No energy is wasted on defense. The defense of mosquitos, as a species, is that there are a lot of them, but this is little consolation to the individual mosquito.
Startups, like mosquitos, tend to be an all-or-nothing proposition. And you don't generally know which of the two you're going to get till the last minute. Viaweb came close to tanking several times. Our trajectory was like a sine wave. Fortunately we got bought at the top of the cycle, but it was damned close. While we were visiting Yahoo in California to talk about selling the company to them, we had to borrow a conference room to reassure an investor who was about to back out of a new round of funding that we needed to stay alive.
The all-or-nothing aspect of startups was not something we wanted. Viaweb's hackers were all extremely risk-averse. If there had been some way just to work super hard and get paid for it, without having a lottery mixed in, we would have been delighted. We would have much preferred a 100% chance of $1 million to a 20% chance of $10 million, even though theoretically the second is worth twice as much. Unfortunately, there is not currently any space in the business world where you can get the first deal.
The closest you can get is by selling your startup in the early stages, giving up upside (and risk) for a smaller but guaranteed payoff. We had a chance to do this, and stupidly, as we then thought, let it slip by. After that we became comically eager to sell. For the next year or so, if anyone expressed the slightest curiousity about Viaweb we would try to sell them the company. But there were no takers, so we had to keep going.
It would have been a bargain to buy us at an early stage, but companies doing acquisitions are not looking for bargains. A company big enough to acquire startups will be big enough to be fairly conservative, and within the company the people in charge of acquisitions will be among the more conservative, because they are likely to be business school types who joined the company late. They would rather overpay for a safe choice. So it is easier to sell an established startup, even at a large premium, than an early-stage one.
Get Users
I think it's a good idea to get bought, if you can. Running a business is different from growing one. It is just as well to let a big company take over once you reach cruising altitude. It's also financially wiser, because selling allows you to diversify. What would you think of a financial advisor who put all his client's assets into one volatile stock?
How do you get bought? Mostly by doing the same things you'd do if you didn't intend to sell the company. Being profitable, for example. But getting bought is also an art in its own right, and one that we spent a lot of time trying to master.
Potential buyers will always delay if they can. The hard part about getting bought is getting them to act. For most people, the most powerful motivator is not the hope of gain, but the fear of loss. For potential acquirers, the most powerful motivator is the prospect that one of their competitors will buy you. This, as we found, causes CEOs to take red-eyes. The second biggest is the worry that, if they don't buy you now, you'll continue to grow rapidly and will cost more to acquire later, or even become a competitor.
In both cases, what it all comes down to is users. You'd think that a company about to buy you would do a lot of research and decide for themselves how valuable your technology was. Not at all. What they go by is the number of users you have.
In effect, acquirers assume the customers know who has the best technology. And this is not as stupid as it sounds. Users are the only real proof that you've created wealth. Wealth is what people want, and if people aren't using your software, maybe it's not just because you're bad at marketing. Maybe it's because you haven't made what they want.
Venture capitalists have a list of danger signs to watch out for. Near the top is the company run by techno-weenies who are obsessed with solving interesting technical problems, instead of making users happy. In a startup, you're not just trying to solve problems. You're trying to solve problems that users care about.
So I think you should make users the test, just as acquirers do. Treat a startup as an optimization problem in which performance is measured by number of users. As anyone who has tried to optimize software knows, the key is measurement. When you try to guess where your program is slow, and what would make it faster, you almost always guess wrong.
Number of users may not be the perfect test, but it will be very close. It's what acquirers care about. It's what revenues depend on. It's what makes competitors unhappy. It's what impresses reporters, and potential new users. Certainly it's a better test than your a priori notions of what problems are important to solve, no matter how technically adept you are.
Among other things, treating a startup as an optimization problem will help you avoid another pitfall that VCs worry about, and rightly-- taking a long time to develop a product. Now we can recognize this as something hackers already know to avoid: premature optimization. Get a version 1.0 out there as soon as you can. Until you have some users to measure, you're optimizing based on guesses.
The ball you need to keep your eye on here is the underlying principle that wealth is what people want. If you plan to get rich by creating wealth, you have to know what people want. So few businesses really pay attention to making customers happy. How often do you walk into a store, or call a company on the phone, with a feeling of dread in the back of your mind? When you hear "your call is important to us, please stay on the line," do you think, oh good, now everything will be all right?
A restaurant can afford to serve the occasional burnt dinner. But in technology, you cook one thing and that's what everyone eats. So any difference between what people want and what you deliver is multiplied. You please or annoy customers wholesale. The closer you can get to what they want, the more wealth you generate.
Wealth and Power
Making wealth is not the only way to get rich. For most of human history it has not even been the most common. Until a few centuries ago, the main sources of wealth were mines, slaves and serfs, land, and cattle, and the only ways to acquire these rapidly were by inheritance, marriage, conquest, or confiscation. Naturally wealth had a bad reputation.
Two things changed. The first was the rule of law. For most of the world's history, if you did somehow accumulate a fortune, the ruler or his henchmen would find a way to steal it. But in medieval Europe something new happened. A new class of merchants and manufacturers began to collect in towns. [10] Together they were able to withstand the local feudal lord. So for the first time in our history, the bullies stopped stealing the nerds' lunch money. This was naturally a great incentive, and possibly indeed the main cause of the second big change, industrialization.
A great deal has been written about the causes of the Industrial Revolution. But surely a necessary, if not sufficient, condition was that people who made fortunes be able to enjoy them in peace. [11] One piece of evidence is what happened to countries that tried to return to the old model, like the Soviet Union, and to a lesser extent Britain under the labor governments of the 1960s and early 1970s. Take away the incentive of wealth, and technical innovation grinds to a halt.
Remember what a startup is, economically: a way of saying, I want to work faster. Instead of accumulating money slowly by being paid a regular wage for fifty years, I want to get it over with as soon as possible. So governments that forbid you to accumulate wealth are in effect decreeing that you work slowly. They're willing to let you earn $3 million over fifty years, but they're not willing to let you work so hard that you can do it in two. They are like the corporate boss that you can't go to and say, I want to work ten times as hard, so please pay me ten times a much. Except this is not a boss you can escape by starting your own company.
The problem with working slowly is not just that technical innovation happens slowly. It's that it tends not to happen at all. It's only when you're deliberately looking for hard problems, as a way to use speed to the greatest advantage, that you take on this kind of project. Developing new technology is a pain in the ass. It is, as Edison said, one percent inspiration and ninety-nine percent perspiration. Without the incentive of wealth, no one wants to do it. Engineers will work on sexy projects like fighter planes and moon rockets for ordinary salaries, but more mundane technologies like light bulbs or semiconductors have to be developed by entrepreneurs.
Startups are not just something that happened in Silicon Valley in the last couple decades. Since it became possible to get rich by creating wealth, everyone who has done it has used essentially the same recipe: measurement and leverage, where measurement comes from working with a small group, and leverage from developing new techniques. The recipe was the same in Florence in 1200 as it is in Santa Clara today.
Understanding this may help to answer an important question: why Europe grew so powerful. Was it something about the geography of Europe? Was it that Europeans are somehow racially superior? Was it their religion? The answer (or at least the proximate cause) may be that the Europeans rode on the crest of a powerful new idea: allowing those who made a lot of money to keep it.
Once you're allowed to do that, people who want to get rich can do it by generating wealth instead of stealing it. The resulting technological growth translates not only into wealth but into military power. The theory that led to the stealth plane was developed by a Soviet mathematician. But because the Soviet Union didn't have a computer industry, it remained for them a theory; they didn't have hardware capable of executing the calculations fast enough to design an actual airplane.
In that respect the Cold War teaches the same lesson as World War II and, for that matter, most wars in recent history. Don't let a ruling class of warriors and politicians squash the entrepreneurs. The same recipe that makes individuals rich makes countries powerful. Let the nerds keep their lunch money, and you rule the world.
Notes
[1] One valuable thing you tend to get only in startups is uninterruptability. Different kinds of work have different time quanta. Someone proofreading a manuscript could probably be interrupted every fifteen minutes with little loss of productivity. But the time quantum for hacking is very long: it might take an hour just to load a problem into your head. So the cost of having someone from personnel call you about a form you forgot to fill out can be huge.
This is why hackers give you such a baleful stare as they turn from their screen to answer your question. Inside their heads a giant house of cards is tottering.
The mere possibility of being interrupted deters hackers from starting hard projects. This is why they tend to work late at night, and why it's next to impossible to write great software in a cubicle (except late at night).
One great advantage of startups is that they don't yet have any of the people who interrupt you. There is no personnel department, and thus no form nor anyone to call you about it.

[2] Faced with the idea that people working for startups might be 20 or 30 times as productive as those working for large companies, executives at large companies will naturally wonder, how could I get the people working for me to do that? The answer is simple: pay them to.
Internally most companies are run like Communist states. If you believe in free markets, why not turn your company into one?
Hypothesis: A company will be maximally profitable when each employee is paid in proportion to the wealth they generate.
[3] Until recently even governments sometimes didn't grasp the distinction between money and wealth. Adam Smith (Wealth of Nations, v:i) mentions several that tried to preserve their "wealth" by forbidding the export of gold or silver. But having more of the medium of exchange would not make a country richer; if you have more money chasing the same amount of material wealth, the only result is higher prices.
[4] There are many senses of the word "wealth," not all of them material. I'm not trying to make a deep philosophical point here about which is the true kind. I'm writing about one specific, rather technical sense of the word "wealth." What people will give you money for. This is an interesting sort of wealth to study, because it is the kind that prevents you from starving. And what people will give you money for depends on them, not you.
When you're starting a business, it's easy to slide into thinking that customers want what you do. During the Internet Bubble I talked to a woman who, because she liked the outdoors, was starting an "outdoor portal." You know what kind of business you should start if you like the outdoors? One to recover data from crashed hard disks.
What's the connection? None at all. Which is precisely my point. If you want to create wealth (in the narrow technical sense of not starving) then you should be especially skeptical about any plan that centers on things you like doing. That is where your idea of what's valuable is least likely to coincide with other people's.
[5] In the average car restoration you probably do make everyone else microscopically poorer, by doing a small amount of damage to the environment. While environmental costs should be taken into account, they don't make wealth a zero-sum game. For example, if you repair a machine that's broken because a part has come unscrewed, you create wealth with no environmental cost.
[5b] This essay was written before Firefox.
[6] Many people feel confused and depressed in their early twenties. Life seemed so much more fun in college. Well, of course it was. Don't be fooled by the surface similarities. You've gone from guest to servant. It's possible to have fun in this new world. Among other things, you now get to go behind the doors that say "authorized personnel only." But the change is a shock at first, and all the worse if you're not consciously aware of it.
[7] When VCs asked us how long it would take another startup to duplicate our software, we used to reply that they probably wouldn't be able to at all. I think this made us seem naive, or liars.
[8] Few technologies have one clear inventor. So as a rule, if you know the "inventor" of something (the telephone, the assembly line, the airplane, the light bulb, the transistor) it is because their company made money from it, and the company's PR people worked hard to spread the story. If you don't know who invented something (the automobile, the television, the computer, the jet engine, the laser), it's because other companies made all the money.
[9] This is a good plan for life in general. If you have two choices, choose the harder. If you're trying to decide whether to go out running or sit home and watch TV, go running. Probably the reason this trick works so well is that when you have two choices and one is harder, the only reason you're even considering the other is laziness. You know in the back of your mind what's the right thing to do, and this trick merely forces you to acknowledge it.
[10] It is probably no accident that the middle class first appeared in northern Italy and the low countries, where there were no strong central governments. These two regions were the richest of their time and became the twin centers from which Renaissance civilization radiated. If they no longer play that role, it is because other places, like the United States, have been truer to the principles they discovered.
[11] It may indeed be a sufficient condition. But if so, why didn't the Industrial Revolution happen earlier? Two possible (and not incompatible) answers: (a) It did. The Industrial Revolution was one in a series. (b) Because in medieval towns, monopolies and guild regulations initially slowed the development of new means of production.

Good and Bad Procrastination

The most impressive people I know are all terrible procrastinators. So could it be that procrastination isn't always bad?
Most people who write about procrastination write about how to cure it. But this is, strictly speaking, impossible. There are an infinite number of things you could be doing. No matter what you work on, you're not working on everything else. So the question is not how to avoid procrastination, but how to procrastinate well.
There are three variants of procrastination, depending on what you do instead of working on something: you could work on (a) nothing, (b) something less important, or (c) something more important. That last type, I'd argue, is good procrastination.
That's the "absent-minded professor," who forgets to shave, or eat, or even perhaps look where he's going while he's thinking about some interesting question. His mind is absent from the everyday world because it's hard at work in another.
That's the sense in which the most impressive people I know are all procrastinators. They're type-C procrastinators: they put off working on small stuff to work on big stuff.
What's "small stuff?" Roughly, work that has zero chance of being mentioned in your obituary. It's hard to say at the time what will turn out to be your best work (will it be your magnum opus on Sumerian temple architecture, or the detective thriller you wrote under a pseudonym?), but there's a whole class of tasks you can safely rule out: shaving, doing your laundry, cleaning the house, writing thank-you notes-- anything that might be called an errand.
Good procrastination is avoiding errands to do real work.
Good in a sense, at least. The people who want you to do the errands won't think it's good. But you probably have to annoy them if you want to get anything done. The mildest seeming people, if they want to do real work, all have a certain degree of ruthlessness when it comes to avoiding errands.
Some errands, like replying to letters, go away if you ignore them (perhaps taking friends with them). Others, like mowing the lawn, or filing tax returns, only get worse if you put them off. In principle it shouldn't work to put off the second kind of errand. You're going to have to do whatever it is eventually. Why not (as past-due notices are always saying) do it now?
The reason it pays to put off even those errands is that real work needs two things errands don't: big chunks of time, and the right mood. If you get inspired by some project, it can be a net win to blow off everything you were supposed to do for the next few days to work on it. Yes, those errands may cost you more time when you finally get around to them. But if you get a lot done during those few days, you will be net more productive.
In fact, it may not be a difference in degree, but a difference in kind. There may be types of work that can only be done in long, uninterrupted stretches, when inspiration hits, rather than dutifully in scheduled little slices. Empirically it seems to be so. When I think of the people I know who've done great things, I don't imagine them dutifully crossing items off to-do lists. I imagine them sneaking off to work on some new idea.
Conversely, forcing someone to perform errands synchronously is bound to limit their productivity. The cost of an interruption is not just the time it takes, but that it breaks the time on either side in half. You probably only have to interrupt someone a couple times a day before they're unable to work on hard problems at all.
I've wondered a lot about why startups are most productive at the very beginning, when they're just a couple guys in an apartment. The main reason may be that there's no one to interrupt them yet. In theory it's good when the founders finally get enough money to hire people to do some of the work for them. But it may be better to be overworked than interrupted. Once you dilute a startup with ordinary office workers-- with type-B procrastinators-- the whole company starts to resonate at their frequency. They're interrupt-driven, and soon you are too.
Errands are so effective at killing great projects that a lot of people use them for that purpose. Someone who has decided to write a novel, for example, will suddenly find that the house needs cleaning. People who fail to write novels don't do it by sitting in front of a blank page for days without writing anything. They do it by feeding the cat, going out to buy something they need for their apartment, meeting a friend for coffee, checking email. "I don't have time to work," they say. And they don't; they've made sure of that.
(There's also a variant where one has no place to work. The cure is to visit the places where famous people worked, and see how unsuitable they were.)
I've used both these excuses at one time or another. I've learned a lot of tricks for making myself work over the last 20 years, but even now I don't win consistently. Some days I get real work done. Other days are eaten up by errands. And I know it's usually my fault: I let errands eat up the day, to avoid facing some hard problem.
The most dangerous form of procrastination is unacknowledged type-B procrastination, because it doesn't feel like procrastination. You're "getting things done." Just the wrong things.
Any advice about procrastination that concentrates on crossing things off your to-do list is not only incomplete, but positively misleading, if it doesn't consider the possibility that the to-do list is itself a form of type-B procrastination. In fact, possibility is too weak a word. Nearly everyone's is. Unless you're working on the biggest things you could be working on, you're type-B procrastinating, no matter how much you're getting done.
In his famous essay You and Your Research (which I recommend to anyone ambitious, no matter what they're working on), Richard Hamming suggests that you ask yourself three questions:
What are the most important problems in your field?
Are you working on one of them?
Why not?
Hamming was at Bell Labs when he started asking such questions. In principle anyone there ought to have been able to work on the most important problems in their field. Perhaps not everyone can make an equally dramatic mark on the world; I don't know; but whatever your capacities, there are projects that stretch them. So Hamming's exercise can be generalized to:
What's the best thing you could be working on, and why aren't you?
Most people will shy away from this question. I shy away from it myself; I see it there on the page and quickly move on to the next sentence. Hamming used to go around actually asking people this, and it didn't make him popular. But it's a question anyone ambitious should face.
The trouble is, you may end up hooking a very big fish with this bait. To do good work, you need to do more than find good projects. Once you've found them, you have to get yourself to work on them, and that can be hard. The bigger the problem, the harder it is to get yourself to work on it.
Of course, the main reason people find it difficult to work on a particular problem is that they don't enjoy it. When you're young, especially, you often find yourself working on stuff you don't really like-- because it seems impressive, for example, or because you've been assigned to work on it. Most grad students are stuck working on big problems they don't really like, and grad school is thus synonymous with procrastination.
But even when you like what you're working on, it's easier to get yourself to work on small problems than big ones. Why? Why is it so hard to work on big problems? One reason is that you may not get any reward in the forseeable future. If you work on something you can finish in a day or two, you can expect to have a nice feeling of accomplishment fairly soon. If the reward is indefinitely far in the future, it seems less real.
Another reason people don't work on big projects is, ironically, fear of wasting time. What if they fail? Then all the time they spent on it will be wasted. (In fact it probably won't be, because work on hard projects almost always leads somewhere.)
But the trouble with big problems can't be just that they promise no immediate reward and might cause you to waste a lot of time. If that were all, they'd be no worse than going to visit your in-laws. There's more to it than that. Big problems are terrifying. There's an almost physical pain in facing them. It's like having a vacuum cleaner hooked up to your imagination. All your initial ideas get sucked out immediately, and you don't have any more, and yet the vacuum cleaner is still sucking.
You can't look a big problem too directly in the eye. You have to approach it somewhat obliquely. But you have to adjust the angle just right: you have to be facing the big problem directly enough that you catch some of the excitement radiating from it, but not so much that it paralyzes you. You can tighten the angle once you get going, just as a sailboat can sail closer to the wind once it gets underway.
If you want to work on big things, you seem to have to trick yourself into doing it. You have to work on small things that could grow into big things, or work on successively larger things, or split the moral load with collaborators. It's not a sign of weakness to depend on such tricks. The very best work has been done this way.
When I talk to people who've managed to make themselves work on big things, I find that all blow off errands, and all feel guilty about it. I don't think they should feel guilty. There's more to do than anyone could. So someone doing the best work they can is inevitably going to leave a lot of errands undone. It seems a mistake to feel bad about that.
I think the way to "solve" the problem of procrastination is to let delight pull you instead of making a to-do list push you. Work on an ambitious project you really enjoy, and sail as close to the wind as you can, and you'll leave the right things undone.

How to Do What You Love

To do something well you have to like it. That idea is not exactly novel. We've got it down to four words: "Do what you love." But it's not enough just to tell people that. Doing what you love is complicated.
The very idea is foreign to what most of us learn as kids. When I was a kid, it seemed as if work and fun were opposites by definition. Life had two states: some of the time adults were making you do things, and that was called work; the rest of the time you could do what you wanted, and that was called playing. Occasionally the things adults made you do were fun, just as, occasionally, playing wasn't-- for example, if you fell and hurt yourself. But except for these few anomalous cases, work was pretty much defined as not-fun.
And it did not seem to be an accident. School, it was implied, was tedious because it was preparation for grownup work.
The world then was divided into two groups, grownups and kids. Grownups, like some kind of cursed race, had to work. Kids didn't, but they did have to go to school, which was a dilute version of work meant to prepare us for the real thing. Much as we disliked school, the grownups all agreed that grownup work was worse, and that we had it easy.
Teachers in particular all seemed to believe implicitly that work was not fun. Which is not surprising: work wasn't fun for most of them. Why did we have to memorize state capitals instead of playing dodgeball? For the same reason they had to watch over a bunch of kids instead of lying on a beach. You couldn't just do what you wanted.
I'm not saying we should let little kids do whatever they want. They may have to be made to work on certain things. But if we make kids work on dull stuff, it might be wise to tell them that tediousness is not the defining quality of work, and indeed that the reason they have to work on dull stuff now is so they can work on more interesting stuff later. [1]
Once, when I was about 9 or 10, my father told me I could be whatever I wanted when I grew up, so long as I enjoyed it. I remember that precisely because it seemed so anomalous. It was like being told to use dry water. Whatever I thought he meant, I didn't think he meant work could literally be fun-- fun like playing. It took me years to grasp that.
Jobs
By high school, the prospect of an actual job was on the horizon. Adults would sometimes come to speak to us about their work, or we would go to see them at work. It was always understood that they enjoyed what they did. In retrospect I think one may have: the private jet pilot. But I don't think the bank manager really did.
The main reason they all acted as if they enjoyed their work was presumably the upper-middle class convention that you're supposed to. It would not merely be bad for your career to say that you despised your job, but a social faux-pas.
Why is it conventional to pretend to like what you do? The first sentence of this essay explains that. If you have to like something to do it well, then the most successful people will all like what they do. That's where the upper-middle class tradition comes from. Just as houses all over America are full of chairs that are, without the owners even knowing it, nth-degree imitations of chairs designed 250 years ago for French kings, conventional attitudes about work are, without the owners even knowing it, nth-degree imitations of the attitudes of people who've done great things.
What a recipe for alienation. By the time they reach an age to think about what they'd like to do, most kids have been thoroughly misled about the idea of loving one's work. School has trained them to regard work as an unpleasant duty. Having a job is said to be even more onerous than schoolwork. And yet all the adults claim to like what they do. You can't blame kids for thinking "I am not like these people; I am not suited to this world."
Actually they've been told three lies: the stuff they've been taught to regard as work in school is not real work; grownup work is not (necessarily) worse than schoolwork; and many of the adults around them are lying when they say they like what they do.
The most dangerous liars can be the kids' own parents. If you take a boring job to give your family a high standard of living, as so many people do, you risk infecting your kids with the idea that work is boring. [2] Maybe it would be better for kids in this one case if parents were not so unselfish. A parent who set an example of loving their work might help their kids more than an expensive house. [3]
It was not till I was in college that the idea of work finally broke free from the idea of making a living. Then the important question became not how to make money, but what to work on. Ideally these coincided, but some spectacular boundary cases (like Einstein in the patent office) proved they weren't identical.
The definition of work was now to make some original contribution to the world, and in the process not to starve. But after the habit of so many years my idea of work still included a large component of pain. Work still seemed to require discipline, because only hard problems yielded grand results, and hard problems couldn't literally be fun. Surely one had to force oneself to work on them.
If you think something's supposed to hurt, you're less likely to notice if you're doing it wrong. That about sums up my experience of graduate school.
Bounds
How much are you supposed to like what you do? Unless you know that, you don't know when to stop searching. And if, like most people, you underestimate it, you'll tend to stop searching too early. You'll end up doing something chosen for you by your parents, or the desire to make money, or prestige-- or sheer inertia.
Here's an upper bound: Do what you love doesn't mean, do what you would like to do most this second. Even Einstein probably had moments when he wanted to have a cup of coffee, but told himself he ought to finish what he was working on first.
It used to perplex me when I read about people who liked what they did so much that there was nothing they'd rather do. There didn't seem to be any sort of work I liked that much. If I had a choice of (a) spending the next hour working on something or (b) be teleported to Rome and spend the next hour wandering about, was there any sort of work I'd prefer? Honestly, no.
But the fact is, almost anyone would rather, at any given moment, float about in the Carribbean, or have sex, or eat some delicious food, than work on hard problems. The rule about doing what you love assumes a certain length of time. It doesn't mean, do what will make you happiest this second, but what will make you happiest over some longer period, like a week or a month.
Unproductive pleasures pall eventually. After a while you get tired of lying on the beach. If you want to stay happy, you have to do something.
As a lower bound, you have to like your work more than any unproductive pleasure. You have to like what you do enough that the concept of "spare time" seems mistaken. Which is not to say you have to spend all your time working. You can only work so much before you get tired and start to screw up. Then you want to do something else-- even something mindless. But you don't regard this time as the prize and the time you spend working as the pain you endure to earn it.
I put the lower bound there for practical reasons. If your work is not your favorite thing to do, you'll have terrible problems with procrastination. You'll have to force yourself to work, and when you resort to that the results are distinctly inferior.
To be happy I think you have to be doing something you not only enjoy, but admire. You have to be able to say, at the end, wow, that's pretty cool. This doesn't mean you have to make something. If you learn how to hang glide, or to speak a foreign language fluently, that will be enough to make you say, for a while at least, wow, that's pretty cool. What there has to be is a test.
So one thing that falls just short of the standard, I think, is reading books. Except for some books in math and the hard sciences, there's no test of how well you've read a book, and that's why merely reading books doesn't quite feel like work. You have to do something with what you've read to feel productive.
I think the best test is one Gino Lee taught me: to try to do things that would make your friends say wow. But it probably wouldn't start to work properly till about age 22, because most people haven't had a big enough sample to pick friends from before then.
Sirens
What you should not do, I think, is worry about the opinion of anyone beyond your friends. You shouldn't worry about prestige. Prestige is the opinion of the rest of the world. When you can ask the opinions of people whose judgement you respect, what does it add to consider the opinions of people you don't even know? [4]
This is easy advice to give. It's hard to follow, especially when you're young. [5] Prestige is like a powerful magnet that warps even your beliefs about what you enjoy. It causes you to work not on what you like, but what you'd like to like.
That's what leads people to try to write novels, for example. They like reading novels. They notice that people who write them win Nobel prizes. What could be more wonderful, they think, than to be a novelist? But liking the idea of being a novelist is not enough; you have to like the actual work of novel-writing if you're going to be good at it; you have to like making up elaborate lies.
Prestige is just fossilized inspiration. If you do anything well enough, you'll make it prestigious. Plenty of things we now consider prestigious were anything but at first. Jazz comes to mind-- though almost any established art form would do. So just do what you like, and let prestige take care of itself.
Prestige is especially dangerous to the ambitious. If you want to make ambitious people waste their time on errands, the way to do it is to bait the hook with prestige. That's the recipe for getting people to give talks, write forewords, serve on committees, be department heads, and so on. It might be a good rule simply to avoid any prestigious task. If it didn't suck, they wouldn't have had to make it prestigious.
Similarly, if you admire two kinds of work equally, but one is more prestigious, you should probably choose the other. Your opinions about what's admirable are always going to be slightly influenced by prestige, so if the two seem equal to you, you probably have more genuine admiration for the less prestigious one.
The other big force leading people astray is money. Money by itself is not that dangerous. When something pays well but is regarded with contempt, like telemarketing, or prostitution, or personal injury litigation, ambitious people aren't tempted by it. That kind of work ends up being done by people who are "just trying to make a living." (Tip: avoid any field whose practitioners say this.) The danger is when money is combined with prestige, as in, say, corporate law, or medicine. A comparatively safe and prosperous career with some automatic baseline prestige is dangerously tempting to someone young, who hasn't thought much about what they really like.
The test of whether people love what they do is whether they'd do it even if they weren't paid for it-- even if they had to work at another job to make a living. How many corporate lawyers would do their current work if they had to do it for free, in their spare time, and take day jobs as waiters to support themselves?
This test is especially helpful in deciding between different kinds of academic work, because fields vary greatly in this respect. Most good mathematicians would work on math even if there were no jobs as math professors, whereas in the departments at the other end of the spectrum, the availability of teaching jobs is the driver: people would rather be English professors than work in ad agencies, and publishing papers is the way you compete for such jobs. Math would happen without math departments, but it is the existence of English majors, and therefore jobs teaching them, that calls into being all those thousands of dreary papers about gender and identity in the novels of Conrad. No one does that kind of thing for fun.
The advice of parents will tend to err on the side of money. It seems safe to say there are more undergrads who want to be novelists and whose parents want them to be doctors than who want to be doctors and whose parents want them to be novelists. The kids think their parents are "materialistic." Not necessarily. All parents tend to be more conservative for their kids than they would for themselves, simply because, as parents, they share risks more than rewards. If your eight year old son decides to climb a tall tree, or your teenage daughter decides to date the local bad boy, you won't get a share in the excitement, but if your son falls, or your daughter gets pregnant, you'll have to deal with the consequences.
Discipline
With such powerful forces leading us astray, it's not surprising we find it so hard to discover what we like to work on. Most people are doomed in childhood by accepting the axiom that work = pain. Those who escape this are nearly all lured onto the rocks by prestige or money. How many even discover something they love to work on? A few hundred thousand, perhaps, out of billions.
It's hard to find work you love; it must be, if so few do. So don't underestimate this task. And don't feel bad if you haven't succeeded yet. In fact, if you admit to yourself that you're discontented, you're a step ahead of most people, who are still in denial. If you're surrounded by colleagues who claim to enjoy work that you find contemptible, odds are they're lying to themselves. Not necessarily, but probably.
Although doing great work takes less discipline than people think-- because the way to do great work is to find something you like so much that you don't have to force yourself to do it-- finding work you love does usually require discipline. Some people are lucky enough to know what they want to do when they're 12, and just glide along as if they were on railroad tracks. But this seems the exception. More often people who do great things have careers with the trajectory of a ping-pong ball. They go to school to study A, drop out and get a job doing B, and then become famous for C after taking it up on the side.
Sometimes jumping from one sort of work to another is a sign of energy, and sometimes it's a sign of laziness. Are you dropping out, or boldy carving a new path? You often can't tell yourself. Plenty of people who will later do great things seem to be disappointments early on, when they're trying to find their niche.
Is there some test you can use to keep yourself honest? One is to try to do a good job at whatever you're doing, even if you don't like it. Then at least you'll know you're not using dissatisfaction as an excuse for being lazy. Perhaps more importantly, you'll get into the habit of doing things well.
Another test you can use is: always produce. For example, if you have a day job you don't take seriously because you plan to be a novelist, are you producing? Are you writing pages of fiction, however bad? As long as you're producing, you'll know you're not merely using the hazy vision of the grand novel you plan to write one day as an opiate. The view of it will be obstructed by the all too palpably flawed one you're actually writing.
"Always produce" is also a heuristic for finding the work you love. If you subject yourself to that constraint, it will automatically push you away from things you think you're supposed to work on, toward things you actually like. "Always produce" will discover your life's work the way water, with the aid of gravity, finds the hole in your roof.
Of course, figuring out what you like to work on doesn't mean you get to work on it. That's a separate question. And if you're ambitious you have to keep them separate: you have to make a conscious effort to keep your ideas about what you want from being contaminated by what seems possible. [6]
It's painful to keep them apart, because it's painful to observe the gap between them. So most people pre-emptively lower their expectations. For example, if you asked random people on the street if they'd like to be able to draw like Leonardo, you'd find most would say something like "Oh, I can't draw." This is more a statement of intention than fact; it means, I'm not going to try. Because the fact is, if you took a random person off the street and somehow got them to work as hard as they possibly could at drawing for the next twenty years, they'd get surprisingly far. But it would require a great moral effort; it would mean staring failure in the eye every day for years. And so to protect themselves people say "I can't."
Another related line you often hear is that not everyone can do work they love-- that someone has to do the unpleasant jobs. Really? How do you make them? In the US the only mechanism for forcing people to do unpleasant jobs is the draft, and that hasn't been invoked for over 30 years. All we can do is encourage people to do unpleasant work, with money and prestige.
If there's something people still won't do, it seems as if society just has to make do without. That's what happened with domestic servants. For millennia that was the canonical example of a job "someone had to do." And yet in the mid twentieth century servants practically disappeared in rich countries, and the rich have just had to do without.
So while there may be some things someone has to do, there's a good chance anyone saying that about any particular job is mistaken. Most unpleasant jobs would either get automated or go undone if no one were willing to do them.
Two Routes
There's another sense of "not everyone can do work they love" that's all too true, however. One has to make a living, and it's hard to get paid for doing work you love. There are two routes to that destination:
the organic route: as you become more eminent, gradually to increase the parts of your job that you like at the expense of those you don't.
the two-job route: to work at things you don't like to get money to work on things you do.
The organic route is more common. It happens naturally to anyone who does good work. A young architect has to take whatever work he can get, but if he does well he'll gradually be in a position to pick and choose among projects. The disadvantage of this route is that it's slow and uncertain. Even tenure is not real freedom.
The two-job route has several variants depending on how long you work for money at a time. At one extreme is the "day job," where you work regular hours at one job to make money, and work on what you love in your spare time. At the other extreme you work at something till you make enough not to have to work for money again.
The two-job route is less common than the organic route, because it requires a deliberate choice. It's also more dangerous. Life tends to get more expensive as you get older, so it's easy to get sucked into working longer than you expected at the money job. Worse still, anything you work on changes you. If you work too long on tedious stuff, it will rot your brain. And the best paying jobs are most dangerous, because they require your full attention.
The advantage of the two-job route is that it lets you jump over obstacles. The landscape of possible jobs isn't flat; there are walls of varying heights between different kinds of work. [7] The trick of maximizing the parts of your job that you like can get you from architecture to product design, but not, probably, to music. If you make money doing one thing and then work on another, you have more freedom of choice.
Which route should you take? That depends on how sure you are of what you want to do, how good you are at taking orders, how much risk you can stand, and the odds that anyone will pay (in your lifetime) for what you want to do. If you're sure of the general area you want to work in and it's something people are likely to pay you for, then you should probably take the organic route. But if you don't know what you want to work on, or don't like to take orders, you may want to take the two-job route, if you can stand the risk.
Don't decide too soon. Kids who know early what they want to do seem impressive, as if they got the answer to some math question before the other kids. They have an answer, certainly, but odds are it's wrong.
A friend of mine who is a quite successful doctor complains constantly about her job. When people applying to medical school ask her for advice, she wants to shake them and yell "Don't do it!" (But she never does.) How did she get into this fix? In high school she already wanted to be a doctor. And she is so ambitious and determined that she overcame every obstacle along the way-- including, unfortunately, not liking it.
Now she has a life chosen for her by a high-school kid.
When you're young, you're given the impression that you'll get enough information to make each choice before you need to make it. But this is certainly not so with work. When you're deciding what to do, you have to operate on ridiculously incomplete information. Even in college you get little idea what various types of work are like. At best you may have a couple internships, but not all jobs offer internships, and those that do don't teach you much more about the work than being a batboy teaches you about playing baseball.
In the design of lives, as in the design of most other things, you get better results if you use flexible media. So unless you're fairly sure what you want to do, your best bet may be to choose a type of work that could turn into either an organic or two-job career. That was probably part of the reason I chose computers. You can be a professor, or make a lot of money, or morph it into any number of other kinds of work.
It's also wise, early on, to seek jobs that let you do many different things, so you can learn faster what various kinds of work are like. Conversely, the extreme version of the two-job route is dangerous because it teaches you so little about what you like. If you work hard at being a bond trader for ten years, thinking that you'll quit and write novels when you have enough money, what happens when you quit and then discover that you don't actually like writing novels?
Most people would say, I'd take that problem. Give me a million dollars and I'll figure out what to do. But it's harder than it looks. Constraints give your life shape. Remove them and most people have no idea what to do: look at what happens to those who win lotteries or inherit money. Much as everyone thinks they want financial security, the happiest people are not those who have it, but those who like what they do. So a plan that promises freedom at the expense of knowing what to do with it may not be as good as it seems.
Whichever route you take, expect a struggle. Finding work you love is very difficult. Most people fail. Even if you succeed, it's rare to be free to work on what you want till your thirties or forties. But if you have the destination in sight you'll be more likely to arrive at it. If you know you can love work, you're in the home stretch, and if you know what work you love, you're practically there.
Notes
[1] Currently we do the opposite: when we make kids do boring work, like arithmetic drills, instead of admitting frankly that it's boring, we try to disguise it with superficial decorations.
[2] One father told me about a related phenomenon: he found himself concealing from his family how much he liked his work. When he wanted to go to work on a saturday, he found it easier to say that it was because he "had to" for some reason, rather than admitting he preferred to work than stay home with them.
[3] Something similar happens with suburbs. Parents move to suburbs to raise their kids in a safe environment, but suburbs are so dull and artificial that by the time they're fifteen the kids are convinced the whole world is boring.
[4] I'm not saying friends should be the only audience for your work. The more people you can help, the better. But friends should be your compass.
[5] Donald Hall said young would-be poets were mistaken to be so obsessed with being published. But you can imagine what it would do for a 24 year old to get a poem published in The New Yorker. Now to people he meets at parties he's a real poet. Actually he's no better or worse than he was before, but to a clueless audience like that, the approval of an official authority makes all the difference. So it's a harder problem than Hall realizes. The reason the young care so much about prestige is that the people they want to impress are not very discerning.
[6] This is isomorphic to the principle that you should prevent your beliefs about how things are from being contaminated by how you wish they were. Most people let them mix pretty promiscuously. The continuing popularity of religion is the most visible index of that.
[7] A more accurate metaphor would be to say that the graph of jobs is not very well connected.

Are Software Patents Evil?

(This essay is derived from a talk at Google.)
A few weeks ago I found to my surprise that I'd been granted four patents. This was all the more surprising because I'd only applied for three. The patents aren't mine, of course. They were assigned to Viaweb, and became Yahoo's when they bought us. But the news set me thinking about the question of software patents generally.
Patents are a hard problem. I've had to advise most of the startups we've funded about them, and despite years of experience I'm still not always sure I'm giving the right advice.
One thing I do feel pretty certain of is that if you're against software patents, you're against patents in general. Gradually our machines consist more and more of software. Things that used to be done with levers and cams and gears are now done with loops and trees and closures. There's nothing special about physical embodiments of control systems that should make them patentable, and the software equivalent not.
Unfortunately, patent law is inconsistent on this point. Patent law in most countries says that algorithms aren't patentable. This rule is left over from a time when "algorithm" meant something like the Sieve of Eratosthenes. In 1800, people could not see as readily as we can that a great many patents on mechanical objects were really patents on the algorithms they embodied.
Patent lawyers still have to pretend that's what they're doing when they patent algorithms. You must not use the word "algorithm" in the title of a patent application, just as you must not use the word "essays" in the title of a book. If you want to patent an algorithm, you have to frame it as a computer system executing that algorithm. Then it's mechanical; phew. The default euphemism for algorithm is "system and method." Try a patent search for that phrase and see how many results you get.
Since software patents are no different from hardware patents, people who say "software patents are evil" are saying simply "patents are evil." So why do so many people complain about software patents specifically?
I think the problem is more with the patent office than the concept of software patents. Whenever software meets government, bad things happen, because software changes fast and government changes slow. The patent office has been overwhelmed by both the volume and the novelty of applications for software patents, and as a result they've made a lot of mistakes.
The most common is to grant patents that shouldn't be granted. To be patentable, an invention has to be more than new. It also has to be non-obvious. And this, especially, is where the USPTO has been dropping the ball. Slashdot has an icon that expresses the problem vividly: a knife and fork with the words "patent pending" superimposed.
The scary thing is, this is the only icon they have for patent stories. Slashdot readers now take it for granted that a story about a patent will be about a bogus patent. That's how bad the problem has become.
The problem with Amazon's notorious one-click patent, for example, is not that it's a software patent, but that it's obvious. Any online store that kept people's shipping addresses would have implemented this. The reason Amazon did it first was not that they were especially smart, but because they were one of the earliest sites with enough clout to force customers to log in before they could buy something. [1]
We, as hackers, know the USPTO is letting people patent the knives and forks of our world. The problem is, the USPTO are not hackers. They're probably good at judging new inventions for casting steel or grinding lenses, but they don't understand software yet.
At this point an optimist would be tempted to add "but they will eventually." Unfortunately that might not be true. The problem with software patents is an instance of a more general one: the patent office takes a while to understand new technology. If so, this problem will only get worse, because the rate of technological change seems to be increasing. In thirty years, the patent office may understand the sort of things we now patent as software, but there will be other new types of inventions they understand even less.
Applying for a patent is a negotiation. You generally apply for a broader patent than you think you'll be granted, and the examiners reply by throwing out some of your claims and granting others. So I don't really blame Amazon for applying for the one-click patent. The big mistake was the patent office's, for not insisting on something narrower, with real technical content. By granting such an over-broad patent, the USPTO in effect slept with Amazon on the first date. Was Amazon supposed to say no?
Where Amazon went over to the dark side was not in applying for the patent, but in enforcing it. A lot of companies (Microsoft, for example) have been granted large numbers of preposterously over-broad patents, but they keep them mainly for defensive purposes. Like nuclear weapons, the main role of big companies' patent portfolios is to threaten anyone who attacks them with a counter-suit. Amazon's suit against Barnes & Noble was thus the equivalent of a nuclear first strike.
That suit probably hurt Amazon more than it helped them. Barnes & Noble was a lame site; Amazon would have crushed them anyway. To attack a rival they could have ignored, Amazon put a lasting black mark on their own reputation. Even now I think if you asked hackers to free-associate about Amazon, the one-click patent would turn up in the first ten topics.
Google clearly doesn't feel that merely holding patents is evil. They've applied for a lot of them. Are they hypocrites? Are patents evil?
There are really two variants of that question, and people answering it often aren't clear in their own minds which they're answering. There's a narrow variant: is it bad, given the current legal system, to apply for patents? and also a broader one: it is bad that the current legal system allows patents?
These are separate questions. For example, in preindustrial societies like medieval Europe, when someone attacked you, you didn't call the police. There were no police. When attacked, you were supposed to fight back, and there were conventions about how to do it. Was this wrong? That's two questions: was it wrong to take justice into your own hands, and was it wrong that you had to? We tend to say yes to the second, but no to the first. If no one else will defend you, you have to defend yourself. [2]
The situation with patents is similar. Business is a kind of ritualized warfare. Indeed, it evolved from actual warfare: most early traders switched on the fly from merchants to pirates depending on how strong you seemed. In business there are certain rules describing how companies may and may not compete with one another, and someone deciding that they're going to play by their own rules is missing the point. Saying "I'm not going to apply for patents just because everyone else does" is not like saying "I'm not going to lie just because everyone else does." It's more like saying "I'm not going to use TCP/IP just because everyone else does." Oh yes you are.
A closer comparison might be someone seeing a hockey game for the first time, realizing with shock that the players were deliberately bumping into one another, and deciding that one would on no account be so rude when playing hockey oneself.
Hockey allows checking. It's part of the game. If your team refuses to do it, you simply lose. So it is in business. Under the present rules, patents are part of the game.
What does that mean in practice? We tell the startups we fund not to worry about infringing patents, because startups rarely get sued for patent infringement. There are only two reasons someone might sue you: for money, or to prevent you from competing with them. Startups are too poor to be worth suing for money. And in practice they don't seem to get sued much by competitors, either. They don't get sued by other startups because (a) patent suits are an expensive distraction, and (b) since the other startups are as young as they are, their patents probably haven't issued yet. [3] Nor do startups, at least in the software business, seem to get sued much by established competitors. Despite all the patents Microsoft holds, I don't know of an instance where they sued a startup for patent infringement. Companies like Microsoft and Oracle don't win by winning lawsuits. That's too uncertain. They win by locking competitors out of their sales channels. If you do manage to threaten them, they're more likely to buy you than sue you.
When you read of big companies filing patent suits against smaller ones, it's usually a big company on the way down, grasping at straws. For example, Unisys's attempts to enforce their patent on LZW compression. When you see a big company threatening patent suits, sell. When a company starts fighting over IP, it's a sign they've lost the real battle, for users.
A company that sues competitors for patent infringement is like a defender who has been beaten so thoroughly that he turns to plead with the referee. You don't do that if you can still reach the ball, even if you genuinely believe you've been fouled. So a company threatening patent suits is a company in trouble.
When we were working on Viaweb, a bigger company in the e-commerce business was granted a patent on online ordering, or something like that. I got a call from a VP there asking if we'd like to license it. I replied that I thought the patent was completely bogus, and would never hold up in court. "Ok," he replied. "So, are you guys hiring?"
If your startup grows big enough, however, you'll start to get sued, no matter what you do. If you go public, for example, you'll be sued by multiple patent trolls who hope you'll pay them off to go away. More on them later.
In other words, no one will sue you for patent infringement till you have money, and once you have money, people will sue you whether they have grounds to or not. So I advise fatalism. Don't waste your time worrying about patent infringement. You're probably violating a patent every time you tie your shoelaces. At the start, at least, just worry about making something great and getting lots of users. If you grow to the point where anyone considers you worth attacking, you're doing well.
We do advise the companies we fund to apply for patents, but not so they can sue competitors. Successful startups either get bought or grow into big companies. If a startup wants to grow into a big company, they should apply for patents to build up the patent portfolio they'll need to maintain an armed truce with other big companies. If they want to get bought, they should apply for patents because patents are part of the mating dance with acquirers.
Most startups that succeed do it by getting bought, and most acquirers care about patents. Startup acquisitions are usually a build-vs-buy decision for the acquirer. Should we buy this little startup or build our own? And two things, especially, make them decide not to build their own: if you already have a large and rapidly growing user base, and if you have a fairly solid patent application on critical parts of your software.
There's a third reason big companies should prefer buying to building: that if they built their own, they'd screw it up. But few big companies are smart enough yet to admit this to themselves. It's usually the acquirer's engineers who are asked how hard it would be for the company to build their own, and they overestimate their abilities. [4] A patent seems to change the balance. It gives the acquirer an excuse to admit they couldn't copy what you're doing. It may also help them to grasp what's special about your technology.
Frankly, it surprises me how small a role patents play in the software business. It's kind of ironic, considering all the dire things experts say about software patents stifling innovation, but when one looks closely at the software business, the most striking thing is how little patents seem to matter.
In other fields, companies regularly sue competitors for patent infringement. For example, the airport baggage scanning business was for many years a cozy duopoly shared between two companies, InVision and L-3. In 2002 a startup called Reveal appeared, with new technology that let them build scanners a third the size. They were sued for patent infringement before they'd even released a product.
You rarely hear that kind of story in our world. The one example I've found is, embarrassingly enough, Yahoo, which filed a patent suit against a gaming startup called Xfire in 2005. Xfire doesn't seem to be a very big deal, and it's hard to say why Yahoo felt threatened. Xfire's VP of engineering had worked at Yahoo on similar stuff-- in fact, he was listed as an inventor on the patent Yahoo sued over-- so perhaps there was something personal about it. My guess is that someone at Yahoo goofed. At any rate they didn't pursue the suit very vigorously.
Why do patents play so small a role in software? I can think of three possible reasons.
One is that software is so complicated that patents by themselves are not worth very much. I may be maligning other fields here, but it seems that in most types of engineering you can hand the details of some new technique to a group of medium-high quality people and get the desired result. For example, if someone develops a new process for smelting ore that gets a better yield, and you assemble a team of qualified experts and tell them about it, they'll be able to get the same yield. This doesn't seem to work in software. Software is so subtle and unpredictable that "qualified experts" don't get you very far.
That's why we rarely hear phrases like "qualified expert" in the software business. What that level of ability can get you is, say, to make your software compatible with some other piece of software-- in eight months, at enormous cost. To do anything harder you need individual brilliance. If you assemble a team of qualified experts and tell them to make a new web-based email program, they'll get their asses kicked by a team of inspired nineteen year olds.
Experts can implement, but they can't design. Or rather, expertise in implementation is the only kind most people, including the experts themselves, can measure. [5]
But design is a definite skill. It's not just an airy intangible. Things always seem intangible when you don't understand them. Electricity seemed an airy intangible to most people in 1800. Who knew there was so much to know about it? So it is with design. Some people are good at it and some people are bad at it, and there's something very tangible they're good or bad at.
The reason design counts so much in software is probably that there are fewer constraints than on physical things. Building physical things is expensive and dangerous. The space of possible choices is smaller; you tend to have to work as part of a larger group; and you're subject to a lot of regulations. You don't have any of that if you and a couple friends decide to create a new web-based application.
Because there's so much scope for design in software, a successful application tends to be way more than the sum of its patents. What protects little companies from being copied by bigger competitors is not just their patents, but the thousand little things the big company will get wrong if they try.
The second reason patents don't count for much in our world is that startups rarely attack big companies head-on, the way Reveal did. In the software business, startups beat established companies by transcending them. Startups don't build desktop word processing programs to compete with Microsoft Word. [6] They build Writely. If this paradigm is crowded, just wait for the next one; they run pretty frequently on this route.
Fortunately for startups, big companies are extremely good at denial. If you take the trouble to attack them from an oblique angle, they'll meet you half-way and maneuver to keep you in their blind spot. To sue a startup would mean admitting it was dangerous, and that often means seeing something the big company doesn't want to see. IBM used to sue its mainframe competitors regularly, but they didn't bother much about the microcomputer industry because they didn't want to see the threat it posed. Companies building web based apps are similarly protected from Microsoft, which even now doesn't want to imagine a world in which Windows is irrelevant.
The third reason patents don't seem to matter very much in software is public opinion-- or rather, hacker opinion. In a recent interview, Steve Ballmer coyly left open the possibility of attacking Linux on patent grounds. But I doubt Microsoft would ever be so stupid. They'd face the mother of all boycotts. And not just from the technical community in general; a lot of their own people would rebel.
Good hackers care a lot about matters of principle, and they are highly mobile. If a company starts misbehaving, smart people won't work there. For some reason this seems to be more true in software than other businesses. I don't think it's because hackers have intrinsically higher principles so much as that their skills are easily transferrable. Perhaps we can split the difference and say that mobility gives hackers the luxury of being principled.
Google's "don't be evil" policy may for this reason be the most valuable thing they've discovered. It's very constraining in some ways. If Google does do something evil, they get doubly whacked for it: once for whatever they did, and again for hypocrisy. But I think it's worth it. It helps them to hire the best people, and it's better, even from a purely selfish point of view, to be constrained by principles than by stupidity.
(I wish someone would get this point across to the present administration.)
I'm not sure what the proportions are of the preceding three ingredients, but the custom among the big companies seems to be not to sue the small ones, and the startups are mostly too busy and too poor to sue one another. So despite the huge number of software patents there's not a lot of suing going on. With one exception: patent trolls.
Patent trolls are companies consisting mainly of lawyers whose whole business is to accumulate patents and threaten to sue companies who actually make things. Patent trolls, it seems safe to say, are evil. I feel a bit stupid saying that, because when you're saying something that Richard Stallman and Bill Gates would both agree with, you must be perilously close to tautologies.
The CEO of Forgent, one of the most notorious patent trolls, says that what his company does is "the American way." Actually that's not true. The American way is to make money by creating wealth, not by suing people. [7] What companies like Forgent do is actually the proto-industrial way. In the period just before the industrial revolution, some of the greatest fortunes in countries like England and France were made by courtiers who extracted some lucrative right from the crown-- like the right to collect taxes on the import of silk-- and then used this to squeeze money from the merchants in that business. So when people compare patent trolls to the mafia, they're more right than they know, because the mafia too are not merely bad, but bad specifically in the sense of being an obsolete business model.
Patent trolls seem to have caught big companies by surprise. In the last couple years they've extracted hundreds of millions of dollars from them. Patent trolls are hard to fight precisely because they create nothing. Big companies are safe from being sued by other big companies because they can threaten a counter-suit. But because patent trolls don't make anything, there's nothing they can be sued for. I predict this loophole will get closed fairly quickly, at least by legal standards. It's clearly an abuse of the system, and the victims are powerful. [8]
But evil as patent trolls are, I don't think they hamper innovation much. They don't sue till a startup has made money, and by that point the innovation that generated it has already happened. I can't think of a startup that avoided working on some problem because of patent trolls.
So much for hockey as the game is played now. What about the more theoretical question of whether hockey would be a better game without checking? Do patents encourage or discourage innovation?
This is a very hard question to answer in the general case. People write whole books on the topic. One of my main hobbies is the history of technology, and even though I've studied the subject for years, it would take me several weeks of research to be able to say whether patents have in general been a net win.
One thing I can say is that 99.9% of the people who express opinions on the subject do it not based on such research, but out of a kind of religious conviction. At least, that's the polite way of putting it; the colloquial version involves speech coming out of organs not designed for that purpose.
Whether they encourage innovation or not, patents were at least intended to. You don't get a patent for nothing. In return for the exclusive right to use an idea, you have to publish it, and it was largely to encourage such openness that patents were established.
Before patents, people protected ideas by keeping them secret. With patents, central governments said, in effect, if you tell everyone your idea, we'll protect it for you. There is a parallel here to the rise of civil order, which happened at roughly the same time. Before central governments were powerful enough to enforce order, rich people had private armies. As governments got more powerful, they gradually compelled magnates to cede most responsibility for protecting them. (Magnates still have bodyguards, but no longer to protect them from other magnates.)
Patents, like police, are involved in many abuses. But in both cases the default is something worse. The choice is not "patents or freedom?" any more than it is "police or freedom?" The actual questions are respectively "patents or secrecy?" and "police or gangs?"
As with gangs, we have some idea what secrecy would be like, because that's how things used to be. The economy of medieval Europe was divided up into little tribes, each jealously guarding their privileges and secrets. In Shakespeare's time, "mystery" was synonymous with "craft." Even today we can see an echo of the secrecy of medieval guilds, in the now pointless secrecy of the Masons.
The most memorable example of medieval industrial secrecy is probably Venice, which forbade glassblowers to leave the city, and sent assassins after those who tried. We might like to think we wouldn't go so far, but the movie industry has already tried to pass laws prescribing three year prison terms just for putting movies on public networks. Want to try a frightening thought experiment? If the movie industry could have any law they wanted, where would they stop? Short of the death penalty, one assumes, but how close would they get?
Even worse than the spectacular abuses might be the overall decrease in efficiency that would accompany increased secrecy. As anyone who has dealt with organizations that operate on a "need to know" basis can attest, dividing information up into little cells is terribly inefficient. The flaw in the "need to know" principle is that you don't know who needs to know something. An idea from one area might spark a great discovery in another. But the discoverer doesn't know he needs to know it.
If secrecy were the only protection for ideas, companies wouldn't just have to be secretive with other companies; they'd have to be secretive internally. This would encourage what is already the worst trait of big companies.
I'm not saying secrecy would be worse than patents, just that we couldn't discard patents for free. Businesses would become more secretive to compensate, and in some fields this might get ugly. Nor am I defending the current patent system. There is clearly a lot that's broken about it. But the breakage seems to affect software less than most other fields.
In the software business I know from experience whether patents encourage or discourage innovation, and the answer is the type that people who like to argue about public policy least like to hear: they don't affect innovation much, one way or the other. Most innovation in the software business happens in startups, and startups should simply ignore other companies' patents. At least, that's what we advise, and we bet money on that advice.
The only real role of patents, for most startups, is as an element of the mating dance with acquirers. There patents do help a little. And so they do encourage innovation indirectly, in that they give more power to startups, which is where, pound for pound, the most innovation happens. But even in the mating dance, patents are of secondary importance. It matters more to make something great and get a lot of users.
Notes
[1] You have to be careful here, because a great discovery often seems obvious in retrospect. One-click ordering, however, is not such a discovery.
[2] "Turn the other cheek" skirts the issue; the critical question is not how to deal with slaps, but sword thrusts.
[3] Applying for a patent is now very slow, but it might actually be bad if that got fixed. At the moment the time it takes to get a patent is conveniently just longer than the time it takes a startup to succeed or fail.
[4] Instead of the canonical "could you build this?" maybe the corp dev guys should be asking "will you build this?" or even "why haven't you already built this?"
[5] Design ability is so hard to measure that you can't even trust the design world's internal standards. You can't assume that someone with a degree in design is any good at design, or that an eminent designer is any better than his peers. If that worked, any company could build products as good as Apple's just by hiring sufficiently qualified designers.
[6] If anyone wanted to try, we'd be interested to hear from them. I suspect it's one of those things that's not as hard as everyone assumes.
[7] Patent trolls can't even claim, like speculators, that they "create" liquidity.
[8] If big companies don't want to wait for the government to take action, there is a way to fight back themselves. For a long time I thought there wasn't, because there was nothing to grab onto. But there is one resource patent trolls need: lawyers. Big technology companies between them generate a lot of legal business. If they agreed among themselves never to do business with any firm employing anyone who had worked for a patent troll, either as an employee or as outside counsel, they could probably starve the trolls of the lawyers they need.
Thanks to Dan Bloomberg, Paul Buchheit, Sarah Harlin, Jessica Livingston, and Peter Norvig for reading drafts of this, to Joel Lehrer and Peter Eng for answering my questions about patents, and to Ankur Pansari for inviting me to speak.

The Hardest Lessons for Startups to Learn

(This essay is derived from a talk at the 2006 Startup School.)
The startups we've funded so far are pretty quick, but they seem quicker to learn some lessons than others. I think it's because some things about startups are kind of counterintuitive.
We've now invested in enough companies that I've learned a trick for determining which points are the counterintuitive ones: they're the ones I have to keep repeating.
So I'm going to number these points, and maybe with future startups I'll be able to pull off a form of Huffman coding. I'll make them all read this, and then instead of nagging them in detail, I'll just be able to say: number four!
1. Release Early.
The thing I probably repeat most is this recipe for a startup: get a version 1 out fast, then improve it based on users' reactions.
By "release early" I don't mean you should release something full of bugs, but that you should release something minimal. Users hate bugs, but they don't seem to mind a minimal version 1, if there's more coming soon.
There are several reasons it pays to get version 1 done fast. One is that this is simply the right way to write software, whether for a startup or not. I've been repeating that since 1993, and I haven't seen much since to contradict it. I've seen a lot of startups die because they were too slow to release stuff, and none because they were too quick. [1]
One of the things that will surprise you if you build something popular is that you won't know your users. Reddit now has almost half a million unique visitors a month. Who are all those people? They have no idea. No web startup does. And since you don't know your users, it's dangerous to guess what they'll like. Better to release something and let them tell you.
Wufoo took this to heart and released their form-builder before the underlying database. You can't even drive the thing yet, but 83,000 people came to sit in the driver's seat and hold the steering wheel. And Wufoo got valuable feedback from it: Linux users complained they used too much Flash, so they rewrote their software not to. If they'd waited to release everything at once, they wouldn't have discovered this problem till it was more deeply wired in.
Even if you had no users, it would still be important to release quickly, because for a startup the initial release acts as a shakedown cruise. If anything major is broken-- if the idea's no good, for example, or the founders hate one another-- the stress of getting that first version out will expose it. And if you have such problems you want to find them early.
Perhaps the most important reason to release early, though, is that it makes you work harder. When you're working on something that isn't released, problems are intriguing. In something that's out there, problems are alarming. There is a lot more urgency once you release. And I think that's precisely why people put it off. They know they'll have to work a lot harder once they do. [2]
2. Keep Pumping Out Features.
Of course, "release early" has a second component, without which it would be bad advice. If you're going to start with something that doesn't do much, you better improve it fast.
What I find myself repeating is "pump out features." And this rule isn't just for the initial stages. This is something all startups should do for as long as they want to be considered startups.
I don't mean, of course, that you should make your application ever more complex. By "feature" I mean one unit of hacking-- one quantum of making users' lives better.
As with exercise, improvements beget improvements. If you run every day, you'll probably feel like running tomorrow. But if you skip running for a couple weeks, it will be an effort to drag yourself out. So it is with hacking: the more ideas you implement, the more ideas you'll have. You should make your system better at least in some small way every day or two.
This is not just a good way to get development done; it is also a form of marketing. Users love a site that's constantly improving. In fact, users expect a site to improve. Imagine if you visited a site that seemed very good, and then returned two months later and not one thing had changed. Wouldn't it start to seem lame? [3]
They'll like you even better when you improve in response to their comments, because customers are used to companies ignoring them. If you're the rare exception-- a company that actually listens-- you'll generate fanatical loyalty. You won't need to advertise, because your users will do it for you.
This seems obvious too, so why do I have to keep repeating it? I think the problem here is that people get used to how things are. Once a product gets past the stage where it has glaring flaws, you start to get used to it, and gradually whatever features it happens to have become its identity. For example, I doubt many people at Yahoo (or Google for that matter) realized how much better web mail could be till Paul Buchheit showed them.
I think the solution is to assume that anything you've made is far short of what it could be. Force yourself, as a sort of intellectual exercise, to keep thinking of improvements. Ok, sure, what you have is perfect. But if you had to change something, what would it be?
If your product seems finished, there are two possible explanations: (a) it is finished, or (b) you lack imagination. Experience suggests (b) is a thousand times more likely.
3. Make Users Happy.
Improving constantly is an instance of a more general rule: make users happy. One thing all startups have in common is that they can't force anyone to do anything. They can't force anyone to use their software, and they can't force anyone to do deals with them. A startup has to sing for its supper. That's why the successful ones make great things. They have to, or die.
When you're running a startup you feel like a little bit of debris blown about by powerful winds. The most powerful wind is users. They can either catch you and loft you up into the sky, as they did with Google, or leave you flat on the pavement, as they do with most startups. Users are a fickle wind, but more powerful than any other. If they take you up, no competitor can keep you down.
As a little piece of debris, the rational thing for you to do is not to lie flat, but to curl yourself into a shape the wind will catch.
I like the wind metaphor because it reminds you how impersonal the stream of traffic is. The vast majority of people who visit your site will be casual visitors. It's them you have to design your site for. The people who really care will find what they want by themselves.
The median visitor will arrive with their finger poised on the Back button. Think about your own experience: most links you follow lead to something lame. Anyone who has used the web for more than a couple weeks has been trained to click on Back after following a link. So your site has to say "Wait! Don't click on Back. This site isn't lame. Look at this, for example."
There are two things you have to do to make people pause. The most important is to explain, as concisely as possible, what the hell your site is about. How often have you visited a site that seemed to assume you already knew what they did? For example, the corporate site that says the company makes enterprise content management solutions for business that enable organizations to unify people, content and processes to minimize business risk, accelerate time-to-value and sustain lower total cost of ownership.
An established company may get away with such an opaque description, but no startup can. A startup should be able to explain in one or two sentences exactly what it does. [4] And not just to users. You need this for everyone: investors, acquirers, partners, reporters, potential employees, and even current employees. You probably shouldn't even start a company to do something that can't be described compellingly in one or two sentences.
The other thing I repeat is to give people everything you've got, right away. If you have something impressive, try to put it on the front page, because that's the only one most visitors will see. Though indeed there's a paradox here: the more you push the good stuff toward the front, the more likely visitors are to explore further. [5]
In the best case these two suggestions get combined: you tell visitors what your site is about by showing them. One of the standard pieces of advice in fiction writing is "show, don't tell." Don't say that a character's angry; have him grind his teeth, or break his pencil in half. Nothing will explain what your site does so well as using it.
The industry term here is "conversion." The job of your site is to convert casual visitors into users-- whatever your definition of a user is. You can measure this in your growth rate. Either your site is catching on, or it isn't, and you must know which. If you have decent growth, you'll win in the end, no matter how obscure you are now. And if you don't, you need to fix something.
4. Fear the Right Things.
Another thing I find myself saying a lot is "don't worry." Actually, it's more often "don't worry about this; worry about that instead." Startups are right to be paranoid, but they sometimes fear the wrong things.
Most visible disasters are not so alarming as they seem. Disasters are normal in a startup: a founder quits, you discover a patent that covers what you're doing, your servers keep crashing, you run into an insoluble technical problem, you have to change your name, a deal falls through-- these are all par for the course. They won't kill you unless you let them.
Nor will most competitors. A lot of startups worry "what if Google builds something like us?" Actually big companies are not the ones you have to worry about-- not even Google. The people at Google are smart, but no smarter than you; they're not as motivated, because Google is not going to go out of business if this one product fails; and even at Google they have a lot of bureaucracy to slow them down.
What you should fear, as a startup, is not the established players, but other startups you don't know exist yet. They're way more dangerous than Google because, like you, they're cornered animals.
Looking just at existing competitors can give you a false sense of security. You should compete against what someone else could be doing, not just what you can see people doing. A corollary is that you shouldn't relax just because you have no visible competitors yet. No matter what your idea, there's someone else out there working on the same thing.
That's the downside of it being easier to start a startup: more people are doing it. But I disagree with Caterina Fake when she says that makes this a bad time to start a startup. More people are starting startups, but not as many more as could. Most college graduates still think they have to get a job. The average person can't ignore something that's been beaten into their head since they were three just because serving web pages recently got a lot cheaper.
And in any case, competitors are not the biggest threat. Way more startups hose themselves than get crushed by competitors. There are a lot of ways to do it, but the three main ones are internal disputes, inertia, and ignoring users. Each is, by itself, enough to kill you. But if I had to pick the worst, it would be ignoring users. If you want a recipe for a startup that's going to die, here it is: a couple of founders who have some great idea they know everyone is going to love, and that's what they're going to build, no matter what.
Almost everyone's initial plan is broken. If companies stuck to their initial plans, Microsoft would be selling programming languages, and Apple would be selling printed circuit boards. In both cases their customers told them what their business should be-- and they were smart enough to listen.
As Richard Feynman said, the imagination of nature is greater than the imagination of man. You'll find more interesting things by looking at the world than you could ever produce just by thinking. This principle is very powerful. It's why the best abstract painting still falls short of Leonardo, for example. And it applies to startups too. No idea for a product could ever be so clever as the ones you can discover by smashing a beam of prototypes into a beam of users.
5. Commitment Is a Self-Fulfilling Prophecy.
I now have enough experience with startups to be able to say what the most important quality is in a startup founder, and it's not what you might think. The most important quality in a startup founder is determination. Not intelligence-- determination.
This is a little depressing. I'd like to believe Viaweb succeeded because we were smart, not merely determined. A lot of people in the startup world want to believe that. Not just founders, but investors too. They like the idea of inhabiting a world ruled by intelligence. And you can tell they really believe this, because it affects their investment decisions.
Time after time VCs invest in startups founded by eminent professors. This may work in biotech, where a lot of startups simply commercialize existing research, but in software you want to invest in students, not professors. Microsoft, Yahoo, and Google were all founded by people who dropped out of school to do it. What students lack in experience they more than make up in dedication.
Of course, if you want to get rich, it's not enough merely to be determined. You have to be smart too, right? I'd like to think so, but I've had an experience that convinced me otherwise: I spent several years living in New York.
You can lose quite a lot in the brains department and it won't kill you. But lose even a little bit in the commitment department, and that will kill you very rapidly.
Running a startup is like walking on your hands: it's possible, but it requires extraordinary effort. If an ordinary employee were asked to do the things a startup founder has to, he'd be very indignant. Imagine if you were hired at some big company, and in addition to writing software ten times faster than you'd ever had to before, they expected you to answer support calls, administer the servers, design the web site, cold-call customers, find the company office space, and go out and get everyone lunch.
And to do all this not in the calm, womb-like atmosphere of a big company, but against a backdrop of constant disasters. That's the part that really demands determination. In a startup, there's always some disaster happening. So if you're the least bit inclined to find an excuse to quit, there's always one right there.
But if you lack commitment, chances are it will have been hurting you long before you actually quit. Everyone who deals with startups knows how important commitment is, so if they sense you're ambivalent, they won't give you much attention. If you lack commitment, you'll just find that for some mysterious reason good things happen to your competitors but not to you. If you lack commitment, it will seem to you that you're unlucky.
Whereas if you're determined to stick around, people will pay attention to you, because odds are they'll have to deal with you later. You're a local, not just a tourist, so everyone has to come to terms with you.
At Y Combinator we sometimes mistakenly fund teams who have the attitude that they're going to give this startup thing a shot for three months, and if something great happens, they'll stick with it-- "something great" meaning either that someone wants to buy them or invest millions of dollars in them. But if this is your attitude, "something great" is very unlikely to happen to you, because both acquirers and investors judge you by your level of commitment.
If an acquirer thinks you're going to stick around no matter what, they'll be more likely to buy you, because if they don't and you stick around, you'll probably grow, your price will go up, and they'll be left wishing they'd bought you earlier. Ditto for investors. What really motivates investors, even big VCs, is not the hope of good returns, but the fear of missing out. [6] So if you make it clear you're going to succeed no matter what, and the only reason you need them is to make it happen a little faster, you're much more likely to get money.
You can't fake this. The only way to convince everyone that you're ready to fight to the death is actually to be ready to.
You have to be the right kind of determined, though. I carefully chose the word determined rather than stubborn, because stubbornness is a disastrous quality in a startup. You have to be determined, but flexible, like a running back. A successful running back doesn't just put his head down and try to run through people. He improvises: if someone appears in front of him, he runs around them; if someone tries to grab him, he spins out of their grip; he'll even run in the wrong direction briefly if that will help. The one thing he'll never do is stand still. [7]
6. There Is Always Room.
I was talking recently to a startup founder about whether it might be good to add a social component to their software. He said he didn't think so, because the whole social thing was tapped out. Really? So in a hundred years the only social networking sites will be the Facebook, MySpace, Flickr, and Del.icio.us? Not likely.
There is always room for new stuff. At every point in history, even the darkest bits of the dark ages, people were discovering things that made everyone say "why didn't anyone think of that before?" We know this continued to be true up till 2004, when the Facebook was founded-- though strictly speaking someone else did think of that.
The reason we don't see the opportunities all around us is that we adjust to however things are, and assume that's how things have to be. For example, it would seem crazy to most people to try to make a better search engine than Google. Surely that field, at least, is tapped out. Really? In a hundred years-- or even twenty-- are people still going to search for information using something like the current Google? Even Google probably doesn't think that.
In particular, I don't think there's any limit to the number of startups. Sometimes you hear people saying "All these guys starting startups now are going to be disappointed. How many little startups are Google and Yahoo going to buy, after all?" That sounds cleverly skeptical, but I can prove it's mistaken. No one proposes that there's some limit to the number of people who can be employed in an economy consisting of big, slow-moving companies with a couple thousand people each. Why should there be any limit to the number who could be employed by small, fast-moving companies with ten each? It seems to me the only limit would be the number of people who want to work that hard.
The limit on the number of startups is not the number that can get acquired by Google and Yahoo-- though it seems even that should be unlimited, if the startups were actually worth buying-- but the amount of wealth that can be created. And I don't think there's any limit on that, except cosmological ones.
So for all practical purposes, there is no limit to the number of startups. Startups make wealth, which means they make things people want, and if there's a limit on the number of things people want, we are nowhere near it. I still don't even have a flying car.
7. Don't Get Your Hopes Up.
This is another one I've been repeating since long before Y Combinator. It was practically the corporate motto at Viaweb.
Startup founders are naturally optimistic. They wouldn't do it otherwise. But you should treat your optimism the way you'd treat the core of a nuclear reactor: as a source of power that's also very dangerous. You have to build a shield around it, or it will fry you.
The shielding of a reactor is not uniform; the reactor would be useless if it were. It's pierced in a few places to let pipes in. An optimism shield has to be pierced too. I think the place to draw the line is between what you expect of yourself, and what you expect of other people. It's ok to be optimistic about what you can do, but assume the worst about machines and other people.
This is particularly necessary in a startup, because you tend to be pushing the limits of whatever you're doing. So things don't happen in the smooth, predictable way they do in the rest of the world. Things change suddenly, and usually for the worse.
Shielding your optimism is nowhere more important than with deals. If your startup is doing a deal, just assume it's not going to happen. The VCs who say they're going to invest in you aren't. The company that says they're going to buy you isn't. The big customer who wants to use your system in their whole company won't. Then if things work out you can be pleasantly surprised.
The reason I warn startups not to get their hopes up is not to save them from being disappointed when things fall through. It's for a more practical reason: to prevent them from leaning their company against something that's going to fall over, taking them with it.
For example, if someone says they want to invest in you, there's a natural tendency to stop looking for other investors. That's why people proposing deals seem so positive: they want you to stop looking. And you want to stop too, because doing deals is a pain. Raising money, in particular, is a huge time sink. So you have to consciously force yourself to keep looking.
Even if you ultimately do the first deal, it will be to your advantage to have kept looking, because you'll get better terms. Deals are dynamic; unless you're negotiating with someone unusually honest, there's not a single point where you shake hands and the deal's done. There are usually a lot of subsidiary questions to be cleared up after the handshake, and if the other side senses weakness-- if they sense you need this deal-- they will be very tempted to screw you in the details.
VCs and corp dev guys are professional negotiators. They're trained to take advantage of weakness. [8] So while they're often nice guys, they just can't help it. And as pros they do this more than you. So don't even try to bluff them. The only way a startup can have any leverage in a deal is genuinely not to need it. And if you don't believe in a deal, you'll be less likely to depend on it.
So I want to plant a hypnotic suggestion in your heads: when you hear someone say the words "we want to invest in you" or "we want to acquire you," I want the following phrase to appear automatically in your head: don't get your hopes up. Just continue running your company as if this deal didn't exist. Nothing is more likely to make it close.
The way to succeed in a startup is to focus on the goal of getting lots of users, and keep walking swiftly toward it while investors and acquirers scurry alongside trying to wave money in your face.
Speed, not Money
The way I've described it, starting a startup sounds pretty stressful. It is. When I talk to the founders of the companies we've funded, they all say the same thing: I knew it would be hard, but I didn't realize it would be this hard.
So why do it? It would be worth enduring a lot of pain and stress to do something grand or heroic, but just to make money? Is making money really that important?
No, not really. It seems ridiculous to me when people take business too seriously. I regard making money as a boring errand to be got out of the way as soon as possible. There is nothing grand or heroic about starting a startup per se.
So why do I spend so much time thinking about startups? I'll tell you why. Economically, a startup is best seen not as a way to get rich, but as a way to work faster. You have to make a living, and a startup is a way to get that done quickly, instead of letting it drag on through your whole life. [9]
We take it for granted most of the time, but human life is fairly miraculous. It is also palpably short. You're given this marvellous thing, and then poof, it's taken away. You can see why people invent gods to explain it. But even to people who don't believe in gods, life commands respect. There are times in most of our lives when the days go by in a blur, and almost everyone has a sense, when this happens, of wasting something precious. As Ben Franklin said, if you love life, don't waste time, because time is what life is made of.
So no, there's nothing particularly grand about making money. That's not what makes startups worth the trouble. What's important about startups is the speed. By compressing the dull but necessary task of making a living into the smallest possible time, you show respect for life, and there is something grand about that.
Notes
[1] Startups can die from releasing something full of bugs, and not fixing them fast enough, but I don't know of any that died from releasing something stable but minimal very early, then promptly improving it.
[2] I know this is why I haven't released Arc. The moment I do, I'll have people nagging me for features.
[3] A web site is different from a book or movie or desktop application in this respect. Users judge a site not as a single snapshot, but as an animation with multiple frames. Of the two, I'd say the rate of improvement is more important to users than where you currently are.
[4] It should not always tell this to users, however. For example, MySpace is basically a replacement mall for mallrats. But it was wiser for them, initially, to pretend that the site was about bands.
[5] Similarly, don't make users register to try your site. Maybe what you have is so valuable that visitors should gladly register to get at it. But they've been trained to expect the opposite. Most of the things they've tried on the web have sucked-- and probably especially those that made them register.
[6] VCs have rational reasons for behaving this way. They don't make their money (if they make money) off their median investments. In a typical fund, half the companies fail, most of the rest generate mediocre returns, and one or two "make the fund" by succeeding spectacularly. So if they miss just a few of the most promising opportunities, it could hose the whole fund.
[7] The attitude of a running back doesn't translate to soccer. Though it looks great when a forward dribbles past multiple defenders, a player who persists in trying such things will do worse in the long term than one who passes.
[8] The reason Y Combinator never negotiates valuations is that we're not professional negotiators, and don't want to turn into them.
[9] There are two ways to do work you love: (a) to make money, then work on what you love, or (b) to get a job where you get paid to work on stuff you love. In practice the first phases of both consist mostly of unedifying schleps, and in (b) the second phase is less secure.
Thanks to Sam Altman, Trevor Blackwell, Beau Hartshorne, Jessica Livingston, and Robert Morris for reading drafts of this.

How to Be Silicon Valley

(This essay is derived from a keynote at Xtech.)
Could you reproduce Silicon Valley elsewhere, or is there something unique about it?
It wouldn't be surprising if it were hard to reproduce in other countries, because you couldn't reproduce it in most of the US either. What does it take to make a silicon valley even here?
What it takes is the right people. If you could get the right ten thousand people to move from Silicon Valley to Buffalo, Buffalo would become Silicon Valley. [1]
That's a striking departure from the past. Up till a couple decades ago, geography was destiny for cities. All great cities were located on waterways, because cities made money by trade, and water was the only economical way to ship.
Now you could make a great city anywhere, if you could get the right people to move there. So the question of how to make a silicon valley becomes: who are the right people, and how do you get them to move?
Two Types
I think you only need two kinds of people to create a technology hub: rich people and nerds. They're the limiting reagents in the reaction that produces startups, because they're the only ones present when startups get started. Everyone else will move.
Observation bears this out: within the US, towns have become startup hubs if and only if they have both rich people and nerds. Few startups happen in Miami, for example, because although it's full of rich people, it has few nerds. It's not the kind of place nerds like.
Whereas Pittsburgh has the opposite problem: plenty of nerds, but no rich people. The top US Computer Science departments are said to be MIT, Stanford, Berkeley, and Carnegie-Mellon. MIT yielded Route 128. Stanford and Berkeley yielded Silicon Valley. But Carnegie-Mellon? The record skips at that point. Lower down the list, the University of Washington yielded a high-tech community in Seattle, and the University of Texas at Austin yielded one in Austin. But what happened in Pittsburgh? And in Ithaca, home of Cornell, which is also high on the list?
I grew up in Pittsburgh and went to college at Cornell, so I can answer for both. The weather is terrible, particularly in winter, and there's no interesting old city to make up for it, as there is in Boston. Rich people don't want to live in Pittsburgh or Ithaca. So while there are plenty of hackers who could start startups, there's no one to invest in them.
Not Bureaucrats
Do you really need the rich people? Wouldn't it work to have the government invest in the nerds? No, it would not. Startup investors are a distinct type of rich people. They tend to have a lot of experience themselves in the technology business. This (a) helps them pick the right startups, and (b) means they can supply advice and connections as well as money. And the fact that they have a personal stake in the outcome makes them really pay attention.
Bureaucrats by their nature are the exact opposite sort of people from startup investors. The idea of them making startup investments is comic. It would be like mathematicians running Vogue-- or perhaps more accurately, Vogue editors running a math journal. [2]
Though indeed, most things bureaucrats do, they do badly. We just don't notice usually, because they only have to compete against other bureaucrats. But as startup investors they'd have to compete against pros with a great deal more experience and motivation.
Even corporations that have in-house VC groups generally forbid them to make their own investment decisions. Most are only allowed to invest in deals where some reputable private VC firm is willing to act as lead investor.
Not Buildings
If you go to see Silicon Valley, what you'll see are buildings. But it's the people that make it Silicon Valley, not the buildings. I read occasionally about attempts to set up "technology parks" in other places, as if the active ingredient of Silicon Valley were the office space. An article about Sophia Antipolis bragged that companies there included Cisco, Compaq, IBM, NCR, and Nortel. Don't the French realize these aren't startups?
Building office buildings for technology companies won't get you a silicon valley, because the key stage in the life of a startup happens before they want that kind of space. The key stage is when they're three guys operating out of an apartment. Wherever the startup is when it gets funded, it will stay. The defining quality of Silicon Valley is not that Intel or Apple or Google have offices there, but that they were started there.
So if you want to reproduce Silicon Valley, what you need to reproduce is those two or three founders sitting around a kitchen table deciding to start a company. And to reproduce that you need those people.
Universities
The exciting thing is, all you need are the people. If you could attract a critical mass of nerds and investors to live somewhere, you could reproduce Silicon Valley. And both groups are highly mobile. They'll go where life is good. So what makes a place good to them?
What nerds like is other nerds. Smart people will go wherever other smart people are. And in particular, to great universities. In theory there could be other ways to attract them, but so far universities seem to be indispensable. Within the US, there are no technology hubs without first-rate universities-- or at least, first-rate computer science departments.
So if you want to make a silicon valley, you not only need a university, but one of the top handful in the world. It has to be good enough to act as a magnet, drawing the best people from thousands of miles away. And that means it has to stand up to existing magnets like MIT and Stanford.
This sounds hard. Actually it might be easy. My professor friends, when they're deciding where they'd like to work, consider one thing above all: the quality of the other faculty. What attracts professors is good colleagues. So if you managed to recruit, en masse, a significant number of the best young researchers, you could create a first-rate university from nothing overnight. And you could do that for surprisingly little. If you paid 200 people hiring bonuses of $3 million apiece, you could put together a faculty that would bear comparison with any in the world. And from that point the chain reaction would be self-sustaining. So whatever it costs to establish a mediocre university, for an additional half billion or so you could have a great one. [3]
Personality
However, merely creating a new university would not be enough to start a silicon valley. The university is just the seed. It has to be planted in the right soil, or it won't germinate. Plant it in the wrong place, and you just create Carnegie-Mellon.
To spawn startups, your university has to be in a town that has attractions other than the university. It has to be a place where investors want to live, and students want to stay after they graduate.
The two like much the same things, because most startup investors are nerds themselves. So what do nerds look for in a town? Their tastes aren't completely different from other people's, because a lot of the towns they like most in the US are also big tourist destinations: San Francisco, Boston, Seattle. But their tastes can't be quite mainstream either, because they dislike other big tourist destinations, like New York, Los Angeles, and Las Vegas.
There has been a lot written lately about the "creative class." The thesis seems to be that as wealth derives increasingly from ideas, cities will prosper only if they attract those who have them. That is certainly true; in fact it was the basis of Amsterdam's prosperity 400 years ago.
A lot of nerd tastes they share with the creative class in general. For example, they like well-preserved old neighborhoods instead of cookie-cutter suburbs, and locally-owned shops and restaurants instead of national chains. Like the rest of the creative class, they want to live somewhere with personality.
What exactly is personality? I think it's the feeling that each building is the work of a distinct group of people. A town with personality is one that doesn't feel mass-produced. So if you want to make a startup hub-- or any town to attract the "creative class"-- you probably have to ban large development projects. When a large tract has been developed by a single organization, you can always tell. [4]
Most towns with personality are old, but they don't have to be. Old towns have two advantages: they're denser, because they were laid out before cars, and they're more varied, because they were built one building at a time. You could have both now. Just have building codes that ensure density, and ban large scale developments.
A corollary is that you have to keep out the biggest developer of all: the government. A government that asks "How can we build a silicon valley?" has probably ensured failure by the way they framed the question. You don't build a silicon valley; you let one grow.
Nerds
If you want to attract nerds, you need more than a town with personality. You need a town with the right personality. Nerds are a distinct subset of the creative class, with different tastes from the rest. You can see this most clearly in New York, which attracts a lot of creative people, but few nerds. [5]
What nerds like is the kind of town where people walk around smiling. This excludes LA, where no one walks at all, and also New York, where people walk, but not smiling. When I was in grad school in Boston, a friend came to visit from New York. On the subway back from the airport she asked "Why is everyone smiling?" I looked and they weren't smiling. They just looked like they were compared to the facial expressions she was used to.
If you've lived in New York, you know where these facial expressions come from. It's the kind of place where your mind may be excited, but your body knows it's having a bad time. People don't so much enjoy living there as endure it for the sake of the excitement. And if you like certain kinds of excitement, New York is incomparable. It's a hub of glamour, a magnet for all the shorter half-life isotopes of style and fame.
Nerds don't care about glamour, so to them the appeal of New York is a mystery. People who like New York will pay a fortune for a small, dark, noisy apartment in order to live in a town where the cool people are really cool. A nerd looks at that deal and sees only: pay a fortune for a small, dark, noisy apartment.
Nerds will pay a premium to live in a town where the smart people are really smart, but you don't have to pay as much for that. It's supply and demand: glamour is popular, so you have to pay a lot for it.
Most nerds like quieter pleasures. They like cafes instead of clubs; used bookshops instead of fashionable clothing shops; hiking instead of dancing; sunlight instead of tall buildings. A nerd's idea of paradise is Berkeley or Boulder.
Youth
It's the young nerds who start startups, so it's those specifically the city has to appeal to. The startup hubs in the US are all young-feeling towns. This doesn't mean they have to be new. Cambridge has the oldest town plan in America, but it feels young because it's full of students.
What you can't have, if you want to create a silicon valley, is a large, existing population of stodgy people. It would be a waste of time to try to reverse the fortunes of a declining industrial town like Detroit or Philadelphia by trying to encourage startups. Those places have too much momentum in the wrong direction. You're better off starting with a blank slate in the form of a small town. Or better still, if there's a town young people already flock to, that one.
The Bay Area was a magnet for the young and optimistic for decades before it was associated with technology. It was a place people went in search of something new. And so it became synonymous with California nuttiness. There's still a lot of that there. If you wanted to start a new fad-- a new way to focus one's "energy," for example, or a new category of things not to eat-- the Bay Area would be the place to do it. But a place that tolerates oddness in the search for the new is exactly what you want in a startup hub, because economically that's what startups are. Most good startup ideas seem a little crazy; if they were obviously good ideas, someone would have done them already.
(How many people are going to want computers in their houses? What, another search engine?)
That's the connection between technology and liberalism. Without exception the high-tech cities in the US are also the most liberal. But it's not because liberals are smarter that this is so. It's because liberal cities tolerate odd ideas, and smart people by definition have odd ideas.
Conversely, a town that gets praised for being "solid" or representing "traditional values" may be a fine place to live, but it's never going to succeed as a startup hub. The 2004 presidential election, though a disaster in other respects, conveniently supplied us with a county-by-county map of such places. [6]
To attract the young, a town must have an intact center. In most American cities the center has been abandoned, and the growth, if any, is in the suburbs. Most American cities have been turned inside out. But none of the startup hubs has: not San Francisco, or Boston, or Seattle. They all have intact centers. [7] My guess is that no city with a dead center could be turned into a startup hub. Young people don't want to live in the suburbs.
Within the US, the two cities I think could most easily be turned into new silicon valleys are Boulder and Portland. Both have the kind of effervescent feel that attracts the young. They're each only a great university short of becoming a silicon valley, if they wanted to.
Time
A great university near an attractive town. Is that all it takes? That was all it took to make the original Silicon Valley. Silicon Valley traces its origins to William Shockley, one of the inventors of the transistor. He did the research that won him the Nobel Prize at Bell Labs, but when he started his own company in 1956 he moved to Palo Alto to do it. At the time that was an odd thing to do. Why did he? Because he had grown up there and remembered how nice it was. Now Palo Alto is suburbia, but then it was a charming college town-- a charming college town with perfect weather and San Francisco only an hour away.
The companies that rule Silicon Valley now are all descended in various ways from Shockley Semiconductor. Shockley was a difficult man, and in 1957 his top people-- "the traitorous eight"-- left to start a new company, Fairchild Semiconductor. Among them were Gordon Moore and Robert Noyce, who went on to found Intel, and Eugene Kleiner, who founded the VC firm Kleiner Perkins. Forty-two years later, Kleiner Perkins funded Google, and the partner responsible for the deal was John Doerr, who came to Silicon Valley in 1974 to work for Intel.
So although a lot of the newest companies in Silicon Valley don't make anything out of silicon, there always seem to be multiple links back to Shockley. There's a lesson here: startups beget startups. People who work for startups start their own. People who get rich from startups fund new ones. I suspect this kind of organic growth is the only way to produce a startup hub, because it's the only way to grow the expertise you need.
That has two important implications. The first is that you need time to grow a silicon valley. The university you could create in a couple years, but the startup community around it has to grow organically. The cycle time is limited by the time it takes a company to succeed, which probably averages about five years.
The other implication of the organic growth hypothesis is that you can't be somewhat of a startup hub. You either have a self-sustaining chain reaction, or not. Observation confirms this too: cities either have a startup scene, or they don't. There is no middle ground. Chicago has the third largest metropolitan area in America. As source of startups it's negligible compared to Seattle, number 15.
The good news is that the initial seed can be quite small. Shockley Semiconductor, though itself not very successful, was big enough. It brought a critical mass of experts in an important new technology together in a place they liked enough to stay.
Competing
Of course, a would-be silicon valley faces an obstacle the original one didn't: it has to compete with Silicon Valley. Can that be done? Probably.
One of Silicon Valley's biggest advantages is its venture capital firms. This was not a factor in Shockley's day, because VC funds didn't exist. In fact, Shockley Semiconductor and Fairchild Semiconductor were not startups at all in our sense. They were subsidiaries-- of Beckman Instruments and Fairchild Camera and Instrument respectively. Those companies were apparently willing to establish subsidiaries wherever the experts wanted to live.
Venture investors, however, prefer to fund startups within an hour's drive. For one, they're more likely to notice startups nearby. But when they do notice startups in other towns they prefer them to move. They don't want to have to travel to attend board meetings, and in any case the odds of succeeding are higher in a startup hub.
The centralizing effect of venture firms is a double one: they cause startups to form around them, and those draw in more startups through acquisitions. And although the first may be weakening because it's now so cheap to start some startups, the second seems as strong as ever. Three of the most admired "Web 2.0" companies were started outside the usual startup hubs, but two of them have already been reeled in through acquisitions.
Such centralizing forces make it harder for new silicon valleys to get started. But by no means impossible. Ultimately power rests with the founders. A startup with the best people will beat one with funding from famous VCs, and a startup that was sufficiently successful would never have to move. So a town that could exert enough pull over the right people could resist and perhaps even surpass Silicon Valley.
For all its power, Silicon Valley has a great weakness: the paradise Shockley found in 1956 is now one giant parking lot. San Francisco and Berkeley are great, but they're forty miles away. Silicon Valley proper is soul-crushing suburban sprawl. It has fabulous weather, which makes it significantly better than the soul-crushing sprawl of most other American cities. But a competitor that managed to avoid sprawl would have real leverage. All a city needs is to be the kind of place the next traitorous eight look at and say "I want to stay here," and that would be enough to get the chain reaction started.
Notes
[1] It's interesting to consider how low this number could be made. I suspect five hundred would be enough, even if they could bring no assets with them. Probably just thirty, if I could pick them, would be enough to turn Buffalo into a significant startup hub.
[2] Bureaucrats manage to allocate research funding moderately well, but only because (like an in-house VC fund) they outsource most of the work of selection. A professor at a famous university who is highly regarded by his peers will get funding, pretty much regardless of the proposal. That wouldn't work for startups, whose founders aren't sponsored by organizations, and are often unknowns.
[3] You'd have to do it all at once, or at least a whole department at a time, because people would be more likely to come if they knew their friends were. And you should probably start from scratch, rather than trying to upgrade an existing university, or much energy would be lost in friction.
[4] Hypothesis: Any plan in which multiple independent buildings are gutted or demolished to be "redeveloped" as a single project is a net loss of personality for the city, with the exception of the conversion of buildings not previously public, like warehouses.
[5] A few startups get started in New York, but less than a tenth as many per capita as in Boston, and mostly in less nerdy fields like finance and media.
[6] Some blue counties are false positives (reflecting the remaining power of Democractic party machines), but there are no false negatives. You can safely write off all the red counties.
[7] Some "urban renewal" experts took a shot at destroying Boston's in the 1960s, leaving the area around city hall a bleak wasteland, but most neighborhoods successfully resisted them.
Thanks to Chris Anderson, Trevor Blackwell, Marc Hedlund, Jessica Livingston, Robert Morris, Greg Mcadoo, Fred Wilson, and Stephen Wolfram for reading drafts of this, and to Ed Dumbill for inviting me to speak.
(The second part of this talk became Why Startups Condense in America.)

Why Startups Condense in America

(This essay is derived from a keynote at Xtech.)
Startups happen in clusters. There are a lot of them in Silicon Valley and Boston, and few in Chicago or Miami. A country that wants startups will probably also have to reproduce whatever makes these clusters form.
I've claimed that the recipe is a great university near a town smart people like. If you set up those conditions within the US, startups will form as inevitably as water droplets condense on a cold piece of metal. But when I consider what it would take to reproduce Silicon Valley in another country, it's clear the US is a particularly humid environment. Startups condense more easily here.
It is by no means a lost cause to try to create a silicon valley in another country. There's room not merely to equal Silicon Valley, but to surpass it. But if you want to do that, you have to understand the advantages startups get from being in America.
1. The US Allows Immigration.
For example, I doubt it would be possible to reproduce Silicon Valley in Japan, because one of Silicon Valley's most distinctive features is immigration. Half the people there speak with accents. And the Japanese don't like immigration. When they think about how to make a Japanese silicon valley, I suspect they unconsciously frame it as how to make one consisting only of Japanese people. This way of framing the question probably guarantees failure.
A silicon valley has to be a mecca for the smart and the ambitious, and you can't have a mecca if you don't let people into it.
Of course, it's not saying much that America is more open to immigration than Japan. Immigration policy is one area where a competitor could do better.
2. The US Is a Rich Country.
I could see India one day producing a rival to Silicon Valley. Obviously they have the right people: you can tell that by the number of Indians in the current Silicon Valley. The problem with India itself is that it's still so poor.
In poor countries, things we take for granted are missing. A friend of mine visiting India sprained her ankle falling down the steps in a railway station. When she turned to see what had happened, she found the steps were all different heights. In industrialized countries we walk down steps our whole lives and never think about this, because there's an infrastructure that prevents such a staircase from being built.
The US has never been so poor as some countries are now. There have never been swarms of beggars in the streets of American cities. So we have no data about what it takes to get from the swarms-of-beggars stage to the silicon-valley stage. Could you have both at once, or does there have to be some baseline prosperity before you get a silicon valley?
I suspect there is some speed limit to the evolution of an economy. Economies are made out of people, and attitudes can only change a certain amount per generation.
3. The US Is Not (Yet) a Police State.
Another country I could see wanting to have a silicon valley is China. But I doubt they could do it yet either. China still seems to be a police state, and although present rulers seem enlightened compared to the last, even enlightened despotism can probably only get you part way toward being a great economic power.
It can get you factories for building things designed elsewhere. Can it get you the designers, though? Can imagination flourish where people can't criticize the government? Imagination means having odd ideas, and it's hard to have odd ideas about technology without also having odd ideas about politics. And in any case, many technical ideas do have political implications. So if you squash dissent, the back pressure will propagate into technical fields.
Singapore would face a similar problem. Singapore seems very aware of the importance of encouraging startups. But while energetic government intervention may be able to make a port run efficiently, it can't coax startups into existence. A state that bans chewing gum has a long way to go before it could create a San Francisco.
Do you need a San Francisco? Might there not be an alternate route to innovation that goes through obedience and cooperation instead of individualism? Possibly, but I'd bet not. Most imaginative people seem to share a certain prickly independence, whenever and wherever they lived. You see it in Diogenes telling Alexander to get out of his light and two thousand years later in Feynman breaking into safes at Los Alamos. Imaginative people don't want to follow or lead. They're most productive when everyone gets to do what they want.
Ironically, of all rich countries the US has lost the most civil liberties recently. But I'm not too worried yet. I'm hoping once the present administration is out, the natural openness of American culture will reassert itself.
4. American Universities Are Better.
You need a great university to seed a silicon valley, and so far there are few outside the US. I asked a handful of American computer science professors which universities in Europe were most admired, and they all basically said "Cambridge" followed by a long pause while they tried to think of others. There don't seem to be many universities elsewhere that compare with the best in America, at least in technology.
In some countries this is the result of a deliberate policy. The German and Dutch governments, perhaps from fear of elitism, try to ensure that all universities are roughly equal in quality. The downside is that none are especially good. The best professors are spread out, instead of being concentrated as they are in the US. This probably makes them less productive, because they don't have good colleagues to inspire them. It also means no one university will be good enough to act as a mecca, attracting talent from abroad and causing startups to form around it.
The case of Germany is a strange one. The Germans invented the modern university, and up till the 1930s theirs were the best in the world. Now they have none that stand out. As I was mulling this over, I found myself thinking: "I can understand why German universities declined in the 1930s, after they excluded Jews. But surely they should have bounced back by now." Then I realized: maybe not. There are few Jews left in Germany and most Jews I know would not want to move there. And if you took any great American university and removed the Jews, you'd have some pretty big gaps. So maybe it would be a lost cause trying to create a silicon valley in Germany, because you couldn't establish the level of university you'd need as a seed.
It's natural for US universities to compete with one another because so many are private. To reproduce the quality of American universities you probably also have to reproduce this. If universities are controlled by the central government, log-rolling will pull them all toward the mean: the new Institute of X will end up at the university in the district of a powerful politician, instead of where it should be.
5. You Can Fire People in America.
I think one of the biggest obstacles to creating startups in Europe is the attitude toward employment. The famously rigid labor laws hurt every company, but startups especially, because startups have the least time to spare for bureaucratic hassles.
The difficulty of firing people is a particular problem for startups because they have no redundancy. Every person has to do their job well.
But the problem is more than just that some startup might have a problem firing someone they needed to. Across industries and countries, there's a strong inverse correlation between performance and job security. Actors and directors are fired at the end of each film, so they have to deliver every time. Junior professors are fired by default after a few years unless the university chooses to grant them tenure. Professional athletes know they'll be pulled if they play badly for just a couple games. At the other end of the scale (at least in the US) are auto workers, New York City schoolteachers, and civil servants, who are all nearly impossible to fire. The trend is so clear that you'd have to be willfully blind not to see it.
Performance isn't everything, you say? Well, are auto workers, schoolteachers, and civil servants happier than actors, professors, and professional athletes?
European public opinion will apparently tolerate people being fired in industries where they really care about performance. Unfortunately the only industry they care enough about so far is soccer. But that is at least a precedent.
6. In America Work Is Less Identified with Employment.
The problem in more traditional places like Europe and Japan goes deeper than the employment laws. More dangerous is the attitude they reflect: that an employee is a kind of servant, whom the employer has a duty to protect. It used to be that way in America too. In 1970 you were still supposed to get a job with a big company, for whom ideally you'd work your whole career. In return the company would take care of you: they'd try not to fire you, cover your medical expenses, and support you in old age.
Gradually employment has been shedding such paternalistic overtones and becoming simply an economic exchange. But the importance of the new model is not just that it makes it easier for startups to grow. More important, I think, is that it it makes it easier for people to start startups.
Even in the US most kids graduating from college still think they're supposed to get jobs, as if you couldn't be productive without being someone's employee. But the less you identify work with employment, the easier it becomes to start a startup. When you see your career as a series of different types of work, instead of a lifetime's service to a single employer, there's less risk in starting your own company, because you're only replacing one segment instead of discarding the whole thing.
The old ideas are so powerful that even the most successful startup founders have had to struggle against them. A year after the founding of Apple, Steve Wozniak still hadn't quit HP. He still planned to work there for life. And when Jobs found someone to give Apple serious venture funding, on the condition that Woz quit, he initially refused, arguing that he'd designed both the Apple I and the Apple II while working at HP, and there was no reason he couldn't continue.
7. America Is Not Too Fussy.
If there are any laws regulating businesses, you can assume larval startups will break most of them, because they don't know what the laws are and don't have time to find out.
For example, many startups in America begin in places where it's not really legal to run a business. Hewlett-Packard, Apple, and Google were all run out of garages. Many more startups, including ours, were initially run out of apartments. If the laws against such things were actually enforced, most startups wouldn't happen.
That could be a problem in fussier countries. If Hewlett and Packard tried running an electronics company out of their garage in Switzerland, the old lady next door would report them to the municipal authorities.
But the worst problem in other countries is probably the effort required just to start a company. A friend of mine started a company in Germany in the early 90s, and was shocked to discover, among many other regulations, that you needed $20,000 in capital to incorporate. That's one reason I'm not typing this on an Apfel laptop. Jobs and Wozniak couldn't have come up with that kind of money in a company financed by selling a VW bus and an HP calculator. We couldn't have started Viaweb either.
Here's a tip for governments that want to encourage startups: read the stories of existing startups, and then try to simulate what would have happened in your country. When you hit something that would have killed Apple, prune it off.
Startups are marginal. They're started by the poor and the timid; they begin in marginal space and spare time; they're started by people who are supposed to be doing something else; and though businesses, their founders often know nothing about business. Young startups are fragile. A society that trims its margins sharply will kill them all.
8. America Has a Large Domestic Market.
What sustains a startup in the beginning is the prospect of getting their initial product out. The successful ones therefore make the first version as simple as possible. In the US they usually begin by making something just for the local market.
This works in America, because the local market is 300 million people. It wouldn't work so well in Sweden. In a small country, a startup has a harder task: they have to sell internationally from the start.
The EU was designed partly to simulate a single, large domestic market. The problem is that the inhabitants still speak many different languages. So a software startup in Sweden is still at a disadvantage relative to one in the US, because they have to deal with internationalization from the beginning. It's significant that the most famous recent startup in Europe, Skype, worked on a problem that was intrinsically international.
However, for better or worse it looks as if Europe will in a few decades speak a single language. When I was a student in Italy in 1990, few Italians spoke English. Now all educated people seem to be expected to-- and Europeans do not like to seem uneducated. This is presumably a taboo subject, but if present trends continue, French and German will eventually go the way of Irish and Luxembourgish: they'll be spoken in homes and by eccentric nationalists.
9. America Has Venture Funding.
Startups are easier to start in America because funding is easier to get. There are now a few VC firms outside the US, but startup funding doesn't only come from VC firms. A more important source, because it's more personal and comes earlier in the process, is money from individual angel investors. Google might never have got to the point where they could raise millions from VC funds if they hadn't first raised a hundred thousand from Andy Bechtolsheim. And he could help them because he was one of the founders of Sun. This pattern is repeated constantly in startup hubs. It's this pattern that makes them startup hubs.
The good news is, all you have to do to get the process rolling is get those first few startups successfully launched. If they stick around after they get rich, startup founders will almost automatically fund and encourage new startups.
The bad news is that the cycle is slow. It probably takes five years, on average, before a startup founder can make angel investments. And while governments might be able to set up local VC funds by supplying the money themselves and recruiting people from existing firms to run them, only organic growth can produce angel investors.
Incidentally, America's private universities are one reason there's so much venture capital. A lot of the money in VC funds comes from their endowments. So another advantage of private universities is that a good chunk of the country's wealth is managed by enlightened investors.
10. America Has Dynamic Typing for Careers.
Compared to other industrialized countries the US is disorganized about routing people into careers. For example, in America people often don't decide to go to medical school till they've finished college. In Europe they generally decide in high school.
The European approach reflects the old idea that each person has a single, definite occupation-- which is not far from the idea that each person has a natural "station" in life. If this were true, the most efficient plan would be to discover each person's station as early as possible, so they could receive the training appropriate to it.
In the US things are more haphazard. But that turns out to be an advantage as an economy gets more liquid, just as dynamic typing turns out to work better than static for ill-defined problems. This is particularly true with startups. "Startup founder" is not the sort of career a high school student would choose. If you ask at that age, people will choose conservatively. They'll choose well-understood occupations like engineer, or doctor, or lawyer.
Startups are the kind of thing people don't plan, so you're more likely to get them in a society where it's ok to make career decisions on the fly.
For example, in theory the purpose of a PhD program is to train you to do research. But fortunately in the US this is another rule that isn't very strictly enforced. In the US most people in CS PhD programs are there simply because they wanted to learn more. They haven't decided what they'll do afterward. So American grad schools spawn a lot of startups, because students don't feel they're failing if they don't go into research.
Those worried about America's "competitiveness" often suggest spending more on public schools. But perhaps America's lousy public schools have a hidden advantage. Because they're so bad, the kids adopt an attitude of waiting for college. I did; I knew I was learning so little that I wasn't even learning what the choices were, let alone which to choose. This is demoralizing, but it does at least make you keep an open mind.
Certainly if I had to choose between bad high schools and good universities, like the US, and good high schools and bad universities, like most other industrialized countries, I'd take the US system. Better to make everyone feel like a late bloomer than a failed child prodigy.
Attitudes
There's one item conspicuously missing from this list: American attitudes. Americans are said to be more entrepreneurial, and less afraid of risk. But America has no monopoly on this. Indians and Chinese seem plenty entrepreneurial, perhaps more than Americans.
Some say Europeans are less energetic, but I don't believe it. I think the problem with Europe is not that they lack balls, but that they lack examples.
Even in the US, the most successful startup founders are often technical people who are quite timid, initially, about the idea of starting their own company. Few are the sort of backslapping extroverts one thinks of as typically American. They can usually only summon up the activation energy to start a startup when they meet people who've done it and realize they could too.
I think what holds back European hackers is simply that they don't meet so many people who've done it. You see that variation even within the US. Stanford students are more entrepreneurial than Yale students, but not because of some difference in their characters; the Yale students just have fewer examples.
I admit there seem to be different attitudes toward ambition in Europe and the US. In the US it's ok to be overtly ambitious, and in most of Europe it's not. But this can't be an intrinsically European quality; previous generations of Europeans were as ambitious as Americans. What happened? My hypothesis is that ambition was discredited by the terrible things ambitious people did in the first half of the twentieth century. Now swagger is out. (Even now the image of a very ambitious German presses a button or two, doesn't it?)
It would be surprising if European attitudes weren't affected by the disasters of the twentieth century. It takes a while to be optimistic after events like that. But ambition is human nature. Gradually it will re-emerge.
How To Do Better
I don't mean to suggest by this list that America is the perfect place for startups. It's the best place so far, but the sample size is small, and "so far" is not very long. On historical time scales, what we have now is just a prototype.
So let's look at Silicon Valley the way you'd look at a product made by a competitor. What weaknesses could you exploit? How could you make something users would like better? The users in this case are those critical few thousand people you'd like to move to your silicon valley.
To start with, Silicon Valley is too far from San Francisco. Palo Alto, the original ground zero, is about thirty miles away, and the present center more like forty. So people who come to work in Silicon Valley face an unpleasant choice: either live in the boring sprawl of the valley proper, or live in San Francisco and endure an hour commute each way.
The best thing would be if the silicon valley were not merely closer to the interesting city, but interesting itself. And there is a lot of room for improvement here. Palo Alto is not so bad, but everything built since is the worst sort of strip development. You can measure how demoralizing it is by the number of people who will sacrifice two hours a day commuting rather than live there.
Another area in which you could easily surpass Silicon Valley is public transportation. There is a train running the length of it, and by American standards it's not bad. Which is to say that to Japanese or Europeans it would seem like something out of the third world.
The kind of people you want to attract to your silicon valley like to get around by train, bicycle, and on foot. So if you want to beat America, design a town that puts cars last. It will be a while before any American city can bring itself to do that.
Capital Gains
There are also a couple things you could do to beat America at the national level. One would be to have lower capital gains taxes. It doesn't seem critical to have the lowest income taxes, because to take advantage of those, people have to move. [7] But if capital gains rates vary, you move assets, not yourself, so changes are reflected at market speeds. The lower the rate, the cheaper it is to buy stock in growing companies as opposed to real estate, or bonds, or stocks bought for the dividends they pay.
So if you want to encourage startups you should have a low rate on capital gains. Politicians are caught between a rock and a hard place here, however: make the capital gains rate low and be accused of creating "tax breaks for the rich," or make it high and starve growing companies of investment capital. As Galbraith said, politics is a matter of choosing between the unpalatable and the disastrous. A lot of governments experimented with the disastrous in the twentieth century; now the trend seems to be toward the merely unpalatable.
Oddly enough, the leaders now are European countries like Belgium, which has a capital gains tax rate of zero.
Immigration
The other place you could beat the US would be with smarter immigration policy. There are huge gains to be made here. Silicon valleys are made of people, remember.
Like a company whose software runs on Windows, those in the current Silicon Valley are all too aware of the shortcomings of the INS, but there's little they can do about it. They're hostages of the platform.
America's immigration system has never been well run, and since 2001 there has been an additional admixture of paranoia. What fraction of the smart people who want to come to America can even get in? I doubt even half. Which means if you made a competing technology hub that let in all smart people, you'd immediately get more than half the world's top talent, for free.
US immigration policy is particularly ill-suited to startups, because it reflects a model of work from the 1970s. It assumes good technical people have college degrees, and that work means working for a big company.
If you don't have a college degree you can't get an H1B visa, the type usually issued to programmers. But a test that excludes Steve Jobs, Bill Gates, and Michael Dell can't be a good one. Plus you can't get a visa for working on your own company, only for working as an employee of someone else's. And if you want to apply for citizenship you daren't work for a startup at all, because if your sponsor goes out of business, you have to start over.
American immigration policy keeps out most smart people, and channels the rest into unproductive jobs. It would be easy to do better. Imagine if, instead, you treated immigration like recruiting-- if you made a conscious effort to seek out the smartest people and get them to come to your country.
A country that got immigration right would have a huge advantage. At this point you could become a mecca for smart people simply by having an immigration system that let them in.
A Good Vector
If you look at the kinds of things you have to do to create an environment where startups condense, none are great sacrifices. Great universities? Livable towns? Civil liberties? Flexible employment laws? Immigration policies that let in smart people? Tax laws that encourage growth? It's not as if you have to risk destroying your country to get a silicon valley; these are all good things in their own right.
And then of course there's the question, can you afford not to? I can imagine a future in which the default choice of ambitious young people is to start their own company rather than work for someone else's. I'm not sure that will happen, but it's where the trend points now. And if that is the future, places that don't have startups will be a whole step behind, like those that missed the Industrial Revolution.
Notes
[1] On the verge of the Industrial Revolution, England was already the richest country in the world. As far as such things can be compared, per capita income in England in 1750 was higher than India's in 1960. Deane, Phyllis, The First Industrial Revolution, Cambridge University Press, 1965.
[2] This has already happened once in China, during the Ming Dynasty, when the country turned its back on industrialization at the command of the court. One of Europe's advantages was that it had no government powerful enough to do that.
[3] Of course, Feynman and Diogenes were from adjacent traditions, but Confucius, though more polite, was no more willing to be told what to think.
[4] For similar reasons it might be a lost cause to try to establish a silicon valley in Israel. Instead of no Jews moving there, only Jews would move there, and I don't think you could build a silicon valley out of just Jews any more than you could out of just Japanese. (This is not a remark about the qualities of these groups, just their sizes. Japanese are only about 2% of the world population, and Jews about .2%.)
[5] According to the World Bank, the initial capital requirement for German companies is 47.6% of the per capita income. Doh. World Bank, Doing Business in 2006, http://doingbusiness.org
[6] For most of the twentieth century, Europeans looked back on the summer of 1914 as if they'd been living in a dream world. It seems more accurate (or at least, as accurate) to call the years after 1914 a nightmare than to call those before a dream. A lot of the optimism Europeans consider distinctly American is simply what they too were feeling in 1914.
[7] The point where things start to go wrong seems to be about 50%. Above that people get serious about tax avoidance. The reason is that the payoff for avoiding tax grows hyperexponentially (x/1-x for 0 < x < 1). If your income tax rate is 10%, moving to Monaco would only give you 11% more income, which wouldn't even cover the extra cost. If it's 90%, you'd get ten times as much income. And at 98%, as it was briefly in Britain in the 70s, moving to Monaco would give you fifty times as much income. It seems quite likely that European governments of the 70s never drew this curve.
Thanks to Trevor Blackwell, Matthias Felleisen, Jessica Livingston, Robert Morris, Neil Rimer, Hugues Steinier, Brad Templeton, Fred Wilson, and Stephen Wolfram for reading drafts of this, and to Ed Dumbill for inviting me to speak.

The Power of the Marginal

(This essay is derived from talks at Usenix 2006 and Railsconf 2006.)
A couple years ago my friend Trevor and I went to look at the Apple garage. As we stood there, he said that as a kid growing up in Saskatchewan he'd been amazed at the dedication Jobs and Wozniak must have had to work in a garage. "Those guys must have been freezing!"
That's one of California's hidden advantages: the mild climate means there's lots of marginal space. In cold places that margin gets trimmed off. There's a sharper line between outside and inside, and only projects that are officially sanctioned-- by organizations, or parents, or wives, or at least by oneself-- get proper indoor space. That raises the activation energy for new ideas. You can't just tinker. You have to justify.
Some of Silicon Valley's most famous companies began in garages: Hewlett-Packard in 1938, Apple in 1976, Google in 1998. In Apple's case the garage story is a bit of an urban legend. Woz says all they did there was assemble some computers, and that he did all the actual design of the Apple I and Apple II in his apartment or his cube at HP. This was apparently too marginal even for Apple's PR people.
By conventional standards, Jobs and Wozniak were marginal people too. Obviously they were smart, but they can't have looked good on paper. They were at the time a pair of college dropouts with about three years of school between them, and hippies to boot. Their previous business experience consisted of making "blue boxes" to hack into the phone system, a business with the rare distinction of being both illegal and unprofitable.
Outsiders
Now a startup operating out of a garage in Silicon Valley would feel part of an exalted tradition, like the poet in his garret, or the painter who can't afford to heat his studio and thus has to wear a beret indoors. But in 1976 it didn't seem so cool. The world hadn't yet realized that starting a computer company was in the same category as being a writer or a painter. It hadn't been for long. Only in the preceding couple years had the dramatic fall in the cost of hardware allowed outsiders to compete.
In 1976, everyone looked down on a company operating out of a garage, including the founders. One of the first things Jobs did when they got some money was to rent office space. He wanted Apple to seem like a real company.
They already had something few real companies ever have: a fabulously well designed product. You'd think they'd have had more confidence. But I've talked to a lot of startup founders, and it's always this way. They've built something that's going to change the world, and they're worried about some nit like not having proper business cards.
That's the paradox I want to explore: great new things often come from the margins, and yet the people who discover them are looked down on by everyone, including themselves.
It's an old idea that new things come from the margins. I want to examine its internal structure. Why do great ideas come from the margins? What kind of ideas? And is there anything we can do to encourage the process?
Insiders
One reason so many good ideas come from the margin is simply that there's so much of it. There have to be more outsiders than insiders, if insider means anything. If the number of outsiders is huge it will always seem as if a lot of ideas come from them, even if few do per capita. But I think there's more going on than this. There are real disadvantages to being an insider, and in some kinds of work they can outweigh the advantages.
Imagine, for example, what would happen if the government decided to commission someone to write an official Great American Novel. First there'd be a huge ideological squabble over who to choose. Most of the best writers would be excluded for having offended one side or the other. Of the remainder, the smart ones would refuse such a job, leaving only a few with the wrong sort of ambition. The committee would choose one at the height of his career-- that is, someone whose best work was behind him-- and hand over the project with copious free advice about how the book should show in positive terms the strength and diversity of the American people, etc, etc.
The unfortunate writer would then sit down to work with a huge weight of expectation on his shoulders. Not wanting to blow such a public commission, he'd play it safe. This book had better command respect, and the way to ensure that would be to make it a tragedy. Audiences have to be enticed to laugh, but if you kill people they feel obliged to take you seriously. As everyone knows, America plus tragedy equals the Civil War, so that's what it would have to be about. Better stick to the standard cartoon version that the Civil War was about slavery; people would be confused otherwise; plus you can show a lot of strength and diversity. When finally completed twelve years later, the book would be a 900-page pastiche of existing popular novels-- roughly Gone with the Wind plus Roots. But its bulk and celebrity would make it a bestseller for a few months, until blown out of the water by a talk-show host's autobiography. The book would be made into a movie and thereupon forgotten, except by the more waspish sort of reviewers, among whom it would be a byword for bogusness like Milli Vanilli or Battlefield Earth.
Maybe I got a little carried away with this example. And yet is this not at each point the way such a project would play out? The government knows better than to get into the novel business, but in other fields where they have a natural monopoly, like nuclear waste dumps, aircraft carriers, and regime change, you'd find plenty of projects isomorphic to this one-- and indeed, plenty that were less successful.
This little thought experiment suggests a few of the disadvantages of insider projects: the selection of the wrong kind of people, the excessive scope, the inability to take risks, the need to seem serious, the weight of expectations, the power of vested interests, the undiscerning audience, and perhaps most dangerous, the tendency of such work to become a duty rather than a pleasure.
Tests
A world with outsiders and insiders implies some kind of test for distinguishing between them. And the trouble with most tests for selecting elites is that there are two ways to pass them: to be good at what they try to measure, and to be good at hacking the test itself.
So the first question to ask about a field is how honest its tests are, because this tells you what it means to be an outsider. This tells you how much to trust your instincts when you disagree with authorities, whether it's worth going through the usual channels to become one yourself, and perhaps whether you want to work in this field at all.
Tests are least hackable when there are consistent standards for quality, and the people running the test really care about its integrity. Admissions to PhD programs in the hard sciences are fairly honest, for example. The professors will get whoever they admit as their own grad students, so they try hard to choose well, and they have a fair amount of data to go on. Whereas undergraduate admissions seem to be much more hackable.
One way to tell whether a field has consistent standards is the overlap between the leading practitioners and the people who teach the subject in universities. At one end of the scale you have fields like math and physics, where nearly all the teachers are among the best practitioners. In the middle are medicine, law, history, architecture, and computer science, where many are. At the bottom are business, literature, and the visual arts, where there's almost no overlap between the teachers and the leading practitioners. It's this end that gives rise to phrases like "those who can't do, teach."
Incidentally, this scale might be helpful in deciding what to study in college. When I was in college the rule seemed to be that you should study whatever you were most interested in. But in retrospect you're probably better off studying something moderately interesting with someone who's good at it than something very interesting with someone who isn't. You often hear people say that you shouldn't major in business in college, but this is actually an instance of a more general rule: don't learn things from teachers who are bad at them.
How much you should worry about being an outsider depends on the quality of the insiders. If you're an amateur mathematician and think you've solved a famous open problem, better go back and check. When I was in grad school, a friend in the math department had the job of replying to people who sent in proofs of Fermat's last theorem and so on, and it did not seem as if he saw it as a valuable source of tips-- more like manning a mental health hotline. Whereas if the stuff you're writing seems different from what English professors are interested in, that's not necessarily a problem.
Anti-Tests
Where the method of selecting the elite is thoroughly corrupt, most of the good people will be outsiders. In art, for example, the image of the poor, misunderstood genius is not just one possible image of a great artist: it's the standard image. I'm not saying it's correct, incidentally, but it is telling how well this image has stuck. You couldn't make a rap like that stick to math or medicine.
If it's corrupt enough, a test becomes an anti-test, filtering out the people it should select by making them to do things only the wrong people would do. Popularity in high school seems to be such a test. There are plenty of similar ones in the grownup world. For example, rising up through the hierarchy of the average big company demands an attention to politics few thoughtful people could spare. Someone like Bill Gates can grow a company under him, but it's hard to imagine him having the patience to climb the corporate ladder at General Electric-- or Microsoft, actually.
It's kind of strange when you think about it, because lord-of-the-flies schools and bureaucratic companies are both the default. There are probably a lot of people who go from one to the other and never realize the whole world doesn't work this way.
I think that's one reason big companies are so often blindsided by startups. People at big companies don't realize the extent to which they live in an environment that is one large, ongoing test for the wrong qualities.
If you're an outsider, your best chances for beating insiders are obviously in fields where corrupt tests select a lame elite. But there's a catch: if the tests are corrupt, your victory won't be recognized, at least in your lifetime. You may feel you don't need that, but history suggests it's dangerous to work in fields with corrupt tests. You may beat the insiders, and yet not do as good work, on an absolute scale, as you would in a field that was more honest.
Standards in art, for example, were almost as corrupt in the first half of the eighteenth century as they are today. This was the era of those fluffy idealized portraits of countesses with their lapdogs. Chardin decided to skip all that and paint ordinary things as he saw them. He's now considered the best of that period-- and yet not the equal of Leonardo or Bellini or Memling, who all had the additional encouragement of honest standards.
It can be worth participating in a corrupt contest, however, if it's followed by another that isn't corrupt. For example, it would be worth competing with a company that can spend more than you on marketing, as long as you can survive to the next round, when customers compare your actual products. Similarly, you shouldn't be discouraged by the comparatively corrupt test of college admissions, because it's followed immediately by less hackable tests.
Risk
Even in a field with honest tests, there are still advantages to being an outsider. The most obvious is that outsiders have nothing to lose. They can do risky things, and if they fail, so what? Few will even notice.
The eminent, on the other hand, are weighed down by their eminence. Eminence is like a suit: it impresses the wrong people, and it constrains the wearer.
Outsiders should realize the advantage they have here. Being able to take risks is hugely valuable. Everyone values safety too much, both the obscure and the eminent. No one wants to look like a fool. But it's very useful to be able to. If most of your ideas aren't stupid, you're probably being too conservative. You're not bracketing the problem.
Lord Acton said we should judge talent at its best and character at its worst. For example, if you write one great book and ten bad ones, you still count as a great writer-- or at least, a better writer than someone who wrote eleven that were merely good. Whereas if you're a quiet, law-abiding citizen most of the time but occasionally cut someone up and bury them in your backyard, you're a bad guy.
Almost everyone makes the mistake of treating ideas as if they were indications of character rather than talent-- as if having a stupid idea made you stupid. There's a huge weight of tradition advising us to play it safe. "Even a fool is thought wise if he keeps silent," says the Old Testament (Proverbs 17:28).
Well, that may be fine advice for a bunch of goatherds in Bronze Age Palestine. There conservatism would be the order of the day. But times have changed. It might still be reasonable to stick with the Old Testament in political questions, but materially the world now has a lot more state. Tradition is less of a guide, not just because things change faster, but because the space of possibilities is so large. The more complicated the world gets, the more valuable it is to be willing to look like a fool.
Delegation
And yet the more successful people become, the more heat they get if they screw up-- or even seem to screw up. In this respect, as in many others, the eminent are prisoners of their own success. So the best way to understand the advantages of being an outsider may be to look at the disadvantages of being an insider.
If you ask eminent people what's wrong with their lives, the first thing they'll complain about is the lack of time. A friend of mine at Google is fairly high up in the company and went to work for them long before they went public. In other words, he's now rich enough not to have to work. I asked him if he could still endure the annoyances of having a job, now that he didn't have to. And he said that there weren't really any annoyances, except-- and he got a wistful look when he said this-- that he got so much email.
The eminent feel like everyone wants to take a bite out of them. The problem is so widespread that people pretending to be eminent do it by pretending to be overstretched.
The lives of the eminent become scheduled, and that's not good for thinking. One of the great advantages of being an outsider is long, uninterrupted blocks of time. That's what I remember about grad school: apparently endless supplies of time, which I spent worrying about, but not writing, my dissertation. Obscurity is like health food-- unpleasant, perhaps, but good for you. Whereas fame tends to be like the alcohol produced by fermentation. When it reaches a certain concentration, it kills off the yeast that produced it.
The eminent generally respond to the shortage of time by turning into managers. They don't have time to work. They're surrounded by junior people they're supposed to help or supervise. The obvious solution is to have the junior people do the work. And some good stuff happens this way, but there are problems it doesn't work so well for: the kind where it helps to have everything in one head.
For example, it recently emerged that the famous glass artist Dale Chihuly hasn't actually blown glass for 27 years. He has assistants do the work for him. But one of the most valuable sources of ideas in the visual arts is the resistance of the medium. That's why oil paintings look so different from watercolors. In principle you could make any mark in any medium; in practice the medium steers you. And if you're no longer doing the work yourself, you stop learning from this.
So if you want to beat those eminent enough to delegate, one way to do it is to take advantage of direct contact with the medium. In the arts it's obvious how: blow your own glass, edit your own films, stage your own plays. And in the process pay close attention to accidents and to new ideas you have on the fly. This technique can be generalized to any sort of work: if you're an outsider, don't be ruled by plans. Planning is often just a weakness forced on those who delegate.
Is there a general rule for finding problems best solved in one head? Well, you can manufacture them by taking any project usually done by multiple people and trying to do it all yourself. Wozniak's work was a classic example: he did everything himself, hardware and software, and the result was miraculous. He claims not one bug was ever found in the Apple II, in either hardware or software.
Another way to find good problems to solve in one head is to focus on the grooves in the chocolate bar-- the places where tasks are divided when they're split between several people. If you want to beat delegation, focus on a vertical slice: for example, be both writer and editor, or both design buildings and construct them.
One especially good groove to span is the one between tools and things made with them. For example, programming languages and applications are usually written by different people, and this is responsible for a lot of the worst flaws in programming languages. I think every language should be designed simultaneously with a large application written in it, the way C was with Unix.
Techniques for competing with delegation translate well into business, because delegation is endemic there. Instead of avoiding it as a drawback of senility, many companies embrace it as a sign of maturity. In big companies software is often designed, implemented, and sold by three separate types of people. In startups one person may have to do all three. And though this feels stressful, it's one reason startups win. The needs of customers and the means of satisfying them are all in one head.
Focus
The very skill of insiders can be a weakness. Once someone is good at something, they tend to spend all their time doing that. This kind of focus is very valuable, actually. Much of the skill of experts is the ability to ignore false trails. But focus has drawbacks: you don't learn from other fields, and when a new approach arrives, you may be the last to notice.
For outsiders this translates into two ways to win. One is to work on a variety of things. Since you can't derive as much benefit (yet) from a narrow focus, you may as well cast a wider net and derive what benefit you can from similarities between fields. Just as you can compete with delegation by working on larger vertical slices, you can compete with specialization by working on larger horizontal slices-- by both writing and illustrating your book, for example.
The second way to compete with focus is to see what focus overlooks. In particular, new things. So if you're not good at anything yet, consider working on something so new that no one else is either. It won't have any prestige yet, if no one is good at it, but you'll have it all to yourself.
The potential of a new medium is usually underestimated, precisely because no one has yet explored its possibilities. Before Durer tried making engravings, no one took them very seriously. Engraving was for making little devotional images-- basically fifteenth century baseball cards of saints. Trying to make masterpieces in this medium must have seemed to Durer's contemporaries that way that, say, making masterpieces in comics might seem to the average person today.
In the computer world we get not new mediums but new platforms: the minicomputer, the microprocessor, the web-based application. At first they're always dismissed as being unsuitable for real work. And yet someone always decides to try anyway, and it turns out you can do more than anyone expected. So in the future when you hear people say of a new platform: yeah, it's popular and cheap, but not ready yet for real work, jump on it.
As well as being more comfortable working on established lines, insiders generally have a vested interest in perpetuating them. The professor who made his reputation by discovering some new idea is not likely to be the one to discover its replacement. This is particularly true with companies, who have not only skill and pride anchoring them to the status quo, but money as well. The Achilles heel of successful companies is their inability to cannibalize themselves. Many innovations consist of replacing something with a cheaper alternative, and companies just don't want to see a path whose immediate effect is to cut an existing source of revenue.
So if you're an outsider you should actively seek out contrarian projects. Instead of working on things the eminent have made prestigious, work on things that could steal that prestige.
The really juicy new approaches are not the ones insiders reject as impossible, but those they ignore as undignified. For example, after Wozniak designed the Apple II he offered it first to his employer, HP. They passed. One of the reasons was that, to save money, he'd designed the Apple II to use a TV as a monitor, and HP felt they couldn't produce anything so declasse.
Less
Wozniak used a TV as a monitor for the simple reason that he couldn't afford a monitor. Outsiders are not merely free but compelled to make things that are cheap and lightweight. And both are good bets for growth: cheap things spread faster, and lightweight things evolve faster.
The eminent, on the other hand, are almost forced to work on a large scale. Instead of garden sheds they must design huge art museums. One reason they work on big things is that they can: like our hypothetical novelist, they're flattered by such opportunities. They also know that big projects will by their sheer bulk impress the audience. A garden shed, however lovely, would be easy to ignore; a few might even snicker at it. You can't snicker at a giant museum, no matter how much you dislike it. And finally, there are all those people the eminent have working for them; they have to choose projects that can keep them all busy.
Outsiders are free of all this. They can work on small things, and there's something very pleasing about small things. Small things can be perfect; big ones always have something wrong with them. But there's a magic in small things that goes beyond such rational explanations. All kids know it. Small things have more personality.
Plus making them is more fun. You can do what you want; you don't have to satisfy committees. And perhaps most important, small things can be done fast. The prospect of seeing the finished project hangs in the air like the smell of dinner cooking. If you work fast, maybe you could have it done tonight.
Working on small things is also a good way to learn. The most important kinds of learning happen one project at a time. ("Next time, I won't...") The faster you cycle through projects, the faster you'll evolve.
Plain materials have a charm like small scale. And in addition there's the challenge of making do with less. Every designer's ears perk up at the mention of that game, because it's a game you can't lose. Like the JV playing the varsity, if you even tie, you win. So paradoxically there are cases where fewer resources yield better results, because the designers' pleasure at their own ingenuity more than compensates.
So if you're an outsider, take advantage of your ability to make small and inexpensive things. Cultivate the pleasure and simplicity of that kind of work; one day you'll miss it.
Responsibility
When you're old and eminent, what will you miss about being young and obscure? What people seem to miss most is the lack of responsibilities.
Responsibility is an occupational disease of eminence. In principle you could avoid it, just as in principle you could avoid getting fat as you get old, but few do. I sometimes suspect that responsibility is a trap and that the most virtuous route would be to shirk it, but regardless it's certainly constraining.
When you're an outsider you're constrained too, of course. You're short of money, for example. But that constrains you in different ways. How does responsibility constrain you? The worst thing is that it allows you not to focus on real work. Just as the most dangerous forms of procrastination are those that seem like work, the danger of responsibilities is not just that they can consume a whole day, but that they can do it without setting off the kind of alarms you'd set off if you spent a whole day sitting on a park bench.
A lot of the pain of being an outsider is being aware of one's own procrastination. But this is actually a good thing. You're at least close enough to work that the smell of it makes you hungry.
As an outsider, you're just one step away from getting things done. A huge step, admittedly, and one that most people never seem to make, but only one step. If you can summon up the energy to get started, you can work on projects with an intensity (in both senses) that few insiders can match. For insiders work turns into a duty, laden with responsibilities and expectations. It's never so pure as it was when they were young.
Work like a dog being taken for a walk, instead of an ox being yoked to the plow. That's what they miss.
Audience
A lot of outsiders make the mistake of doing the opposite; they admire the eminent so much that they copy even their flaws. Copying is a good way to learn, but copy the right things. When I was in college I imitated the pompous diction of famous professors. But this wasn't what made them eminent-- it was more a flaw their eminence had allowed them to sink into. Imitating it was like pretending to have gout in order to seem rich.
Half the distinguishing qualities of the eminent are actually disadvantages. Imitating these is not only a waste of time, but will make you seem a fool to your models, who are often well aware of it.
What are the genuine advantages of being an insider? The greatest is an audience. It often seems to outsiders that the great advantage of insiders is money-- that they have the resources to do what they want. But so do people who inherit money, and that doesn't seem to help, not as much as an audience. It's good for morale to know people want to see what you're making; it draws work out of you.
If I'm right that the defining advantage of insiders is an audience, then we live in exciting times, because just in the last ten years the Internet has made audiences a lot more liquid. Outsiders don't have to content themselves anymore with a proxy audience of a few smart friends. Now, thanks to the Internet, they can start to grow themselves actual audiences. This is great news for the marginal, who retain the advantages of outsiders while increasingly being able to siphon off what had till recently been the prerogative of the elite.
Though the Web has been around for more than ten years, I think we're just beginning to see its democratizing effects. Outsiders are still learning how to steal audiences. But more importantly, audiences are still learning how to be stolen-- they're still just beginning to realize how much deeper bloggers can dig than journalists, how much more interesting a democratic news site can be than a front page controlled by editors, and how much funnier a bunch of kids with webcams can be than mass-produced sitcoms.
The big media companies shouldn't worry that people will post their copyrighted material on YouTube. They should worry that people will post their own stuff on YouTube, and audiences will watch that instead.
Hacking
If I had to condense the power of the marginal into one sentence it would be: just try hacking something together. That phrase draws in most threads I've mentioned here. Hacking something together means deciding what to do as you're doing it, not a subordinate executing the vision of his boss. It implies the result won't be pretty, because it will be made quickly out of inadequate materials. It may work, but it won't be the sort of thing the eminent would want to put their name on. Something hacked together means something that barely solves the problem, or maybe doesn't solve the problem at all, but another you discovered en route. But that's ok, because the main value that initial version is not the thing itself, but what it leads to. Insiders who daren't walk through the mud in their nice clothes will never make it to the solid ground on the other side.
The word "try" is an especially valuable component. I disagree here with Yoda, who said there is no try. There is try. It implies there's no punishment if you fail. You're driven by curiosity instead of duty. Which means the wind of procrastination will be in your favor: instead of avoiding this work, this will be what you do as a way of avoiding other work. And when you do it, you'll be in a better mood. The more the work depends on imagination, the more that matters, because most people have more ideas when they're happy.
If I could go back and redo my twenties, that would be one thing I'd do more of: just try hacking things together. Like many people that age, I spent a lot of time worrying about what I should do. I also spent some time trying to build stuff. I should have spent less time worrying and more time building. If you're not sure what to do, make something.
Raymond Chandler's advice to thriller writers was "When in doubt, have a man come through a door with a gun in his hand." He followed that advice. Judging from his books, he was often in doubt. But though the result is occasionally cheesy, it's never boring. In life, as in books, action is underrated.
Fortunately the number of things you can just hack together keeps increasing. People fifty years ago would be astonished that one could just hack together a movie, for example. Now you can even hack together distribution. Just make stuff and put it online.
Inappropriate
If you really want to score big, the place to focus is the margin of the margin: the territories only recently captured from the insiders. That's where you'll find the juiciest projects still undone, either because they seemed too risky, or simply because there were too few insiders to explore everything.
This is why I spend most of my time writing essays lately. The writing of essays used to be limited to those who could get them published. In principle you could have written them and just shown them to your friends; in practice that didn't work. An essayist needs the resistance of an audience, just as an engraver needs the resistance of the plate.
Up till a few years ago, writing essays was the ultimate insider's game. Domain experts were allowed to publish essays about their field, but the pool allowed to write on general topics was about eight people who went to the right parties in New York. Now the reconquista has overrun this territory, and, not surprisingly, found it sparsely cultivated. There are so many essays yet unwritten. They tend to be the naughtier ones; the insiders have pretty much exhausted the motherhood and apple pie topics.
This leads to my final suggestion: a technique for determining when you're on the right track. You're on the right track when people complain that you're unqualified, or that you've done something inappropriate. If people are complaining, that means you're doing something rather than sitting around, which is the first step. And if they're driven to such empty forms of complaint, that means you've probably done something good.
If you make something and people complain that it doesn't work, that's a problem. But if the worst thing they can hit you with is your own status as an outsider, that implies that in every other respect you've succeeded. Pointing out that someone is unqualified is as desperate as resorting to racial slurs. It's just a legitimate sounding way of saying: we don't like your type around here.
But the best thing of all is when people call what you're doing inappropriate. I've been hearing this word all my life and I only recently realized that it is, in fact, the sound of the homing beacon. "Inappropriate" is the null criticism. It's merely the adjective form of "I don't like it."
So that, I think, should be the highest goal for the marginal. Be inappropriate. When you hear people saying that, you're golden. And they, incidentally, are busted.
Notes
The facts about Apple's early history are from an interview with Steve Wozniak in Jessica Livingston's forthcoming Founders at Work, Apress, 2006.
As usual the popular image is several decades behind reality. Now the misunderstood artist is not a chain-smoking drunk who pours his soul into big, messy canvases that philistines see and say "that's not art" because it isn't a picture of anything. The philistines have now been trained that anything hung on a wall is art. Now the misunderstood artist is a coffee-drinking vegan cartoonist whose work they see and say "that's not art" because it looks like stuff they've seen in the Sunday paper.
In fact this would do fairly well as a definition of politics: what determines rank in the absence of objective tests.
In high school you're led to believe your whole future depends on where you go to college, but it turns out to only buy you a couple years. By your mid-twenties the people worth impressing already judge you more by what you've done than where you went to school.
Managers are presumably wondering, how can I make this miracle happen? How can I make the people working for me do more with less? Unfortunately the constraint probably has to be self-imposed. If you're expected to do more with less, then you're being starved, not eating virtuously.
Without the prospect of publication, the closest most people come to writing essays is to write in a journal. I find I never get as deeply into subjects as I do in proper essays. As the name implies, you don't go back and rewrite journal entries over and over for two weeks.
Thanks to Sam Altman, Trevor Blackwell, Paul Buchheit, Sarah Harlin, Jessica Livingston, Jackie McDonough, Robert Morris, Olin Shivers, and Chris Small for reading drafts of this, and to Chris Small and Chad Fowler for inviting me to speak.

The Island Test

I've discovered a handy test for figuring out what you're addicted to. Imagine you were going to spend the weekend at a friend's house on a little island off the coast of Maine. There are no shops on the island and you won't be able to leave while you're there. Also, you've never been to this house before, so you can't assume it will have more than any house might.
What, besides clothes and toiletries, do you make a point of packing? That's what you're addicted to. For example, if you find yourself packing a bottle of vodka (just in case), you may want to stop and think about that.
For me the list is four things: books, earplugs, a notebook, and a pen.
There are other things I might bring if I thought of it, like music, or tea, but I can live without them. I'm not so addicted to caffeine that I wouldn't risk the house not having any tea, just for a weekend.
Quiet is another matter. I realize it seems a bit eccentric to take earplugs on a trip to an island off the coast of Maine. If anywhere should be quiet, that should. But what if the person in the next room snored? What if there was a kid playing basketball? (Thump, thump, thump... thump.) Why risk it? Earplugs are small.
Sometimes I can think with noise. If I already have momentum on some project, I can work in noisy places. I can edit an essay or debug code in an airport. But airports are not so bad: most of the noise is whitish. I couldn't work with the sound of a sitcom coming through the wall, or a car in the street playing thump-thump music.
And of course there's another kind of thinking, when you're starting something new, that requires complete quiet. You never know when this will strike. It's just as well to carry plugs.
The notebook and pen are professional equipment, as it were. Though actually there is something druglike about them, in the sense that their main purpose is to make me feel better. I hardly ever go back and read stuff I write down in notebooks. It's just that if I can't write things down, worrying about remembering one idea gets in the way of having the next. Pen and paper wick ideas.
The best notebooks I've found are made by a company called Miquelrius. I use their smallest size, which is about 2.5 x 4 in. The secret to writing on such narrow pages is to break words only when you run out of space, like a Latin inscription. I use the cheapest plastic Bic ballpoints, partly because their gluey ink doesn't seep through pages, and partly so I don't worry about losing them.
I only started carrying a notebook about three years ago. Before that I used whatever scraps of paper I could find. But the problem with scraps of paper is that they're not ordered. In a notebook you can guess what a scribble means by looking at the pages around it. In the scrap era I was constantly finding notes I'd written years before that might say something I needed to remember, if I could only figure out what.
As for books, I know the house would probably have something to read. On the average trip I bring four books and only read one of them, because I find new books to read en route. Really bringing books is insurance.
I realize this dependence on books is not entirely good-- that what I need them for is distraction. The books I bring on trips are often quite virtuous, the sort of stuff that might be assigned reading in a college class. But I know my motives aren't virtuous. I bring books because if the world gets boring I need to be able to slip into another distilled by some writer. It's like eating jam when you know you should be eating fruit.
There is a point where I'll do without books. I was walking in some steep mountains once, and decided I'd rather just think, if I was bored, rather than carry a single unnecessary ounce. It wasn't so bad. I found I could entertain myself by having ideas instead of reading other people's. If you stop eating jam, fruit starts to taste better.
So maybe I'll try not bringing books on some future trip. They're going to have to pry the plugs out of my cold, dead ears, however.

Copy What You Like

When I was in high school I spent a lot of time imitating bad writers. What we studied in English classes was mostly fiction, so I assumed that was the highest form of writing. Mistake number one. The stories that seemed to be most admired were ones in which people suffered in complicated ways. Anything funny or gripping was ipso facto suspect, unless it was old enough to be hard to understand, like Shakespeare or Chaucer. Mistake number two. The ideal medium seemed the short story, which I've since learned had quite a brief life, roughly coincident with the peak of magazine publishing. But since their size made them perfect for study in high school classes, we read a lot of them, which gave us the impression the short story was flourishing. Mistake number three. And because they were so short, nothing really had to happen; you could just show a randomly truncated slice of life, and that was considered advanced. Mistake number four. The result was that I wrote a lot of stories in which nothing happened except that someone was unhappy in a way that seemed deep.
For most of college I was a philosophy major. I was very impressed by the papers published in philosophy journals. They were so beautifully typeset, and their tone was just captivating-- alternately casual and buffer-overflowingly technical. A fellow would be walking along a street and suddenly modality qua modality would spring upon him. I didn't ever quite understand these papers, but I figured I'd get around to that later, when I had time to reread them more closely. In the meantime I tried my best to imitate them. This was, I can now see, a doomed undertaking, because they weren't really saying anything. No philosopher ever refuted another, for example, because no one said anything definite enough to refute. Needless to say, my imitations didn't say anything either.
In grad school I was still wasting time imitating the wrong things. There was then a fashionable type of program called an expert system, at the core of which was something called an inference engine. I looked at what these things did and thought "I could write that in a thousand lines of code." And yet eminent professors were writing books about them, and startups were selling them for a year's salary a copy. What an opportunity, I thought; these impressive things seem easy to me; I must be pretty sharp. Wrong. It was simply a fad. The books the professors wrote about expert systems are now ignored. They were not even on a path to anything interesting. And the customers paying so much for them were largely the same government agencies that paid thousands for screwdrivers and toilet seats.
How do you avoid copying the wrong things? Copy only what you genuinely like. That would have saved me in all three cases. I didn't enjoy the short stories we had to read in English classes; I didn't learn anything from philosophy papers; I didn't use expert systems myself. I believed these things were good because they were admired.
It can be hard to separate the things you like from the things you're impressed with. One trick is to ignore presentation. Whenever I see a painting impressively hung in a museum, I ask myself: how much would I pay for this if I found it at a garage sale, dirty and frameless, and with no idea who painted it? If you walk around a museum trying this experiment, you'll find you get some truly startling results. Don't ignore this data point just because it's an outlier.
Another way to figure out what you like is to look at what you enjoy as guilty pleasures. Many things people like, especially if they're young and ambitious, they like largely for the feeling of virtue in liking them. 99% of people reading Ulysses are thinking "I'm reading Ulysses" as they do it. A guilty pleasure is at least a pure one. What do you read when you don't feel up to being virtuous? What kind of book do you read and feel sad that there's only half of it left, instead of being impressed that you're half way through? That's what you really like.
Even when you find genuinely good things to copy, there's another pitfall to be avoided. Be careful to copy what makes them good, rather than their flaws. It's easy to be drawn into imitating flaws, because they're easier to see, and of course easier to copy too. For example, most painters in the eighteenth and nineteenth centuries used brownish colors. They were imitating the great painters of the Renaissance, whose paintings by that time were brown with dirt. Those paintings have since been cleaned, revealing brilliant colors; their imitators are of course still brown.
It was painting, incidentally, that cured me of copying the wrong things. Halfway through grad school I decided I wanted to try being a painter, and the art world was so manifestly corrupt that it snapped the leash of credulity. These people made philosophy professors seem as scrupulous as mathematicians. It was so clearly a choice of doing good work xor being an insider that I was forced to see the distinction. It's there to some degree in almost every field, but I had till then managed to avoid facing it.
That was one of the most valuable things I learned from painting: you have to figure out for yourself what's good. You can't trust authorities. They'll lie to you on this one.

How to Present to Investors

In a few days it will be Angel Day, when the startups we funded this summer present to investors. Y Combinator funds startups twice a year, in January and June. Ten weeks later we invite all the investors we know to hear them present what they've built so far.
We call it Angel Day because most of the investors are individual "angels." But there have been an increasing number of VCs, and recently some potential acquirers.
Ten weeks is not much time. The average startup probably doesn't have much to show for itself after ten weeks. But the average startup fails. When you look at the ones that went on to do great things, you find a lot that began with someone pounding out a prototype in a week or two of nonstop work. Startups are a counterexample to the rule that haste makes waste.
(Too much money seems to be as bad for startups as too much time, so we don't give them much money either.)
A week before Angel Day, we have a dress rehearsal called Demo Day. At other Y Combinator events we allow outside guests, but not at Demo Day. No one except the other founders gets to see the rehearsals.
The presentations on Demo Day are often pretty rough. But this is to be expected. We try to pick founders who are good at building things, not ones who are slick presenters. Some of the founders are just out of college, or even still in it, and have never spoken to a group of people they didn't already know.
So we concentrate on the basics. On Angel Day each startup will only get ten minutes, so we encourage them to focus on just two goals: (a) explain what you're doing, and (b) explain why users will want it.
That might sound easy, but it's not when the speakers have no experience presenting, and they're explaining technical matters to an audience that's mostly non-technical.
This situation is constantly repeated when startups present to investors: people who are bad at explaining, talking to people who are bad at understanding. Practically every successful startup, including stars like Google, presented at some point to investors who didn't get it and turned them down. Was it because the founders were bad at presenting, or because the investors were obtuse? It's probably always some of both.
At the most recent Demo Day, we four Y Combinator partners found ourselves saying a lot of the same things we said at the last two. So at dinner afterward we collected all our tips about presenting to investors. Most startups face similar challenges, so we hope these will be useful to a wider audience.
1. Explain what you're doing.
Investors' main question when judging a very early startup is whether you've made a compelling product. Before they can judge whether you've built a good x, they have to understand what kind of x you've built. They will get very frustrated if instead of telling them what you do, you make them sit through some kind of preamble.
Say what you're doing as soon as possible, preferably in the first sentence. "We're Jeff and Bob and we've built an easy to use web-based database. Now we'll show it to you and explain why people need this."
If you're a great public speaker you may be able to violate this rule. Last year one founder spent the whole first half of his talk on a fascinating analysis of the limits of the conventional desktop metaphor. He got away with it, but unless you're a captivating speaker, which most hackers aren't, it's better to play it safe.
2. Get rapidly to demo.
A demo explains what you've made more effectively than any verbal description. The only thing worth talking about first is the problem you're trying to solve and why it's important. But don't spend more than a tenth of your time on that. Then demo.
When you demo, don't run through a catalog of features. Instead start with the problem you're solving, and then show how your product solves it. Show features in an order driven by some kind of purpose, rather than the order in which they happen to appear on the screen.
If you're demoing something web-based, assume that the network connection will mysteriously die 30 seconds into your presentation, and come prepared with a copy of the server software running on your laptop.
3. Better a narrow description than a vague one.
One reason founders resist describing their projects concisely is that, at this early stage, there are all kinds of possibilities. The most concise descriptions seem misleadingly narrow. So for example a group that has built an easy web-based database might resist calling their applicaton that, because it could be so much more. In fact, it could be anything...
The problem is, as you approach (in the calculus sense) a description of something that could be anything, the content of your description approaches zero. If you describe your web-based database as "a system to allow people to collaboratively leverage the value of information," it will go in one investor ear and out the other. They'll just discard that sentence as meaningless boilerplate, and hope, with increasing impatience, that in the next sentence you'll actually explain what you've made.
Your primary goal is not to describe everything your system might one day become, but simply to convince investors you're worth talking to further. So approach this like an algorithm that gets the right answer by successive approximations. Begin with a description that's gripping but perhaps overly narrow, then flesh it out to the extent you can. It's the same principle as incremental development: start with a simple prototype, then add features, but at every point have working code. In this case, "working code" means a working description in the investor's head.
4. Don't talk and drive.
Have one person talk while another uses the computer. If the same person does both, they'll inevitably mumble downwards at the computer screen instead of talking clearly at the audience.
As long as you're standing near the audience and looking at them, politeness (and habit) compel them to pay attention to you. Once you stop looking at them to fuss with something on your computer, their minds drift off to the errands they have to run later.
5. Don't talk about secondary matters at length.
If you only have a few minutes, spend them explaining what your product does and why it's great. Second order issues like competitors or resumes should be single slides you go through quickly at the end. If you have impressive resumes, just flash them on the screen for 15 seconds and say a few words. For competitors, list the top 3 and explain in one sentence each what they lack that you have. And put this kind of thing at the end, after you've made it clear what you've built.
6. Don't get too deeply into business models.
It's good to talk about how you plan to make money, but mainly because it shows you care about that and have thought about it. Don't go into detail about your business model, because (a) that's not what smart investors care about in a brief presentation, and (b) any business model you have at this point is probably wrong anyway.
Recently a VC who came to speak at Y Combinator talked about a company he just invested in. He said their business model was wrong and would probably change three times before they got it right. The founders were experienced guys who'd done startups before and who'd just succeeded in getting millions from one of the top VC firms, and even their business model was crap. (And yet he invested anyway, because he expected it to be crap at this stage.)
If you're solving an important problem, you're going to sound a lot smarter talking about that than the business model. The business model is just a bunch of guesses, and guesses about stuff that's probably not your area of expertise. So don't spend your precious few minutes talking about crap when you could be talking about solid, interesting things you know a lot about: the problem you're solving and what you've built so far.
As well as being a bad use of time, if your business model seems spectacularly wrong, that will push the stuff you want investors to remember out of their heads. They'll just remember you as the company with the boneheaded plan for making money, rather than the company that solved that important problem.
7. Talk slowly and clearly at the audience.
Everyone at Demo Day could see the difference between the people who'd been out in the world for a while and had presented to groups, and those who hadn't.
You need to use a completely different voice and manner talking to a roomful of people than you would in conversation. Everyday life gives you no practice in this. If you can't already do it, the best solution is to treat it as a consciously artificial trick, like juggling.
However, that doesn't mean you should talk like some kind of announcer. Audiences tune that out. What you need to do is talk in this artificial way, and yet make it seem conversational. (Writing is the same. Good writing is an elaborate effort to seem spontaneous.)
If you want to write out your whole presentation beforehand and memorize it, that's ok. That has worked for some groups in the past. But make sure to write something that sounds like spontaneous, informal speech, and deliver it that way too.
Err on the side of speaking slowly. At Demo Day, one of the founders mentioned a rule actors use: if you feel you're speaking too slowly, you're speaking at about the right speed.
8. Have one person talk.
Startups often want to show that all the founders are equal partners. This is a good instinct; investors dislike unbalanced teams. But trying to show it by partitioning the presentation is going too far. It's distracting. You can demonstrate your respect for one another in more subtle ways. For example, when one of the groups presented at Demo Day, the more extroverted of the two founders did most of the talking, but he described his co-founder as the best hacker he'd ever met, and you could tell he meant it.
Pick the one or at most two best speakers, and have them do most of the talking.
Exception: If one of the founders is an expert in some specific technical field, it can be good for them to talk about that for a minute or so. This kind of "expert witness" can add credibility, even if the audience doesn't understand all the details. If Jobs and Wozniak had 10 minutes to present the Apple II, it might be a good plan to have Jobs speak for 9 minutes and have Woz speak for a minute in the middle about some of the technical feats he'd pulled off in the design. (Though of course if it were actually those two, Jobs would speak for the entire 10 minutes.)
9. Seem confident.
Between the brief time available and their lack of technical background, many in the audience will have a hard time evaluating what you're doing. Probably the single biggest piece of evidence, initially, will be your own confidence in it. You have to show you're impressed with what you've made.
And I mean show, not tell. Never say "we're passionate" or "our product is great." People just ignore that—or worse, write you off as bullshitters. Such messages must be implicit.
What you must not do is seem nervous and apologetic. If you've truly made something good, you're doing investors a favor by telling them about it. If you don't genuinely believe that, perhaps you ought to change what your company is doing. If you don't believe your startup has such promise that you'd be doing them a favor by letting them invest, why are you investing your time in it?
10. Don't try to seem more than you are.
Don't worry if your company is just a few months old and doesn't have an office yet, or your founders are technical people with no business experience. Google was like that once, and they turned out ok. Smart investors can see past such superficial flaws. They're not looking for finished, smooth presentations. They're looking for raw talent. All you need to convince them of is that you're smart and that you're onto something good. If you try too hard to conceal your rawness—by trying to seem corporate, or pretending to know about stuff you don't—you may just conceal your talent.
You can afford to be candid about what you haven't figured out yet. Don't go out of your way to bring it up (e.g. by having a slide about what might go wrong), but don't try to pretend either that you're further along than you are. If you're a hacker and you're presenting to experienced investors, they're probably better at detecting bullshit than you are at producing it.
11. Don't put too many words on slides.
When there are a lot of words on a slide, people just skip reading it. So look at your slides and ask of each word "could I cross this out?" This includes gratuitous clip art. Try to get your slides under 20 words if you can.
Don't read your slides. They should be something in the background as you face the audience and talk to them, not something you face and read to an audience sitting behind you.
Cluttered sites don't do well in demos, especially when they're projected onto a screen. At the very least, crank up the font size big enough to make all the text legible. But cluttered sites are bad anyway, so perhaps you should use this opportunity to make your design simpler.
12. Specific numbers are good.
If you have any kind of data, however preliminary, tell the audience. Numbers stick in people's heads. If you can claim that the median visitor generates 12 page views, that's great.
But don't give them more than four or five numbers, and only give them numbers specific to you. You don't need to tell them the size of the market you're in. Who cares, really, if it's 500 million or 5 billion a year? Talking about that is like an actor at the beginning of his career telling his parents how much Tom Hanks makes. Yeah, sure, but first you have to become Tom Hanks. The important part is not whether he makes ten million a year or a hundred, but how you get there.
13. Tell stories about users.
The biggest fear of investors looking at early stage startups is that you've built something based on your own a priori theories of what the world needs, but that no one will actually want. So it's good if you can talk about problems specific users have and how you solve them.
Greg Mcadoo said one thing Sequoia looks for is the "proxy for demand." What are people doing now, using inadequate tools, that shows they need what you're making?
Another sign of user need is when people pay a lot for something. It's easy to convince investors there will be demand for a cheaper alternative to something popular, if you preserve the qualities that made it popular.
The best stories about user needs are about your own. A remarkable number of famous startups grew out of some need the founders had: Apple, Microsoft, Yahoo, Google. Experienced investors know that, so stories of this type will get their attention. The next best thing is to talk about the needs of people you know personally, like your friends or siblings.
14. Make a soundbite stick in their heads.
Professional investors hear a lot of pitches. After a while they all blur together. The first cut is simply to be one of those they remember. And the way to ensure that is to create a descriptive phrase about yourself that sticks in their heads.
In Hollywood, these phrases seem to be of the form "x meets y." In the startup world, they're usually "the x of y" or "the x y." Viaweb's was "the Microsoft Word of ecommerce."
Find one and launch it clearly (but apparently casually) in your talk, preferably near the beginning.
It's a good exercise for you, too, to sit down and try to figure out how to describe your startup in one compelling phrase. If you can't, your plans may not be sufficiently focused.

A Student's Guide to Startups

Till recently graduating seniors had two choices: get a job or go to grad school. I think there will increasingly be a third option: to start your own startup. But how common will that be?
I'm sure the default will always be to get a job, but starting a startup could well become as popular as grad school. In the late 90s my professor friends used to complain that they couldn't get grad students, because all the undergrads were going to work for startups. I wouldn't be surprised if that situation returns, but with one difference: this time they'll be starting their own instead of going to work for other people's.
The most ambitious students will at this point be asking: Why wait till you graduate? Why not start a startup while you're in college? In fact, why go to college at all? Why not start a startup instead?
A year and a half ago I gave a talk where I said that the average age of the founders of Yahoo, Google, and Microsoft was 24, and that if grad students could start startups, why not undergrads? I'm glad I phrased that as a question, because now I can pretend it wasn't merely a rhetorical one. At the time I couldn't imagine why there should be any lower limit for the age of startup founders. Graduation is a bureaucratic change, not a biological one. And certainly there are undergrads as competent technically as most grad students. So why shouldn't undergrads be able to start startups as well as grad students?
I now realize that something does change at graduation: you lose a huge excuse for failing. Regardless of how complex your life is, you'll find that everyone else, including your family and friends, will discard all the low bits and regard you as having a single occupation at any given time. If you're in college and have a summer job writing software, you still read as a student. Whereas if you graduate and get a job programming, you'll be instantly regarded by everyone as a programmer.
The problem with starting a startup while you're still in school is that there's a built-in escape hatch. If you start a startup in the summer between your junior and senior year, it reads to everyone as a summer job. So if it goes nowhere, big deal; you return to school in the fall with all the other seniors; no one regards you as a failure, because your occupation is student, and you didn't fail at that. Whereas if you start a startup just one year later, after you graduate, as long as you're not accepted to grad school in the fall the startup reads to everyone as your occupation. You're now a startup founder, so you have to do well at that.
For nearly everyone, the opinion of one's peers is the most powerful motivator of all—more powerful even than the nominal goal of most startup founders, getting rich. [1] About a month into each funding cycle we have an event called Prototype Day where each startup presents to the others what they've got so far. You might think they wouldn't need any more motivation. They're working on their cool new idea; they have funding for the immediate future; and they're playing a game with only two outcomes: wealth or failure. You'd think that would be motivation enough. And yet the prospect of a demo pushes most of them into a rush of activity.
Even if you start a startup explicitly to get rich, the money you might get seems pretty theoretical most of the time. What drives you day to day is not wanting to look bad.
You probably can't change that. Even if you could, I don't think you'd want to; someone who really, truly doesn't care what his peers think of him is probably a psychopath. So the best you can do is consider this force like a wind, and set up your boat accordingly. If you know your peers are going to push you in some direction, choose good peers, and position yourself so they push you in a direction you like.
Graduation changes the prevailing winds, and those make a difference. Starting a startup is so hard that it's a close call even for the ones that succeed. However high a startup may be flying now, it probably has a few leaves stuck in the landing gear from those trees it barely cleared at the end of the runway. In such a close game, the smallest increase in the forces against you can be enough to flick you over the edge into failure.
When we first started Y Combinator we encouraged people to start startups while they were still in college. That's partly because Y Combinator began as a kind of summer program. We've kept the program shape—all of us having dinner together once a week turns out to be a good idea—but we've decided now that the party line should be to tell people to wait till they graduate.
Does that mean you can't start a startup in college? Not at all. Sam Altman, the co-founder of Loopt, had just finished his sophomore year when we funded them, and Loopt is probably the most promising of all the startups we've funded so far. But Sam Altman is a very unusual guy. Within about three minutes of meeting him, I remember thinking "Ah, so this is what Bill Gates must have been like when he was 19."
If it can work to start a startup during college, why do we tell people not to? For the same reason that the probably apocryphal violinist, whenever he was asked to judge someone's playing, would always say they didn't have enough talent to make it as a pro. Succeeding as a musician takes determination as well as talent, so this answer works out to be the right advice for everyone. The ones who are uncertain believe it and give up, and the ones who are sufficiently determined think "screw that, I'll succeed anyway."
So our official policy now is only to fund undergrads we can't talk out of it. And frankly, if you're not certain, you should wait. It's not as if all the opportunities to start companies are going to be gone if you don't do it now. Maybe the window will close on some idea you're working on, but that won't be the last idea you'll have. For every idea that times out, new ones become feasible. Historically the opportunities to start startups have only increased with time.
In that case, you might ask, why not wait longer? Why not go work for a while, or go to grad school, and then start a startup? And indeed, that might be a good idea. If I had to pick the sweet spot for startup founders, based on who we're most excited to see applications from, I'd say it's probably the mid-twenties. Why? What advantages does someone in their mid-twenties have over someone who's 21? And why isn't it older? What can 25 year olds do that 32 year olds can't? Those turn out to be questions worth examining.
Plus
If you start a startup soon after college, you'll be a young founder by present standards, so you should know what the relative advantages of young founders are. They're not what you might think. As a young founder your strengths are: stamina, poverty, rootlessness, colleagues, and ignorance.
The importance of stamina shouldn't be surprising. If you've heard anything about startups you've probably heard about the long hours. As far as I can tell these are universal. I can't think of any successful startups whose founders worked 9 to 5. And it's particularly necessary for younger founders to work long hours because they're probably not as efficient as they'll be later.
Your second advantage, poverty, might not sound like an advantage, but it is a huge one. Poverty implies you can live cheaply, and this is critically important for startups. Nearly every startup that fails, fails by running out of money. It's a little misleading to put it this way, because there's usually some other underlying cause. But regardless of the source of your problems, a low burn rate gives you more opportunity to recover from them. And since most startups make all kinds of mistakes at first, room to recover from mistakes is a valuable thing to have.
Most startups end up doing something different than they planned. The way the successful ones find something that works is by trying things that don't. So the worst thing you can do in a startup is to have a rigid, pre-ordained plan and then start spending a lot of money to implement it. Better to operate cheaply and give your ideas time to evolve.
Recent grads can live on practically nothing, and this gives you an edge over older founders, because the main cost in software startups is people. The guys with kids and mortgages are at a real disadvantage. This is one reason I'd bet on the 25 year old over the 32 year old. The 32 year old probably is a better programmer, but probably also has a much more expensive life. Whereas a 25 year old has some work experience (more on that later) but can live as cheaply as an undergrad.
Robert Morris and I were 29 and 30 respectively when we started Viaweb, but fortunately we still lived like 23 year olds. We both had roughly zero assets. I would have loved to have a mortgage, since that would have meant I had a house. But in retrospect having nothing turned out to be convenient. I wasn't tied down and I was used to living cheaply.
Even more important than living cheaply, though, is thinking cheaply. One reason the Apple II was so popular was that it was cheap. The computer itself was cheap, and it used cheap, off-the-shelf peripherals like a cassette tape recorder for data storage and a TV as a monitor. And you know why? Because Woz designed this computer for himself, and he couldn't afford anything more.
We benefitted from the same phenomenon. Our prices were daringly low for the time. The top level of service was $300 a month, which was an order of magnitude below the norm. In retrospect this was a smart move, but we didn't do it because we were smart. $300 a month seemed like a lot of money to us. Like Apple, we created something inexpensive, and therefore popular, simply because we were poor.
A lot of startups have that form: someone comes along and makes something for a tenth or a hundredth of what it used to cost, and the existing players can't follow because they don't even want to think about a world in which that's possible. Traditional long distance carriers, for example, didn't even want to think about VoIP. (It was coming, all the same.) Being poor helps in this game, because your own personal bias points in the same direction technology evolves in.
The advantages of rootlessness are similar to those of poverty. When you're young you're more mobile—not just because you don't have a house or much stuff, but also because you're less likely to have serious relationships. This turns out to be important, because a lot of startups involve someone moving.
The founders of Kiko, for example, are now en route to the Bay Area to start their next startup. It's a better place for what they want to do. And it was easy for them to decide to go, because neither as far as I know has a serious girlfriend, and everything they own will fit in one car—or more precisely, will either fit in one car or is crappy enough that they don't mind leaving it behind.
They at least were in Boston. What if they'd been in Nebraska, like Evan Williams was at their age? Someone wrote recently that the drawback of Y Combinator was that you had to move to participate. It couldn't be any other way. The kind of conversations we have with founders, we have to have in person. We fund a dozen startups at a time, and we can't be in a dozen places at once. But even if we could somehow magically save people from moving, we wouldn't. We wouldn't be doing founders a favor by letting them stay in Nebraska. Places that aren't startup hubs are toxic to startups. You can tell that from indirect evidence. You can tell how hard it must be to start a startup in Houston or Chicago or Miami from the microscopically small number, per capita, that succeed there. I don't know exactly what's suppressing all the startups in these towns—probably a hundred subtle little things—but something must be. [2]
Maybe this will change. Maybe the increasing cheapness of startups will mean they'll be able to survive anywhere, instead of only in the most hospitable environments. Maybe 37signals is the pattern for the future. But maybe not. Historically there have always been certain towns that were centers for certain industries, and if you weren't in one of them you were at a disadvantage. So my guess is that 37signals is an anomaly. We're looking at a pattern much older than "Web 2.0" here.
Perhaps the reason more startups per capita happen in the Bay Area than Miami is simply that there are more founder-type people there. Successful startups are almost never started by one person. Usually they begin with a conversation in which someone mentions that something would be a good idea for a company, and his friend says, "Yeah, that is a good idea, let's try it." If you're missing that second person who says "let's try it," the startup never happens. And that is another area where undergrads have an edge. They're surrounded by people willing to say that. At a good college you're concentrated together with a lot of other ambitious and technically minded people—probably more concentrated than you'll ever be again. If your nucleus spits out a neutron, there's a good chance it will hit another nucleus.
The number one question people ask us at Y Combinator is: Where can I find a co-founder? That's the biggest problem for someone starting a startup at 30. When they were in school they knew a lot of good co-founders, but by 30 they've either lost touch with them or these people are tied down by jobs they don't want to leave.
Viaweb was an anomaly in this respect too. Though we were comparatively old, we weren't tied down by impressive jobs. I was trying to be an artist, which is not very constraining, and Robert, though 29, was still in grad school due to a little interruption in his academic career back in 1988. So arguably the Worm made Viaweb possible. Otherwise Robert would have been a junior professor at that age, and he wouldn't have had time to work on crazy speculative projects with me.
Most of the questions people ask Y Combinator we have some kind of answer for, but not the co-founder question. There is no good answer. Co-founders really should be people you already know. And by far the best place to meet them is school. You have a large sample of smart people; you get to compare how they all perform on identical tasks; and everyone's life is pretty fluid. A lot of startups grow out of schools for this reason. Google, Yahoo, and Microsoft, among others, were all founded by people who met in school. (In Microsoft's case, it was high school.)
Many students feel they should wait and get a little more experience before they start a company. All other things being equal, they should. But all other things are not quite as equal as they look. Most students don't realize how rich they are in the scarcest ingredient in startups, co-founders. If you wait too long, you may find that your friends are now involved in some project they don't want to abandon. The better they are, the more likely this is to happen.
One way to mitigate this problem might be to actively plan your startup while you're getting those n years of experience. Sure, go off and get jobs or go to grad school or whatever, but get together regularly to scheme, so the idea of starting a startup stays alive in everyone's brain. I don't know if this works, but it can't hurt to try.
It would be helpful just to realize what an advantage you have as students. Some of your classmates are probably going to be successful startup founders; at a great technical university, that is a near certainty. So which ones? If I were you I'd look for the people who are not just smart, but incurable builders. Look for the people who keep starting projects, and finish at least some of them. That's what we look for. Above all else, above academic credentials and even the idea you apply with, we look for people who build things.
The other place co-founders meet is at work. Fewer do than at school, but there are things you can do to improve the odds. The most important, obviously, is to work somewhere that has a lot of smart, young people. Another is to work for a company located in a startup hub. It will be easier to talk a co-worker into quitting with you in a place where startups are happening all around you.
You might also want to look at the employment agreement you sign when you get hired. Most will say that any ideas you think of while you're employed by the company belong to them. In practice it's hard for anyone to prove what ideas you had when, so the line gets drawn at code. If you're going to start a startup, don't write any of the code while you're still employed. Or at least discard any code you wrote while still employed and start over. It's not so much that your employer will find out and sue you. It won't come to that; investors or acquirers or (if you're so lucky) underwriters will nail you first. Between t = 0 and when you buy that yacht, someone is going to ask if any of your code legally belongs to anyone else, and you need to be able to say no. [3]
The most overreaching employee agreement I've seen so far is Amazon's. In addition to the usual clauses about owning your ideas, you also can't be a founder of a startup that has another founder who worked at Amazon—even if you didn't know them or even work there at the same time. I suspect they'd have a hard time enforcing this, but it's a bad sign they even try. There are plenty of other places to work; you may as well choose one that keeps more of your options open.
Speaking of cool places to work, there is of course Google. But I notice something slightly frightening about Google: zero startups come out of there. In that respect it's a black hole. People seem to like working at Google too much to leave. So if you hope to start a startup one day, the evidence so far suggests you shouldn't work there.
I realize this seems odd advice. If they make your life so good that you don't want to leave, why not work there? Because, in effect, you're probably getting a local maximum. You need a certain activation energy to start a startup. So an employer who's fairly pleasant to work for can lull you into staying indefinitely, even if it would be a net win for you to leave. [4]
The best place to work, if you want to start a startup, is probably a startup. In addition to being the right sort of experience, one way or another it will be over quickly. You'll either end up rich, in which case problem solved, or the startup will get bought, in which case it it will start to suck to work there and it will be easy to leave, or most likely, the thing will blow up and you'll be free again.
Your final advantage, ignorance, may not sound very useful. I deliberately used a controversial word for it; you might equally call it innocence. But it seems to be a powerful force. My Y Combinator co-founder Jessica Livingston is just about to publish a book of interviews with startup founders, and I noticed a remarkable pattern in them. One after another said that if they'd known how hard it would be, they would have been too intimidated to start.
Ignorance can be useful when it's a counterweight to other forms of stupidity. It's useful in starting startups because you're capable of more than you realize. Starting startups is harder than you expect, but you're also capable of more than you expect, so they balance out.
Most people look at a company like Apple and think, how could I ever make such a thing? Apple is an institution, and I'm just a person. But every institution was at one point just a handful of people in a room deciding to start something. Institutions are made up, and made up by people no different from you.
I'm not saying everyone could start a startup. I'm sure most people couldn't; I don't know much about the population at large. When you get to groups I know well, like hackers, I can say more precisely. At the top schools, I'd guess as many as a quarter of the CS majors could make it as startup founders if they wanted.
That "if they wanted" is an important qualification—so important that it's almost cheating to append it like that—because once you get over a certain threshold of intelligence, which most CS majors at top schools are past, the deciding factor in whether you succeed as a founder is how much you want to. You don't have to be that smart. If you're not a genius, just start a startup in some unsexy field where you'll have less competition, like software for human resources departments. I picked that example at random, but I feel safe in predicting that whatever they have now, it wouldn't take genius to do better. There are a lot of people out there working on boring stuff who are desperately in need of better software, so however short you think you fall of Larry and Sergey, you can ratchet down the coolness of the idea far enough to compensate.
As well as preventing you from being intimidated, ignorance can sometimes help you discover new ideas. Steve Wozniak put this very strongly:
All the best things that I did at Apple came from (a) not having money and (b) not having done it before, ever. Every single thing that we came out with that was really great, I'd never once done that thing in my life.
When you know nothing, you have to reinvent stuff for yourself, and if you're smart your reinventions may be better than what preceded them. This is especially true in fields where the rules change. All our ideas about software were developed in a time when processors were slow, and memories and disks were tiny. Who knows what obsolete assumptions are embedded in the conventional wisdom? And the way these assumptions are going to get fixed is not by explicitly deallocating them, but by something more akin to garbage collection. Someone ignorant but smart will come along and reinvent everything, and in the process simply fail to reproduce certain existing ideas.
Minus
So much for the advantages of young founders. What about the disadvantages? I'm going to start with what goes wrong and try to trace it back to the root causes.
What goes wrong with young founders is that they build stuff that looks like class projects. It was only recently that we figured this out ourselves. We noticed a lot of similarities between the startups that seemed to be falling behind, but we couldn't figure out how to put it into words. Then finally we realized what it was: they were building class projects.
But what does that really mean? What's wrong with class projects? What's the difference between a class project and a real startup? If we could answer that question it would be useful not just to would-be startup founders but to students in general, because we'd be a long way toward explaining the mystery of the so-called real world.
There seem to be two big things missing in class projects: (1) an iterative definition of a real problem and (2) intensity.
The first is probably unavoidable. Class projects will inevitably solve fake problems. For one thing, real problems are rare and valuable. If a professor wanted to have students solve real problems, he'd face the same paradox as someone trying to give an example of whatever "paradigm" might succeed the Standard Model of physics. There may well be something that does, but if you could think of an example you'd be entitled to the Nobel Prize. Similarly, good new problems are not to be had for the asking.
In technology the difficulty is compounded by the fact that real startups tend to discover the problem they're solving by a process of evolution. Someone has an idea for something; they build it; and in doing so (and probably only by doing so) they realize the problem they should be solving is another one. Even if the professor let you change your project description on the fly, there isn't time enough to do that in a college class, or a market to supply evolutionary pressures. So class projects are mostly about implementation, which is the least of your problems in a startup.
It's not just that in a startup you work on the idea as well as implementation. The very implementation is different. Its main purpose is to refine the idea. Often the only value of most of the stuff you build in the first six months is that it proves your initial idea was mistaken. And that's extremely valuable. If you're free of a misconception that everyone else still shares, you're in a powerful position. But you're not thinking that way about a class project. Proving your initial plan was mistaken would just get you a bad grade. Instead of building stuff to throw away, you tend to want every line of code to go toward that final goal of showing you did a lot of work.
That leads to our second difference: the way class projects are measured. Professors will tend to judge you by the distance between the starting point and where you are now. If someone has achieved a lot, they should get a good grade. But customers will judge you from the other direction: the distance remaining between where you are now and the features they need. The market doesn't give a shit how hard you worked. Users just want your software to do what they need, and you get a zero otherwise. That is one of the most distinctive differences between school and the real world: there is no reward for putting in a good effort. In fact, the whole concept of a "good effort" is a fake idea adults invented to encourage kids. It is not found in nature.
Such lies seem to be helpful to kids. But unfortunately when you graduate they don't give you a list of all the lies they told you during your education. You have to get them beaten out of you by contact with the real world. And this is why so many jobs want work experience. I couldn't understand that when I was in college. I knew how to program. In fact, I could tell I knew how to program better than most people doing it for a living. So what was this mysterious "work experience" and why did I need it?
Now I know what it is, and part of the confusion is grammatical. Describing it as "work experience" implies it's like experience operating a certain kind of machine, or using a certain programming language. But really what work experience refers to is not some specific expertise, but the elimination of certain habits left over from childhood.
One of the defining qualities of kids is that they flake. When you're a kid and you face some hard test, you can cry and say "I can't" and they won't make you do it. Of course, no one can make you do anything in the grownup world either. What they do instead is fire you. And when motivated by that you find you can do a lot more than you realized. So one of the things employers expect from someone with "work experience" is the elimination of the flake reflex—the ability to get things done, with no excuses.
The other thing you get from work experience is an understanding of what work is, and in particular, how intrinsically horrible it is. Fundamentally the equation is a brutal one: you have to spend most of your waking hours doing stuff someone else wants, or starve. There are a few places where the work is so interesting that this is concealed, because what other people want done happens to coincide with what you want to work on. But you only have to imagine what would happen if they diverged to see the underlying reality.
It's not so much that adults lie to kids about this as never explain it. They never explain what the deal is with money. You know from an early age that you'll have some sort of job, because everyone asks what you're going to "be" when you grow up. What they don't tell you is that as a kid you're sitting on the shoulders of someone else who's treading water, and that starting working means you get thrown into the water on your own, and have to start treading water yourself or sink. "Being" something is incidental; the immediate problem is not to drown.
The relationship between work and money tends to dawn on you only gradually. At least it did for me. One's first thought tends to be simply "This sucks. I'm in debt. Plus I have to get up on monday and go to work." Gradually you realize that these two things are as tightly connected as only a market can make them.
So the most important advantage 24 year old founders have over 20 year old founders is that they know what they're trying to avoid. To the average undergrad the idea of getting rich translates into buying Ferraris, or being admired. To someone who has learned from experience about the relationship between money and work, it translates to something way more important: it means you get to opt out of the brutal equation that governs the lives of 99.9% of people. Getting rich means you can stop treading water.
Someone who gets this will work much harder at making a startup succeed—with the proverbial energy of a drowning man, in fact. But understanding the relationship between money and work also changes the way you work. You don't get money just for working, but for doing things other people want. Someone who's figured that out will automatically focus more on the user. And that cures the other half of the class-project syndrome. After you've been working for a while, you yourself tend to measure what you've done the same way the market does.
Of course, you don't have to spend years working to learn this stuff. If you're sufficiently perceptive you can grasp these things while you're still in school. Sam Altman did. He must have, because Loopt is no class project. And as his example suggests, this can be valuable knowledge. At a minimum, if you get this stuff, you already have most of what you gain from the "work experience" employers consider so desirable. But of course if you really get it, you can use this information in a way that's more valuable to you than that.
Now
So suppose you think you might start a startup at some point, either when you graduate or a few years after. What should you do now? For both jobs and grad school, there are ways to prepare while you're in college. If you want to get a job when you graduate, you should get summer jobs at places you'd like to work. If you want to go to grad school, it will help to work on research projects as an undergrad. What's the equivalent for startups? How do you keep your options maximally open?
One thing you can do while you're still in school is to learn how startups work. Unfortunately that's not easy. Few if any colleges have classes about startups. There may be business school classes on entrepreneurship, as they call it over there, but these are likely to be a waste of time. Business schools like to talk about startups, but philosophically they're at the opposite end of the spectrum. Most books on startups also seem to be useless. I've looked at a few and none get it right. Books in most fields are written by people who know the subject from experience, but for startups there's a unique problem: by definition the founders of successful startups don't need to write books to make money. As a result most books on the subject end up being written by people who don't understand it.
So I'd be skeptical of classes and books. The way to learn about startups is by watching them in action, preferably by working at one. How do you do that as an undergrad? Probably by sneaking in through the back door. Just hang around a lot and gradually start doing things for them. Most startups are (or should be) very cautious about hiring. Every hire increases the burn rate, and bad hires early on are hard to recover from. However, startups usually have a fairly informal atmosphere, and there's always a lot that needs to be done. If you just start doing stuff for them, many will be too busy to shoo you away. You can thus gradually work your way into their confidence, and maybe turn it into an official job later, or not, whichever you prefer. This won't work for all startups, but it would work for most I've known.
Number two, make the most of the great advantage of school: the wealth of co-founders. Look at the people around you and ask yourself which you'd like to work with. When you apply that test, you may find you get surprising results. You may find you'd prefer the quiet guy you've mostly ignored to someone who seems impressive but has an attitude to match. I'm not suggesting you suck up to people you don't really like because you think one day they'll be successful. Exactly the opposite, in fact: you should only start a startup with someone you like, because a startup will put your friendship through a stress test. I'm just saying you should think about who you really admire and hang out with them, instead of whoever circumstances throw you together with.
Another thing you can do is learn skills that will be useful to you in a startup. These may be different from the skills you'd learn to get a job. For example, thinking about getting a job will make you want to learn programming languages you think employers want, like Java and C++. Whereas if you start a startup, you get to pick the language, so you have to think about which will actually let you get the most done. If you use that test you might end up learning Ruby or Python instead.
But the most important skill for a startup founder isn't a programming technique. It's a knack for understanding users and figuring out how to give them what they want. I know I repeat this, but that's because it's so important. And it's a skill you can learn, though perhaps habit might be a better word. Get into the habit of thinking of software as having users. What do those users want? What would make them say wow?
This is particularly valuable for undergrads, because the concept of users is missing from most college programming classes. The way you get taught programming in college would be like teaching writing as grammar, without mentioning that its purpose is to communicate something to an audience. Fortunately an audience for software is now only an http request away. So in addition to the programming you do for your classes, why not build some kind of website people will find useful? At the very least it will teach you how to write software with users. In the best case, it might not just be preparation for a startup, but the startup itself, like it was for Yahoo and Google.
Notes
[1] Even the desire to protect one's children seems weaker, judging from things people have historically done to their kids rather than risk their community's disapproval. (I assume we still do things that will be regarded in the future as barbaric, but historical abuses are easier for us to see.)
[2] Worrying that Y Combinator makes founders move for 3 months also suggests one underestimates how hard it is to start a startup. You're going to have to put up with much greater inconveniences than that.
[3] Most employee agreements say that any idea relating to the company's present or potential future business belongs to them. Often as not the second clause could include any possible startup, and anyone doing due diligence for an investor or acquirer will assume the worst.
To be safe either (a) don't use code written while you were still employed in your previous job, or (b) get your employer to renounce, in writing, any claim to the code you write for your side project. Many will consent to (b) rather than lose a prized employee. The downside is that you'll have to tell them exactly what your project does.
[4] Geshke and Warnock only founded Adobe because Xerox ignored them. If Xerox had used what they built, they would probably never have left PARC.
Thanks to Jessica Livingston and Robert Morris for reading drafts of this, and to Jeff Arnold and the SIPB for inviting me to speak.

The 18 Mistakes That Kill Startups

In the Q & A period after a recent talk, someone asked what made startups fail. After standing there gaping for a few seconds I realized this was kind of a trick question. It's equivalent to asking how to make a startup succeed—if you avoid every cause of failure, you succeed—and that's too big a question to answer on the fly.
Afterwards I realized it could be helpful to look at the problem from this direction. If you have a list of all the things you shouldn't do, you can turn that into a recipe for succeeding just by negating. And this form of list may be more useful in practice. It's easier to catch yourself doing something you shouldn't than always to remember to do something you should. [1]
In a sense there's just one mistake that kills startups: not making something users want. If you make something users want, you'll probably be fine, whatever else you do or don't do. And if you don't make something users want, then you're dead, whatever else you do or don't do. So really this is a list of 18 things that cause startups not to make something users want. Nearly all failure funnels through that.
1. Single Founder
Have you ever noticed how few successful startups were founded by just one person? Even companies you think of as having one founder, like Oracle, usually turn out to have more. It seems unlikely this is a coincidence.
What's wrong with having one founder? To start with, it's a vote of no confidence. It probably means the founder couldn't talk any of his friends into starting the company with him. That's pretty alarming, because his friends are the ones who know him best.
But even if the founder's friends were all wrong and the company is a good bet, he's still at a disadvantage. Starting a startup is too hard for one person. Even if you could do all the work yourself, you need colleagues to brainstorm with, to talk you out of stupid decisions, and to cheer you up when things go wrong.
The last one might be the most important. The low points in a startup are so low that few could bear them alone. When you have multiple founders, esprit de corps binds them together in a way that seems to violate conservation laws. Each thinks "I can't let my friends down." This is one of the most powerful forces in human nature, and it's missing when there's just one founder.
2. Bad Location
Startups prosper in some places and not others. Silicon Valley dominates, then Boston, then Seattle, Austin, Denver, and New York. After that there's not much. Even in New York the number of startups per capita is probably a 20th of what it is in Silicon Valley. In towns like Houston and Chicago and Detroit it's too small to measure.
Why is the falloff so sharp? Probably for the same reason it is in other industries. What's the sixth largest fashion center in the US? The sixth largest center for oil, or finance, or publishing? Whatever they are they're probably so far from the top that it would be misleading even to call them centers.
It's an interesting question why cities become startup hubs, but the reason startups prosper in them is probably the same as it is for any industry: that's where the experts are. Standards are higher; people are more sympathetic to what you're doing; the kind of people you want to hire want to live there; supporting industries are there; the people you run into in chance meetings are in the same business. Who knows exactly how these factors combine to boost startups in Silicon Valley and squish them in Detroit, but it's clear they do from the number of startups per capita in each.
3. Marginal Niche
Most of the groups that apply to Y Combinator suffer from a common problem: choosing a small, obscure niche in the hope of avoiding competition.
If you watch little kids playing sports, you notice that below a certain age they're afraid of the ball. When the ball comes near them their instinct is to avoid it. I didn't make a lot of catches as an eight year old outfielder, because whenever a fly ball came my way, I used to close my eyes and hold my glove up more for protection than in the hope of catching it.
Choosing a marginal project is the startup equivalent of my eight year old strategy for dealing with fly balls. If you make anything good, you're going to have competitors, so you may as well face that. You can only avoid competition by avoiding good ideas.
I think this shrinking from big problems is mostly unconscious. It's not that people think of grand ideas but decide to pursue smaller ones because they seem safer. Your unconscious won't even let you think of grand ideas. So the solution may be to think about ideas without involving yourself. What would be a great idea for someone else to do as a startup?
4. Derivative Idea
Many of the applications we get are imitations of some existing company. That's one source of ideas, but not the best. If you look at the origins of successful startups, few were started in imitation of some other startup. Where did they get their ideas? Usually from some specific, unsolved problem the founders identified.
Our startup made software for making online stores. When we started it, there wasn't any; the few sites you could order from were hand-made at great expense by web consultants. We knew that if online shopping ever took off, these sites would have to be generated by software, so we wrote some. Pretty straightforward.
It seems like the best problems to solve are ones that affect you personally. Apple happened because Steve Wozniak wanted a computer, Google because Larry and Sergey couldn't find stuff online, Hotmail because Sabeer Bhatia and Jack Smith couldn't exchange email at work.
So instead of copying the Facebook, with some variation that the Facebook rightly ignored, look for ideas from the other direction. Instead of starting from companies and working back to the problems they solved, look for problems and imagine the company that might solve them. [2] What do people complain about? What do you wish there was?
5. Obstinacy
In some fields the way to succeed is to have a vision of what you want to achieve, and to hold true to it no matter what setbacks you encounter. Starting startups is not one of them. The stick-to-your-vision approach works for something like winning an Olympic gold medal, where the problem is well-defined. Startups are more like science, where you need to follow the trail wherever it leads.
So don't get too attached to your original plan, because it's probably wrong. Most successful startups end up doing something different than they originally intended—often so different that it doesn't even seem like the same company. You have to be prepared to see the better idea when it arrives. And the hardest part of that is often discarding your old idea.
But openness to new ideas has to be tuned just right. Switching to a new idea every week will be equally fatal. Is there some kind of external test you can use? One is to ask whether the ideas represent some kind of progression. If in each new idea you're able to re-use most of what you built for the previous ones, then you're probably in a process that converges. Whereas if you keep restarting from scratch, that's a bad sign.
Fortunately there's someone you can ask for advice: your users. If you're thinking about turning in some new direction and your users seem excited about it, it's probably a good bet.
6. Hiring Bad Programmers
I forgot to include this in the early versions of the list, because nearly all the founders I know are programmers. This is not a serious problem for them. They might accidentally hire someone bad, but it's not going to kill the company. In a pinch they can do whatever's required themselves.
But when I think about what killed most of the startups in the e-commerce business back in the 90s, it was bad programmers. A lot of those companies were started by business guys who thought the way startups worked was that you had some clever idea and then hired programmers to implement it. That's actually much harder than it sounds—almost impossibly hard in fact—because business guys can't tell which are the good programmers. They don't even get a shot at the best ones, because no one really good wants a job implementing the vision of a business guy.
In practice what happens is that the business guys choose people they think are good programmers (it says here on his resume that he's a Microsoft Certified Developer) but who aren't. Then they're mystified to find that their startup lumbers along like a World War II bomber while their competitors scream past like jet fighters. This kind of startup is in the same position as a big company, but without the advantages.
So how do you pick good programmers if you're not a programmer? I don't think there's an answer. I was about to say you'd have to find a good programmer to help you hire people. But if you can't recognize good programmers, how would you even do that?
7. Choosing the Wrong Platform
A related problem (since it tends to be done by bad programmers) is choosing the wrong platform. For example, I think a lot of startups during the Bubble killed themselves by deciding to build server-based applications on Windows. Hotmail was still running on FreeBSD for years after Microsoft bought it, presumably because Windows couldn't handle the load. If Hotmail's founders had chosen to use Windows, they would have been swamped.
PayPal only just dodged this bullet. After they merged with X.com, the new CEO wanted to switch to Windows—even after PayPal cofounder Max Levchin showed that their software scaled only 1% as well on Windows as Unix. Fortunately for PayPal they switched CEOs instead.
Platform is a vague word. It could mean an operating system, or a programming language, or a "framework" built on top of a programming language. It implies something that both supports and limits, like the foundation of a house.
The scary thing about platforms is that there are always some that seem to outsiders to be fine, responsible choices and yet, like Windows in the 90s, will destroy you if you choose them. Java applets were probably the most spectacular example. This was supposed to be the new way of delivering applications. Presumably it killed just about 100% of the startups who believed that.
How do you pick the right platforms? The usual way is to hire good programmers and let them choose. But there is a trick you could use if you're not a programmer: visit a top computer science department and see what they use in research projects.
8. Slowness in Launching
Companies of all sizes have a hard time getting software done. It's intrinsic to the medium; software is always 85% done. It takes an effort of will to push through this and get something released to users. [3]
Startups make all kinds of excuses for delaying their launch. Most are equivalent to the ones people use for procrastinating in everyday life. There's something that needs to happen first. Maybe. But if the software were 100% finished and ready to launch at the push of a button, would they still be waiting?
One reason to launch quickly is that it forces you to actually finish some quantum of work. Nothing is truly finished till it's released; you can see that from the rush of work that's always involved in releasing anything, no matter how finished you thought it was. The other reason you need to launch is that it's only by bouncing your idea off users that you fully understand it.
Several distinct problems manifest themselves as delays in launching: working too slowly; not truly understanding the problem; fear of having to deal with users; fear of being judged; working on too many different things; excessive perfectionism. Fortunately you can combat all of them by the simple expedient of forcing yourself to launch something fairly quickly.
9. Launching Too Early
Launching too slowly has probably killed a hundred times more startups than launching too fast, but it is possible to launch too fast. The danger here is that you ruin your reputation. You launch something, the early adopters try it out, and if it's no good they may never come back.
So what's the minimum you need to launch? We suggest startups think about what they plan to do, identify a core that's both (a) useful on its own and (b) something that can be incrementally expanded into the whole project, and then get that done as soon as possible.
This is the same approach I (and many other programmers) use for writing software. Think about the overall goal, then start by writing the smallest subset of it that does anything useful. If it's a subset, you'll have to write it anyway, so in the worst case you won't be wasting your time. But more likely you'll find that implementing a working subset is both good for morale and helps you see more clearly what the rest should do.
The early adopters you need to impress are fairly tolerant. They don't expect a newly launched product to do everything; it just has to do something.
10. Having No Specific User in Mind
You can't build things users like without understanding them. I mentioned earlier that the most successful startups seem to have begun by trying to solve a problem their founders had. Perhaps there's a rule here: perhaps you create wealth in proportion to how well you understand the problem you're solving, and the problems you understand best are your own. [4]
That's just a theory. What's not a theory is the converse: if you're trying to solve problems you don't understand, you're hosed.
And yet a surprising number of founders seem willing to assume that someone, they're not sure exactly who, will want what they're building. Do the founders want it? No, they're not the target market. Who is? Teenagers. People interested in local events (that one is a perennial tarpit). Or "business" users. What business users? Gas stations? Movie studios? Defense contractors?
You can of course build something for users other than yourself. We did. But you should realize you're stepping into dangerous territory. You're flying on instruments, in effect, so you should (a) consciously shift gears, instead of assuming you can rely on your intuitions as you ordinarily would, and (b) look at the instruments.
In this case the instruments are the users. When designing for other people you have to be empirical. You can no longer guess what will work; you have to find users and measure their responses. So if you're going to make something for teenagers or "business" users or some other group that doesn't include you, you have to be able to talk some specific ones into using what you're making. If you can't, you're on the wrong track.
11. Raising Too Little Money
Most successful startups take funding at some point. Like having more than one founder, it seems a good bet statistically. How much should you take, though?
Startup funding is measured in time. Every startup that isn't profitable (meaning nearly all of them, initially) has a certain amount of time left before the money runs out and they have to stop. This is sometimes referred to as runway, as in "How much runway do you have left?" It's a good metaphor because it reminds you that when the money runs out you're going to be airborne or dead.
Too little money means not enough to get airborne. What airborne means depends on the situation. Usually you have to advance to a visibly higher level: if all you have is an idea, a working prototype; if you have a prototype, launching; if you're launched, significant growth. It depends on investors, because until you're profitable that's who you have to convince.
So if you take money from investors, you have to take enough to get to the next step, whatever that is. [5] Fortunately you have some control over both how much you spend and what the next step is. We advise startups to set both low, initially: spend practically nothing, and make your initial goal simply to build a solid prototype. This gives you maximum flexibility.
12. Spending Too Much
It's hard to distinguish spending too much from raising too little. If you run out of money, you could say either was the cause. The only way to decide which to call it is by comparison with other startups. If you raised five million and ran out of money, you probably spent too much.
Burning through too much money is not as common as it used to be. Founders seem to have learned that lesson. Plus it keeps getting cheaper to start a startup. So as of this writing few startups spend too much. None of the ones we've funded have. (And not just because we make small investments; many have gone on to raise further rounds.)
The classic way to burn through cash is by hiring a lot of people. This bites you twice: in addition to increasing your costs, it slows you down—so money that's getting consumed faster has to last longer. Most hackers understand why that happens; Fred Brooks explained it in The Mythical Man-Month.
We have three general suggestions about hiring: (a) don't do it if you can avoid it, (b) pay people with equity rather than salary, not just to save money, but because you want the kind of people who are committed enough to prefer that, and (c) only hire people who are either going to write code or go out and get users, because those are the only things you need at first.
13. Raising Too Much Money
It's obvious how too little money could kill you, but is there such a thing as having too much?
Yes and no. The problem is not so much the money itself as what comes with it. As one VC who spoke at Y Combinator said, "Once you take several million dollars of my money, the clock is ticking." If VCs fund you, they're not going to let you just put the money in the bank and keep operating as two guys living on ramen. They want that money to go to work. [6] At the very least you'll move into proper office space and hire more people. That will change the atmosphere, and not entirely for the better. Now most of your people will be employees rather than founders. They won't be as committed; they'll need to be told what to do; they'll start to engage in office politics.
When you raise a lot of money, your company moves to the suburbs and has kids.
Perhaps more dangerously, once you take a lot of money it gets harder to change direction. Suppose your initial plan was to sell something to companies. After taking VC money you hire a sales force to do that. What happens now if you realize you should be making this for consumers instead of businesses? That's a completely different kind of selling. What happens, in practice, is that you don't realize that. The more people you have, the more you stay pointed in the same direction.
Another drawback of large investments is the time they take. The time required to raise money grows with the amount. [7] When the amount rises into the millions, investors get very cautious. VCs never quite say yes or no; they just engage you in an apparently endless conversation. Raising VC scale investments is thus a huge time sink—more work, probably, than the startup itself. And you don't want to be spending all your time talking to investors while your competitors are spending theirs building things.
We advise founders who go on to seek VC money to take the first reasonable deal they get. If you get an offer from a reputable firm at a reasonable valuation with no unusually onerous terms, just take it and get on with building the company. [8] Who cares if you could get a 30% better deal elsewhere? Economically, startups are an all-or-nothing game. Bargain-hunting among investors is a waste of time.
14. Poor Investor Management
As a founder, you have to manage your investors. You shouldn't ignore them, because they may have useful insights. But neither should you let them run the company. That's supposed to be your job. If investors had sufficient vision to run the companies they fund, why didn't they start them?
Pissing off investors by ignoring them is probably less dangerous than caving in to them. In our startup, we erred on the ignoring side. A lot of our energy got drained away in disputes with investors instead of going into the product. But this was less costly than giving in, which would probably have destroyed the company. If the founders know what they're doing, it's better to have half their attention focused on the product than the full attention of investors who don't.
How hard you have to work on managing investors usually depends on how much money you've taken. When you raise VC-scale money, the investors get a great deal of control. If they have a board majority, they're literally your bosses. In the more common case, where founders and investors are equally represented and the deciding vote is cast by neutral outside directors, all the investors have to do is convince the outside directors and they control the company.
If things go well, this shouldn't matter. So long as you seem to be advancing rapidly, most investors will leave you alone. But things don't always go smoothly in startups. Investors have made trouble even for the most successful companies. One of the most famous examples is Apple, whose board made a nearly fatal blunder in firing Steve Jobs. Apparently even Google got a lot of grief from their investors early on.
15. Sacrificing Users to (Supposed) Profit
When I said at the beginning that if you make something users want, you'll be fine, you may have noticed I didn't mention anything about having the right business model. That's not because making money is unimportant. I'm not suggesting that founders start companies with no chance of making money in the hope of unloading them before they tank. The reason we tell founders not to worry about the business model initially is that making something people want is so much harder.
I don't know why it's so hard to make something people want. It seems like it should be straightforward. But you can tell it must be hard by how few startups do it.
Because making something people want is so much harder than making money from it, you should leave business models for later, just as you'd leave some trivial but messy feature for version 2. In version 1, solve the core problem. And the core problem in a startup is how to create wealth (= how much people want something x the number who want it), not how to convert that wealth into money.
The companies that win are the ones that put users first. Google, for example. They made search work, then worried about how to make money from it. And yet some startup founders still think it's irresponsible not to focus on the business model from the beginning. They're often encouraged in this by investors whose experience comes from less malleable industries.
It is irresponsible not to think about business models. It's just ten times more irresponsible not to think about the product.
16. Not Wanting to Get Your Hands Dirty
Nearly all programmers would rather spend their time writing code and have someone else handle the messy business of extracting money from it. And not just the lazy ones. Larry and Sergey apparently felt this way too at first. After developing their new search algorithm, the first thing they tried was to get some other company to buy it.
Start a company? Yech. Most hackers would rather just have ideas. But as Larry and Sergey found, there's not much of a market for ideas. No one trusts an idea till you embody it in a product and use that to grow a user base. Then they'll pay big time.
Maybe this will change, but I doubt it will change much. There's nothing like users for convincing acquirers. It's not just that the risk is decreased. The acquirers are human, and they have a hard time paying a bunch of young guys millions of dollars just for being clever. When the idea is embodied in a company with a lot of users, they can tell themselves they're buying the users rather than the cleverness, and this is easier for them to swallow. [9]
If you're going to attract users, you'll probably have to get up from your computer and go find some. It's unpleasant work, but if you can make yourself do it you have a much greater chance of succeeding. In the first batch of startups we funded, in the summer of 2005, most of the founders spent all their time building their applications. But there was one who was away half the time talking to executives at cell phone companies, trying to arrange deals. Can you imagine anything more painful for a hacker? [10] But it paid off, because this startup seems the most successful of that group by an order of magnitude.
If you want to start a startup, you have to face the fact that you can't just hack. At least one hacker will have to spend some of the time doing business stuff.
17. Fights Between Founders
Fights between founders are surprisingly common. About 20% of the startups we've funded have had a founder leave. It happens so often that we've reversed our attitude to vesting. We still don't require it, but now we advise founders to vest so there will be an orderly way for people to quit.
A founder leaving doesn't necessarily kill a startup, though. Plenty of successful startups have had that happen. [11] Fortunately it's usually the least committed founder who leaves. If there are three founders and one who was lukewarm leaves, big deal. If you have two and one leaves, or a guy with critical technical skills leaves, that's more of a problem. But even that is survivable. Blogger got down to one person, and they bounced back.
Most of the disputes I've seen between founders could have been avoided if they'd been more careful about who they started a company with. Most disputes are not due to the situation but the people. Which means they're inevitable. And most founders who've been burned by such disputes probably had misgivings, which they suppressed, when they started the company. Don't suppress misgivings. It's much easier to fix problems before the company is started than after. So don't include your housemate in your startup because he'd feel left out otherwise. Don't start a company with someone you dislike because they have some skill you need and you worry you won't find anyone else. The people are the most important ingredient in a startup, so don't compromise there.
18. A Half-Hearted Effort
The failed startups you hear most about are the spectactular flameouts. Those are actually the elite of failures. The most common type is not the one that makes spectacular mistakes, but the one that doesn't do much of anything—the one we never even hear about, because it was some project a couple guys started on the side while working on their day jobs, but which never got anywhere and was gradually abandoned.
Statistically, if you want to avoid failure, it would seem like the most important thing is to quit your day job. Most founders of failed startups don't quit their day jobs, and most founders of successful ones do. If startup failure were a disease, the CDC would be issuing bulletins warning people to avoid day jobs.
Does that mean you should quit your day job? Not necessarily. I'm guessing here, but I'd guess that many of these would-be founders may not have the kind of determination it takes to start a company, and that in the back of their minds, they know it. The reason they don't invest more time in their startup is that they know it's a bad investment. [12]
I'd also guess there's some band of people who could have succeeded if they'd taken the leap and done it full-time, but didn't. I have no idea how wide this band is, but if the winner/borderline/hopeless progression has the sort of distribution you'd expect, the number of people who could have made it, if they'd quit their day job, is probably an order of magnitude larger than the number who do make it. [13]
If that's true, most startups that could succeed fail because the founders don't devote their whole efforts to them. That certainly accords with what I see out in the world. Most startups fail because they don't make something people want, and the reason most don't is that they don't try hard enough.
In other words, starting startups is just like everything else. The biggest mistake you can make is not to try hard enough. To the extent there's a secret to success, it's not to be in denial about that.
Notes
[1] This is not a complete list of the causes of failure, just those you can control. There are also several you can't, notably ineptitude and bad luck.
[2] Ironically, one variant of the Facebook that might work is a facebook exclusively for college students.
[3] Steve Jobs tried to motivate people by saying "Real artists ship." This is a fine sentence, but unfortunately not true. Many famous works of art are unfinished. It's true in fields that have hard deadlines, like architecture and filmmaking, but even there people tend to be tweaking stuff till it's yanked out of their hands.
[4] There's probably also a second factor: startup founders tend to be at the leading edge of technology, so problems they face are probably especially valuable.
[5] You should take more than you think you'll need, maybe 50% to 100% more, because software takes longer to write and deals longer to close than you expect.
[6] Since people sometimes call us VCs, I should add that we're not. VCs invest large amounts of other people's money. We invest small amounts of our own, like angel investors.
[7] Not linearly of course, or it would take forever to raise five million dollars. In practice it just feels like it takes forever.
Though if you include the cases where VCs don't invest, it would literally take forever in the median case. And maybe we should, because the danger of chasing large investments is not just that they take a long time. That's the best case. The real danger is that you'll expend a lot of time and get nothing.
[8] Some VCs will offer you an artificially low valuation to see if you have the balls to ask for more. It's lame that VCs play such games, but some do. If you're dealing with one of those you should push back on the valuation a bit.
[9] Suppose YouTube's founders had gone to Google in 2005 and told them "Google Video is badly designed. Give us $10 million and we'll tell you all the mistakes you made." They would have gotten the royal raspberry. Eighteen months later Google paid $1.6 billion for the same lesson, partly because they could then tell themselves that they were buying a phenomenon, or a community, or some vague thing like that.
I don't mean to be hard on Google. They did better than their competitors, who may have now missed the video boat entirely.
[10] Yes, actually: dealing with the government. But phone companies are up there.
[11] Many more than most people realize, because companies don't advertise this. Did you know Apple originally had three founders?
[12] I'm not dissing these people. I don't have the determination myself. I've twice come close to starting startups since Viaweb, and both times I bailed because I realized that without the spur of poverty I just wasn't willing to endure the stress of a startup.
[13] So how do you know whether you're in the category of people who should quit their day job, or the presumably larger one who shouldn't? I got to the point of saying that this was hard to judge for yourself and that you should seek outside advice, before realizing that that's what we do. We think of ourselves as investors, but viewed from the other direction Y Combinator is a service for advising people whether or not to quit their day job. We could be mistaken, and no doubt often are, but we do at least bet money on our conclusions.
Thanks to Sam Altman, Jessica Livingston, Greg McAdoo, and Robert Morris for reading drafts of this.

Mind the Gap

When people care enough about something to do it well, those who do it best tend to be far better than everyone else. There's a huge gap between Leonardo and second-rate contemporaries like Borgognone. You see the same gap between Raymond Chandler and the average writer of detective novels. A top-ranked professional chess player could play ten thousand games against an ordinary club player without losing once.
Like chess or painting or writing novels, making money is a very specialized skill. But for some reason we treat this skill differently. No one complains when a few people surpass all the rest at playing chess or writing novels, but when a few people make more money than the rest, we get editorials saying this is wrong.
Why? The pattern of variation seems no different than for any other skill. What causes people to react so strongly when the skill is making money?
I think there are three reasons we treat making money as different: the misleading model of wealth we learn as children; the disreputable way in which, till recently, most fortunes were accumulated; and the worry that great variations in income are somehow bad for society. As far as I can tell, the first is mistaken, the second outdated, and the third empirically false. Could it be that, in a modern democracy, variation in income is actually a sign of health?
The Daddy Model of Wealth
When I was five I thought electricity was created by electric sockets. I didn't realize there were power plants out there generating it. Likewise, it doesn't occur to most kids that wealth is something that has to be generated. It seems to be something that flows from parents.
Because of the circumstances in which they encounter it, children tend to misunderstand wealth. They confuse it with money. They think that there is a fixed amount of it. And they think of it as something that's distributed by authorities (and so should be distributed equally), rather than something that has to be created (and might be created unequally).
In fact, wealth is not money. Money is just a convenient way of trading one form of wealth for another. Wealth is the underlying stuff—the goods and services we buy. When you travel to a rich or poor country, you don't have to look at people's bank accounts to tell which kind you're in. You can see wealth—in buildings and streets, in the clothes and the health of the people.
Where does wealth come from? People make it. This was easier to grasp when most people lived on farms, and made many of the things they wanted with their own hands. Then you could see in the house, the herds, and the granary the wealth that each family created. It was obvious then too that the wealth of the world was not a fixed quantity that had to be shared out, like slices of a pie. If you wanted more wealth, you could make it.
This is just as true today, though few of us create wealth directly for ourselves (except for a few vestigial domestic tasks). Mostly we create wealth for other people in exchange for money, which we then trade for the forms of wealth we want. [1]
Because kids are unable to create wealth, whatever they have has to be given to them. And when wealth is something you're given, then of course it seems that it should be distributed equally. [2] As in most families it is. The kids see to that. "Unfair," they cry, when one sibling gets more than another.
In the real world, you can't keep living off your parents. If you want something, you either have to make it, or do something of equivalent value for someone else, in order to get them to give you enough money to buy it. In the real world, wealth is (except for a few specialists like thieves and speculators) something you have to create, not something that's distributed by Daddy. And since the ability and desire to create it vary from person to person, it's not made equally.
You get paid by doing or making something people want, and those who make more money are often simply better at doing what people want. Top actors make a lot more money than B-list actors. The B-list actors might be almost as charismatic, but when people go to the theater and look at the list of movies playing, they want that extra oomph that the big stars have.
Doing what people want is not the only way to get money, of course. You could also rob banks, or solicit bribes, or establish a monopoly. Such tricks account for some variation in wealth, and indeed for some of the biggest individual fortunes, but they are not the root cause of variation in income. The root cause of variation in income, as Occam's Razor implies, is the same as the root cause of variation in every other human skill.
In the United States, the CEO of a large public company makes about 100 times as much as the average person. [3] Basketball players make about 128 times as much, and baseball players 72 times as much. Editorials quote this kind of statistic with horror. But I have no trouble imagining that one person could be 100 times as productive as another. In ancient Rome the price of slaves varied by a factor of 50 depending on their skills. [4] And that's without considering motivation, or the extra leverage in productivity that you can get from modern technology.
Editorials about athletes' or CEOs' salaries remind me of early Christian writers, arguing from first principles about whether the Earth was round, when they could just walk outside and check. [5] How much someone's work is worth is not a policy question. It's something the market already determines.
"Are they really worth 100 of us?" editorialists ask. Depends on what you mean by worth. If you mean worth in the sense of what people will pay for their skills, the answer is yes, apparently.
A few CEOs' incomes reflect some kind of wrongdoing. But are there not others whose incomes really do reflect the wealth they generate? Steve Jobs saved a company that was in a terminal decline. And not merely in the way a turnaround specialist does, by cutting costs; he had to decide what Apple's next products should be. Few others could have done it. And regardless of the case with CEOs, it's hard to see how anyone could argue that the salaries of professional basketball players don't reflect supply and demand.
It may seem unlikely in principle that one individual could really generate so much more wealth than another. The key to this mystery is to revisit that question, are they really worth 100 of us? Would a basketball team trade one of their players for 100 random people? What would Apple's next product look like if you replaced Steve Jobs with a committee of 100 random people? [6] These things don't scale linearly. Perhaps the CEO or the professional athlete has only ten times (whatever that means) the skill and determination of an ordinary person. But it makes all the difference that it's concentrated in one individual.
When we say that one kind of work is overpaid and another underpaid, what are we really saying? In a free market, prices are determined by what buyers want. People like baseball more than poetry, so baseball players make more than poets. To say that a certain kind of work is underpaid is thus identical with saying that people want the wrong things.
Well, of course people want the wrong things. It seems odd to be surprised by that. And it seems even odder to say that it's unjust that certain kinds of work are underpaid. [7] Then you're saying that it's unjust that people want the wrong things. It's lamentable that people prefer reality TV and corndogs to Shakespeare and steamed vegetables, but unjust? That seems like saying that blue is heavy, or that up is circular.
The appearance of the word "unjust" here is the unmistakable spectral signature of the Daddy Model. Why else would this idea occur in this odd context? Whereas if the speaker were still operating on the Daddy Model, and saw wealth as something that flowed from a common source and had to be shared out, rather than something generated by doing what other people wanted, this is exactly what you'd get on noticing that some people made much more than others.
When we talk about "unequal distribution of income," we should also ask, where does that income come from? [8] Who made the wealth it represents? Because to the extent that income varies simply according to how much wealth people create, the distribution may be unequal, but it's hardly unjust.
Stealing It
The second reason we tend to find great disparities of wealth alarming is that for most of human history the usual way to accumulate a fortune was to steal it: in pastoral societies by cattle raiding; in agricultural societies by appropriating others' estates in times of war, and taxing them in times of peace.
In conflicts, those on the winning side would receive the estates confiscated from the losers. In England in the 1060s, when William the Conqueror distributed the estates of the defeated Anglo-Saxon nobles to his followers, the conflict was military. By the 1530s, when Henry VIII distributed the estates of the monasteries to his followers, it was mostly political. [9] But the principle was the same. Indeed, the same principle is at work now in Zimbabwe.
In more organized societies, like China, the ruler and his officials used taxation instead of confiscation. But here too we see the same principle: the way to get rich was not to create wealth, but to serve a ruler powerful enough to appropriate it.
This started to change in Europe with the rise of the middle class. Now we think of the middle class as people who are neither rich nor poor, but originally they were a distinct group. In a feudal society, there are just two classes: a warrior aristocracy, and the serfs who work their estates. The middle class were a new, third group who lived in towns and supported themselves by manufacturing and trade.
Starting in the tenth and eleventh centuries, petty nobles and former serfs banded together in towns that gradually became powerful enough to ignore the local feudal lords. [10] Like serfs, the middle class made a living largely by creating wealth. (In port cities like Genoa and Pisa, they also engaged in piracy.) But unlike serfs they had an incentive to create a lot of it. Any wealth a serf created belonged to his master. There was not much point in making more than you could hide. Whereas the independence of the townsmen allowed them to keep whatever wealth they created.
Once it became possible to get rich by creating wealth, society as a whole started to get richer very rapidly. Nearly everything we have was created by the middle class. Indeed, the other two classes have effectively disappeared in industrial societies, and their names been given to either end of the middle class. (In the original sense of the word, Bill Gates is middle class.)
But it was not till the Industrial Revolution that wealth creation definitively replaced corruption as the best way to get rich. In England, at least, corruption only became unfashionable (and in fact only started to be called "corruption") when there started to be other, faster ways to get rich.
Seventeenth-century England was much like the third world today, in that government office was a recognized route to wealth. The great fortunes of that time still derived more from what we would now call corruption than from commerce. [11] By the nineteenth century that had changed. There continued to be bribes, as there still are everywhere, but politics had by then been left to men who were driven more by vanity than greed. Technology had made it possible to create wealth faster than you could steal it. The prototypical rich man of the nineteenth century was not a courtier but an industrialist.
With the rise of the middle class, wealth stopped being a zero-sum game. Jobs and Wozniak didn't have to make us poor to make themselves rich. Quite the opposite: they created things that made our lives materially richer. They had to, or we wouldn't have paid for them.
But since for most of the world's history the main route to wealth was to steal it, we tend to be suspicious of rich people. Idealistic undergraduates find their unconsciously preserved child's model of wealth confirmed by eminent writers of the past. It is a case of the mistaken meeting the outdated.
"Behind every great fortune, there is a crime," Balzac wrote. Except he didn't. What he actually said was that a great fortune with no apparent cause was probably due to a crime well enough executed that it had been forgotten. If we were talking about Europe in 1000, or most of the third world today, the standard misquotation would be spot on. But Balzac lived in nineteenth-century France, where the Industrial Revolution was well advanced. He knew you could make a fortune without stealing it. After all, he did himself, as a popular novelist. [12]
Only a few countries (by no coincidence, the richest ones) have reached this stage. In most, corruption still has the upper hand. In most, the fastest way to get wealth is by stealing it. And so when we see increasing differences in income in a rich country, there is a tendency to worry that it's sliding back toward becoming another Venezuela. I think the opposite is happening. I think you're seeing a country a full step ahead of Venezuela.
The Lever of Technology
Will technology increase the gap between rich and poor? It will certainly increase the gap between the productive and the unproductive. That's the whole point of technology. With a tractor an energetic farmer could plow six times as much land in a day as he could with a team of horses. But only if he mastered a new kind of farming.
I've seen the lever of technology grow visibly in my own time. In high school I made money by mowing lawns and scooping ice cream at Baskin-Robbins. This was the only kind of work available at the time. Now high school kids could write software or design web sites. But only some of them will; the rest will still be scooping ice cream.
I remember very vividly when in 1985 improved technology made it possible for me to buy a computer of my own. Within months I was using it to make money as a freelance programmer. A few years before, I couldn't have done this. A few years before, there was no such thing as a freelance programmer. But Apple created wealth, in the form of powerful, inexpensive computers, and programmers immediately set to work using it to create more.
As this example suggests, the rate at which technology increases our productive capacity is probably polynomial, rather than linear. So we should expect to see ever-increasing variation in individual productivity as time goes on. Will that increase the gap between rich and the poor? Depends which gap you mean.
Technology should increase the gap in income, but it seems to decrease other gaps. A hundred years ago, the rich led a different kind of life from ordinary people. They lived in houses full of servants, wore elaborately uncomfortable clothes, and travelled about in carriages drawn by teams of horses which themselves required their own houses and servants. Now, thanks to technology, the rich live more like the average person.
Cars are a good example of why. It's possible to buy expensive, handmade cars that cost hundreds of thousands of dollars. But there is not much point. Companies make more money by building a large number of ordinary cars than a small number of expensive ones. So a company making a mass-produced car can afford to spend a lot more on its design. If you buy a custom-made car, something will always be breaking. The only point of buying one now is to advertise that you can.
Or consider watches. Fifty years ago, by spending a lot of money on a watch you could get better performance. When watches had mechanical movements, expensive watches kept better time. Not any more. Since the invention of the quartz movement, an ordinary Timex is more accurate than a Patek Philippe costing hundreds of thousands of dollars. [13] Indeed, as with expensive cars, if you're determined to spend a lot of money on a watch, you have to put up with some inconvenience to do it: as well as keeping worse time, mechanical watches have to be wound.
The only thing technology can't cheapen is brand. Which is precisely why we hear ever more about it. Brand is the residue left as the substantive differences between rich and poor evaporate. But what label you have on your stuff is a much smaller matter than having it versus not having it. In 1900, if you kept a carriage, no one asked what year or brand it was. If you had one, you were rich. And if you weren't rich, you took the omnibus or walked. Now even the poorest Americans drive cars, and it is only because we're so well trained by advertising that we can even recognize the especially expensive ones. [14]
The same pattern has played out in industry after industry. If there is enough demand for something, technology will make it cheap enough to sell in large volumes, and the mass-produced versions will be, if not better, at least more convenient. [15] And there is nothing the rich like more than convenience. The rich people I know drive the same cars, wear the same clothes, have the same kind of furniture, and eat the same foods as my other friends. Their houses are in different neighborhoods, or if in the same neighborhood are different sizes, but within them life is similar. The houses are made using the same construction techniques and contain much the same objects. It's inconvenient to do something expensive and custom.
The rich spend their time more like everyone else too. Bertie Wooster seems long gone. Now, most people who are rich enough not to work do anyway. It's not just social pressure that makes them; idleness is lonely and demoralizing.
Nor do we have the social distinctions there were a hundred years ago. The novels and etiquette manuals of that period read now like descriptions of some strange tribal society. "With respect to the continuance of friendships..." hints Mrs. Beeton's Book of Household Management (1880), "it may be found necessary, in some cases, for a mistress to relinquish, on assuming the responsibility of a household, many of those commenced in the earlier part of her life." A woman who married a rich man was expected to drop friends who didn't. You'd seem a barbarian if you behaved that way today. You'd also have a very boring life. People still tend to segregate themselves somewhat, but much more on the basis of education than wealth. [16]
Materially and socially, technology seems to be decreasing the gap between the rich and the poor, not increasing it. If Lenin walked around the offices of a company like Yahoo or Intel or Cisco, he'd think communism had won. Everyone would be wearing the same clothes, have the same kind of office (or rather, cubicle) with the same furnishings, and address one another by their first names instead of by honorifics. Everything would seem exactly as he'd predicted, until he looked at their bank accounts. Oops.
Is it a problem if technology increases that gap? It doesn't seem to be so far. As it increases the gap in income, it seems to decrease most other gaps.
Alternative to an Axiom
One often hears a policy criticized on the grounds that it would increase the income gap between rich and poor. As if it were an axiom that this would be bad. It might be true that increased variation in income would be bad, but I don't see how we can say it's axiomatic.
Indeed, it may even be false, in industrial democracies. In a society of serfs and warlords, certainly, variation in income is a sign of an underlying problem. But serfdom is not the only cause of variation in income. A 747 pilot doesn't make 40 times as much as a checkout clerk because he is a warlord who somehow holds her in thrall. His skills are simply much more valuable.
I'd like to propose an alternative idea: that in a modern society, increasing variation in income is a sign of health. Technology seems to increase the variation in productivity at faster than linear rates. If we don't see corresponding variation in income, there are three possible explanations: (a) that technical innovation has stopped, (b) that the people who would create the most wealth aren't doing it, or (c) that they aren't getting paid for it.
I think we can safely say that (a) and (b) would be bad. If you disagree, try living for a year using only the resources available to the average Frankish nobleman in 800, and report back to us. (I'll be generous and not send you back to the stone age.)
The only option, if you're going to have an increasingly prosperous society without increasing variation in income, seems to be (c), that people will create a lot of wealth without being paid for it. That Jobs and Wozniak, for example, will cheerfully work 20-hour days to produce the Apple computer for a society that allows them, after taxes, to keep just enough of their income to match what they would have made working 9 to 5 at a big company.
Will people create wealth if they can't get paid for it? Only if it's fun. People will write operating systems for free. But they won't install them, or take support calls, or train customers to use them. And at least 90% of the work that even the highest tech companies do is of this second, unedifying kind.
All the unfun kinds of wealth creation slow dramatically in a society that confiscates private fortunes. We can confirm this empirically. Suppose you hear a strange noise that you think may be due to a nearby fan. You turn the fan off, and the noise stops. You turn the fan back on, and the noise starts again. Off, quiet. On, noise. In the absence of other information, it would seem the noise is caused by the fan.
At various times and places in history, whether you could accumulate a fortune by creating wealth has been turned on and off. Northern Italy in 800, off (warlords would steal it). Northern Italy in 1100, on. Central France in 1100, off (still feudal). England in 1800, on. England in 1974, off (98% tax on investment income). United States in 1974, on. We've even had a twin study: West Germany, on; East Germany, off. In every case, the creation of wealth seems to appear and disappear like the noise of a fan as you switch on and off the prospect of keeping it.
There is some momentum involved. It probably takes at least a generation to turn people into East Germans (luckily for England). But if it were merely a fan we were studying, without all the extra baggage that comes from the controversial topic of wealth, no one would have any doubt that the fan was causing the noise.
If you suppress variations in income, whether by stealing private fortunes, as feudal rulers used to do, or by taxing them away, as some modern governments have done, the result always seems to be the same. Society as a whole ends up poorer.
If I had a choice of living in a society where I was materially much better off than I am now, but was among the poorest, or in one where I was the richest, but much worse off than I am now, I'd take the first option. If I had children, it would arguably be immoral not to. It's absolute poverty you want to avoid, not relative poverty. If, as the evidence so far implies, you have to have one or the other in your society, take relative poverty.
You need rich people in your society not so much because in spending their money they create jobs, but because of what they have to do to get rich. I'm not talking about the trickle-down effect here. I'm not saying that if you let Henry Ford get rich, he'll hire you as a waiter at his next party. I'm saying that he'll make you a tractor to replace your horse.
Notes
[1] Part of the reason this subject is so contentious is that some of those most vocal on the subject of wealth—university students, heirs, professors, politicians, and journalists—have the least experience creating it. (This phenomenon will be familiar to anyone who has overheard conversations about sports in a bar.)
Students are mostly still on the parental dole, and have not stopped to think about where that money comes from. Heirs will be on the parental dole for life. Professors and politicians live within socialist eddies of the economy, at one remove from the creation of wealth, and are paid a flat rate regardless of how hard they work. And journalists as part of their professional code segregate themselves from the revenue-collecting half of the businesses they work for (the ad sales department). Many of these people never come face to face with the fact that the money they receive represents wealth—wealth that, except in the case of journalists, someone else created earlier. They live in a world in which income is doled out by a central authority according to some abstract notion of fairness (or randomly, in the case of heirs), rather than given by other people in return for something they wanted, so it may seem to them unfair that things don't work the same in the rest of the economy.
(Some professors do create a great deal of wealth for society. But the money they're paid isn't a quid pro quo. It's more in the nature of an investment.)
[2] When one reads about the origins of the Fabian Society, it sounds like something cooked up by the high-minded Edwardian child-heroes of Edith Nesbit's The Wouldbegoods.
[3] According to a study by the Corporate Library, the median total compensation, including salary, bonus, stock grants, and the exercise of stock options, of S&P 500 CEOs in 2002 was $3.65 million. According to Sports Illustrated, the average NBA player's salary during the 2002-03 season was $4.54 million, and the average major league baseball player's salary at the start of the 2003 season was $2.56 million. According to the Bureau of Labor Statistics, the mean annual wage in the US in 2002 was $35,560.
[4] In the early empire the price of an ordinary adult slave seems to have been about 2,000 sestertii (e.g. Horace, Sat. ii.7.43). A servant girl cost 600 (Martial vi.66), while Columella (iii.3.8) says that a skilled vine-dresser was worth 8,000. A doctor, P. Decimus Eros Merula, paid 50,000 sestertii for his freedom (Dessau, Inscriptiones 7812). Seneca (Ep. xxvii.7) reports that one Calvisius Sabinus paid 100,000 sestertii apiece for slaves learned in the Greek classics. Pliny (Hist. Nat. vii.39) says that the highest price paid for a slave up to his time was 700,000 sestertii, for the linguist (and presumably teacher) Daphnis, but that this had since been exceeded by actors buying their own freedom.
Classical Athens saw a similar variation in prices. An ordinary laborer was worth about 125 to 150 drachmae. Xenophon (Mem. ii.5) mentions prices ranging from 50 to 6,000 drachmae (for the manager of a silver mine).
For more on the economics of ancient slavery see:
Jones, A. H. M., "Slavery in the Ancient World," Economic History Review, 2:9 (1956), 185-199, reprinted in Finley, M. I. (ed.), Slavery in Classical Antiquity, Heffer, 1964.
[5] Eratosthenes (276—195 BC) used shadow lengths in different cities to estimate the Earth's circumference. He was off by only about 2%.
[6] No, and Windows, respectively.
[7] One of the biggest divergences between the Daddy Model and reality is the valuation of hard work. In the Daddy Model, hard work is in itself deserving. In reality, wealth is measured by what one delivers, not how much effort it costs. If I paint someone's house, the owner shouldn't pay me extra for doing it with a toothbrush.
It will seem to someone still implicitly operating on the Daddy Model that it is unfair when someone works hard and doesn't get paid much. To help clarify the matter, get rid of everyone else and put our worker on a desert island, hunting and gathering fruit. If he's bad at it he'll work very hard and not end up with much food. Is this unfair? Who is being unfair to him?
[8] Part of the reason for the tenacity of the Daddy Model may be the dual meaning of "distribution." When economists talk about "distribution of income," they mean statistical distribution. But when you use the phrase frequently, you can't help associating it with the other sense of the word (as in e.g. "distribution of alms"), and thereby subconsciously seeing wealth as something that flows from some central tap. The word "regressive" as applied to tax rates has a similar effect, at least on me; how can anything regressive be good?
[9] "From the beginning of the reign Thomas Lord Roos was an assiduous courtier of the young Henry VIII and was soon to reap the rewards. In 1525 he was made a Knight of the Garter and given the Earldom of Rutland. In the thirties his support of the breach with Rome, his zeal in crushing the Pilgrimage of Grace, and his readiness to vote the death-penalty in the succession of spectacular treason trials that punctuated Henry's erratic matrimonial progress made him an obvious candidate for grants of monastic property."
Stone, Lawrence, Family and Fortune: Studies in Aristocratic Finance in the Sixteenth and Seventeenth Centuries, Oxford University Press, 1973, p. 166.
[10] There is archaeological evidence for large settlements earlier, but it's hard to say what was happening in them.
Hodges, Richard and David Whitehouse, Mohammed, Charlemagne and the Origins of Europe, Cornell University Press, 1983.
[11] William Cecil and his son Robert were each in turn the most powerful minister of the crown, and both used their position to amass fortunes among the largest of their times. Robert in particular took bribery to the point of treason. "As Secretary of State and the leading advisor to King James on foreign policy, [he] was a special recipient of favour, being offered large bribes by the Dutch not to make peace with Spain, and large bribes by Spain to make peace." (Stone, op. cit., p. 17.)
[12] Though Balzac made a lot of money from writing, he was notoriously improvident and was troubled by debts all his life.
[13] A Timex will gain or lose about .5 seconds per day. The most accurate mechanical watch, the Patek Philippe 10 Day Tourbillon, is rated at -1.5 to +2 seconds. Its retail price is about $220,000.
[14] If asked to choose which was more expensive, a well-preserved 1989 Lincoln Town Car ten-passenger limousine ($5,000) or a 2004 Mercedes S600 sedan ($122,000), the average Edwardian might well guess wrong.
[15] To say anything meaningful about income trends, you have to talk about real income, or income as measured in what it can buy. But the usual way of calculating real income ignores much of the growth in wealth over time, because it depends on a consumer price index created by bolting end to end a series of numbers that are only locally accurate, and that don't include the prices of new inventions until they become so common that their prices stabilize.
So while we might think it was very much better to live in a world with antibiotics or air travel or an electric power grid than without, real income statistics calculated in the usual way will prove to us that we are only slightly richer for having these things.
Another approach would be to ask, if you were going back to the year x in a time machine, how much would you have to spend on trade goods to make your fortune? For example, if you were going back to 1970 it would certainly be less than $500, because the processing power you can get for $500 today would have been worth at least $150 million in 1970. The function goes asymptotic fairly quickly, because for times over a hundred years or so you could get all you needed in present-day trash. In 1800 an empty plastic drink bottle with a screw top would have seemed a miracle of workmanship.
[16] Some will say this amounts to the same thing, because the rich have better opportunities for education. That's a valid point. It is still possible, to a degree, to buy your kids' way into top colleges by sending them to private schools that in effect hack the college admissions process.
According to a 2002 report by the National Center for Education Statistics, about 1.7% of American kids attend private, non-sectarian schools. At Princeton, 36% of the class of 2007 came from such schools. (Interestingly, the number at Harvard is significantly lower, about 28%.) Obviously this is a huge loophole. It does at least seem to be closing, not widening.
Perhaps the designers of admissions processes should take a lesson from the example of computer security, and instead of just assuming that their system can't be hacked, measure the degree to which it is.

How Art Can Be Good

I grew up believing that taste is just a matter of personal preference. Each person has things they like, but no one's preferences are any better than anyone else's. There is no such thing as good taste.
Like a lot of things I grew up believing, this turns out to be false, and I'm going to try to explain why.
One problem with saying there's no such thing as good taste is that it also means there's no such thing as good art. If there were good art, then people who liked it would have better taste than people who didn't. So if you discard taste, you also have to discard the idea of art being good, and artists being good at making it.
It was pulling on that thread that unravelled my childhood faith in relativism. When you're trying to make things, taste becomes a practical matter. You have to decide what to do next. Would it make the painting better if I changed that part? If there's no such thing as better, it doesn't matter what you do. In fact, it doesn't matter if you paint at all. You could just go out and buy a ready-made blank canvas. If there's no such thing as good, that would be just as great an achievement as the ceiling of the Sistine Chapel. Less laborious, certainly, but if you can achieve the same level of performance with less effort, surely that's more impressive, not less.
Yet that doesn't seem quite right, does it?
Audience
I think the key to this puzzle is to remember that art has an audience. Art has a purpose, which is to interest its audience. Good art (like good anything) is art that achieves its purpose particularly well. The meaning of "interest" can vary. Some works of art are meant to shock, and others to please; some are meant to jump out at you, and others to sit quietly in the background. But all art has to work on an audience, and—here's the critical point—members of the audience share things in common.
For example, nearly all humans find human faces engaging. It seems to be wired into us. Babies can recognize faces practically from birth. In fact, faces seem to have co-evolved with our interest in them; the face is the body's billboard. So all other things being equal, a painting with faces in it will interest people more than one without. [1]
One reason it's easy to believe that taste is merely personal preference is that, if it isn't, how do you pick out the people with better taste? There are billions of people, each with their own opinion; on what grounds can you prefer one to another? [2]
But if audiences have a lot in common, you're not in a position of having to choose one out of a random set of individual biases, because the set isn't random. All humans find faces engaging—practically by definition: face recognition is in our DNA. And so having a notion of good art, in the sense of art that does its job well, doesn't require you to pick out a few individuals and label their opinions as correct. No matter who you pick, they'll find faces engaging.
Of course, space aliens probably wouldn't find human faces engaging. But there might be other things they shared in common with us. The most likely source of examples is math. I expect space aliens would agree with us most of the time about which of two proofs was better. Erdos thought so. He called a maximally elegant proof one out of God's book, and presumably God's book is universal. [3]
Once you start talking about audiences, you don't have to argue simply that there are or aren't standards of taste. Instead tastes are a series of concentric rings, like ripples in a pond. There are some things that will appeal to you and your friends, others that will appeal to most people your age, others that will appeal to most humans, and perhaps others that would appeal to most sentient beings (whatever that means).
The picture is slightly more complicated than that, because in the middle of the pond there are overlapping sets of ripples. For example, there might be things that appealed particularly to men, or to people from a certain culture.
If good art is art that interests its audience, then when you talk about art being good, you also have to say for what audience. So is it meaningless to talk about art simply being good or bad? No, because one audience is the set of all possible humans. I think that's the audience people are implicitly talking about when they say a work of art is good: they mean it would engage any human. [4]
And that is a meaningful test, because although, like any everyday concept, "human" is fuzzy around the edges, there are a lot of things practically all humans have in common. In addition to our interest in faces, there's something special about primary colors for nearly all of us, because it's an artifact of the way our eyes work. Most humans will also find images of 3D objects engaging, because that also seems to be built into our visual perception. [5] And beneath that there's edge-finding, which makes images with definite shapes more engaging than mere blur.
Humans have a lot more in common than this, of course. My goal is not to compile a complete list, just to show that there's some solid ground here. People's preferences aren't random. So an artist working on a painting and trying to decide whether to change some part of it doesn't have to think "Why bother? I might as well flip a coin." Instead he can ask "What would make the painting more interesting to people?" And the reason you can't equal Michelangelo by going out and buying a blank canvas is that the ceiling of the Sistine Chapel is more interesting to people.
A lot of philosophers have had a hard time believing it was possible for there to objective standards for art. It seemed obvious that beauty, for example, was something that happened in the head of the observer, not something that was a property of objects. It was thus "subjective" rather than "objective." But in fact if you narrow the definition of beauty to something that works a certain way on humans, and you observe how much humans have in common, it turns out to be a property of objects after all. You don't have to choose between something being a property of the subject or the object if subjects all react similarly. Being good art is thus a property of objects as much as, say, being toxic to humans is: it's good art if it consistently affects humans in a certain way.
Error
So could we figure out what the best art is by taking a vote? After all, if appealing to humans is the test, we should be able to just ask them, right?
Well, not quite. For products of nature that might work. I'd be willing to eat the apple the world's population had voted most delicious, and I'd probably be willing to visit the beach they voted most beautiful, but having to look at the painting they voted the best would be a crapshoot.
Man-made stuff is different. For one thing, artists, unlike apple trees, often deliberately try to trick us. Some tricks are quite subtle. For example, any work of art sets expectations by its level of finish. You don't expect photographic accuracy in something that looks like a quick sketch. So one widely used trick, especially among illustrators, is to intentionally make a painting or drawing look like it was done faster than it was. The average person looks at it and thinks: how amazingly skillful. It's like saying something clever in a conversation as if you'd thought of it on the spur of the moment, when in fact you'd worked it out the day before.
Another much less subtle influence is brand. If you go to see the Mona Lisa, you'll probably be disappointed, because it's hidden behind a thick glass wall and surrounded by a frenzied crowd taking pictures of themselves in front of it. At best you can see it the way you see a friend across the room at a crowded party. The Louvre might as well replace it with copy; no one would be able to tell. And yet the Mona Lisa is a small, dark painting. If you found people who'd never seen an image of it and sent them to a museum in which it was hanging among other paintings with a tag labelling it as a portrait by an unknown fifteenth century artist, most would walk by without giving it a second look.
For the average person, brand dominates all other factors in the judgement of art. Seeing a painting they recognize from reproductions is so overwhelming that their response to it as a painting is drowned out.
And then of course there are the tricks people play on themselves. Most adults looking at art worry that if they don't like what they're supposed to, they'll be thought uncultured. This doesn't just affect what they claim to like; they actually make themselves like things they're supposed to.
That's why you can't just take a vote. Though appeal to people is a meaningful test, in practice you can't measure it, just as you can't find north using a compass with a magnet sitting next to it. There are sources of error so powerful that if you take a vote, all you're measuring is the error.
We can, however, approach our goal from another direction, by using ourselves as guinea pigs. You're human. If you want to know what the basic human reaction to a piece of art would be, you can at least approach that by getting rid of the sources of error in your own judgements.
For example, while anyone's reaction to a famous painting will be warped at first by its fame, there are ways to decrease its effects. One is to come back to the painting over and over. After a few days the fame wears off, and you can start to see it as a painting. Another is to stand close. A painting familiar from reproductions looks more familiar from ten feet away; close in you see details that get lost in reproductions, and which you're therefore seeing for the first time.
There are two main kinds of error that get in the way of seeing a work of art: biases you bring from your own circumstances, and tricks played by the artist. Tricks are straightforward to correct for. Merely being aware of them usually prevents them from working. For example, when I was ten I used to be very impressed by airbrushed lettering that looked like shiny metal. But once you study how it's done, you see that it's a pretty cheesy trick—one of the sort that relies on pushing a few visual buttons really hard to temporarily overwhelm the viewer. It's like trying to convince someone by shouting at them.
The way not to be vulnerable to tricks is to explicitly seek out and catalog them. When you notice a whiff of dishonesty coming from some kind of art, stop and figure out what's going on. When someone is obviously pandering to an audience that's easily fooled, whether it's someone making shiny stuff to impress ten year olds, or someone making conspicuously avant-garde stuff to impress would-be intellectuals, learn how they do it. Once you've seen enough examples of specific types of tricks, you start to become a connoisseur of trickery in general, just as professional magicians are.
What counts as a trick? Roughly, it's something done with contempt for the audience. For example, the guys designing Ferraris in the 1950s were probably designing cars that they themselves admired. Whereas I suspect over at General Motors the marketing people are telling the designers, "Most people who buy SUVs do it to seem manly, not to drive off-road. So don't worry about the suspension; just make that sucker as big and tough-looking as you can." [6]
I think with some effort you can make yourself nearly immune to tricks. It's harder to escape the influence of your own circumstances, but you can at least move in that direction. The way to do it is to travel widely, in both time and space. If you go and see all the different kinds of things people like in other cultures, and learn about all the different things people have liked in the past, you'll probably find it changes what you like. I doubt you could ever make yourself into a completely universal person, if only because you can only travel in one direction in time. But if you find a work of art that would appeal equally to your friends, to people in Nepal, and to the ancient Greeks, you're probably onto something.
My main point here is not how to have good taste, but that there can even be such a thing. And I think I've shown that. There is such a thing as good art. It's art that interests its human audience, and since humans have a lot in common, what interests them is not random. Since there's such a thing as good art, there's also such a thing as good taste, which is the ability to recognize it.
If we were talking about the taste of apples, I'd agree that taste is just personal preference. Some people like certain kinds of apples and others like other kinds, but how can you say that one is right and the other wrong? [7]
The thing is, art isn't apples. Art is man-made. It comes with a lot of cultural baggage, and in addition the people who make it often try to trick us. Most people's judgement of art is dominated by these extraneous factors; they're like someone trying to judge the taste of apples in a dish made of equal parts apples and jalapeno peppers. All they're tasting is the peppers. So it turns out you can pick out some people and say that they have better taste than others: they're the ones who actually taste art like apples.
Or to put it more prosaically, they're the people who (a) are hard to trick, and (b) don't just like whatever they grew up with. If you could find people who'd eliminated all such influences on their judgement, you'd probably still see variation in what they liked. But because humans have so much in common, you'd also find they agreed on a lot. They'd nearly all prefer the ceiling of the Sistine Chapel to a blank canvas.
Making It
I wrote this essay because I was tired of hearing "taste is subjective" and wanted to kill it once and for all. Anyone who makes things knows intuitively that's not true. When you're trying to make art, the temptation to be lazy is as great as in any other kind of work. Of course it matters to do a good job. And yet you can see how great a hold "taste is subjective" has even in the art world by how nervous it makes people to talk about art being good or bad. Those whose jobs require them to judge art, like curators, mostly resort to euphemisms like "significant" or "important" or (getting dangerously close) "realized." [8]
I don't have any illusions that being able to talk about art being good or bad will cause the people who talk about it to have anything more useful to say. Indeed, one of the reasons "taste is subjective" found such a receptive audience is that, historically, the things people have said about good taste have generally been such nonsense.
It's not for the people who talk about art that I want to free the idea of good art, but for those who make it. Right now, ambitious kids going to art school run smack into a brick wall. They arrive hoping one day to be as good as the famous artists they've seen in books, and the first thing they learn is that the concept of good has been retired. Instead everyone is just supposed to explore their own personal vision. [9]
When I was in art school, we were looking one day at a slide of some great fifteenth century painting, and one of the students asked "Why don't artists paint like that now?" The room suddenly got quiet. Though rarely asked out loud, this question lurks uncomfortably in the back of every art student's mind. It was as if someone had brought up the topic of lung cancer in a meeting within Philip Morris.
"Well," the professor replied, "we're interested in different questions now." He was a pretty nice guy, but at the time I couldn't help wishing I could send him back to fifteenth century Florence to explain in person to Leonardo & Co. how we had moved beyond their early, limited concept of art. Just imagine that conversation.
In fact, one of the reasons artists in fifteenth century Florence made such great things was that they believed you could make great things. [10] They were intensely competitive and were always trying to outdo one another, like mathematicians or physicists today—maybe like anyone who has ever done anything really well.
The idea that you could make great things was not just a useful illusion. They were actually right. So the most important consequence of realizing there can be good art is that it frees artists to try to make it. To the ambitious kids arriving at art school this year hoping one day to make great things, I say: don't believe it when they tell you this is a naive and outdated ambition. There is such a thing as good art, and if you try to make it, there are people who will notice.
Notes
[1] This is not to say, of course, that good paintings must have faces in them, just that everyone's visual piano has that key on it. There are situations in which you want to avoid faces, precisely because they attract so much attention. But you can see how universally faces work by their prevalence in advertising.
[2] The other reason it's easy to believe is that it makes people feel good. To a kid, this idea is crack. In every other respect they're constantly being told that they have a lot to learn. But in this they're perfect. Their opinion carries the same weight as any adult's. You should probably question anything you believed as a kid that you'd want to believe this much.
[3] It's conceivable that the elegance of proofs is quantifiable, in the sense that there may be some formal measure that turns out to coincide with mathematicians' judgements. Perhaps it would be worth trying to make a formal language for proofs in which those considered more elegant consistently came out shorter (perhaps after being macroexpanded or compiled).
[4] Maybe it would be possible to make art that would appeal to space aliens, but I'm not going to get into that because (a) it's too hard to answer, and (b) I'm satisfied if I can establish that good art is a meaningful idea for human audiences.
[5] If early abstract paintings seem more interesting than later ones, it may be because the first abstract painters were trained to paint from life, and their hands thus tended to make the kind of gestures you use in representing physical things. In effect they were saying "scaramara" instead of "uebfgbsb."
[6] It's a bit more complicated, because sometimes artists unconsciously use tricks by imitating art that does.
[7] I phrased this in terms of the taste of apples because if people can see the apples, they can be fooled. When I was a kid most apples were a variety called Red Delicious that had been bred to look appealing in stores, but which didn't taste very good.
[8] To be fair, curators are in a difficult position. If they're dealing with recent art, they have to include things in shows that they think are bad. That's because the test for what gets included in shows is basically the market price, and for recent art that is largely determined by successful businessmen and their wives. So it's not always intellectual dishonesty that makes curators and dealers use neutral-sounding language.
[9] What happens in practice is that everyone gets really good at talking about art. As the art itself gets more random, the effort that would have gone into the work goes instead into the intellectual sounding theory behind it. "My work represents an exploration of gender and sexuality in an urban context," etc. Different people win at that game.
[10] There were several other reasons, including that Florence was then the richest and most sophisticated city in the world, and that they lived in a time before photography had (a) killed portraiture as a source of income and (b) made brand the dominant factor in the sale of art.
Incidentally, I'm not saying that good art = fifteenth century European art. I'm not saying we should make what they made, but that we should work like they worked. There are fields now in which many people work with the same energy and honesty that fifteenth century artists did, but art is not one of them.
Thanks to Trevor Blackwell, Jessica Livingston, and Robert Morris for reading drafts of this, and to Paul Watson for permission to use the image at the top.

Learning from Founders

Apparently sprinters reach their highest speed right out of the blocks, and spend the rest of the race slowing down. The winners slow down the least. It's that way with most startups too. The earliest phase is usually the most productive. That's when they have the really big ideas. Imagine what Apple was like when 100% of its employees were either Steve Jobs or Steve Wozniak.
The striking thing about this phase is that it's completely different from most people's idea of what business is like. If you looked in people's heads (or stock photo collections) for images representing "business," you'd get images of people dressed up in suits, groups sitting around conference tables looking serious, Powerpoint presentations, people producing thick reports for one another to read. Early stage startups are the exact opposite of this. And yet they're probably the most productive part of the whole economy.
Why the disconnect? I think there's a general principle at work here: the less energy people expend on performance, the more they expend on appearances to compensate. More often than not the energy they expend on seeming impressive makes their actual performance worse. A few years ago I read an article in which a car magazine modified the "sports" model of some production car to get the fastest possible standing quarter mile. You know how they did it? They cut off all the crap the manufacturer had bolted onto the car to make it look fast.
Business is broken the same way that car was. The effort that goes into looking productive is not merely wasted, but actually makes organizations less productive. Suits, for example. Suits do not help people to think better. I bet most executives at big companies do their best thinking when they wake up on Sunday morning and go downstairs in their bathrobe to make a cup of coffee. That's when you have ideas. Just imagine what a company would be like if people could think that well at work. People do in startups, at least some of the time. (Half the time you're in a panic because your servers are on fire, but the other half you're thinking as deeply as most people only get to sitting alone on a Sunday morning.)
Ditto for most of the other differences between startups and what passes for productivity in big companies. And yet conventional ideas of professionalism have such an iron grip on our minds that even startup founders are affected by them. In our startup, when outsiders came to visit we tried hard to seem "professional." We'd clean up our offices, wear better clothes, try to arrange that a lot of people were there during conventional office hours. In fact, programming didn't get done by well-dressed people at clean desks during office hours. It got done by badly dressed people (I was notorious for programmming wearing just a towel) in offices strewn with junk at 2 in the morning. But no visitor would understand that. Not even investors, who are supposed to be able to recognize real productivity when they see it. Even we were affected by the conventional wisdom. We thought of ourselves as impostors, succeeding despite being totally unprofessional. It was as if we'd created a Formula 1 car but felt sheepish because it didn't look like a car was supposed to look.
In the car world, there are at least some people who know that a high performance car looks like a Formula 1 racecar, not a sedan with giant rims and a fake spoiler bolted to the trunk. Why not in business? Probably because startups are so small. The really dramatic growth happens when a startup only has three or four people, so only three or four people see that, whereas tens of thousands see business as it's practiced by Boeing or Philip Morris.
This book can help fix that problem, by showing everyone what, till now, only a handful people got to see: what happens in the first year of a startup. This is what real productivity looks like. This is the Formula 1 racecar. It looks weird, but it goes fast.
Of course, big companies won't be able to do everything these startups do. In big companies there's always going to be more politics, and less scope for individual decisions. But seeing what startups are really like will at least show other organizations what to aim for. The time may soon be coming when instead of startups trying to seem more corporate, corporations will try to seem more like startups. That would be a good thing.

Is It Worth Being Wise?

A few days ago I finally figured out something I've wondered about for 25 years: the relationship between wisdom and intelligence. Anyone can see they're not the same by the number of people who are smart, but not very wise. And yet intelligence and wisdom do seem related. How?
What is wisdom? I'd say it's knowing what to do in a lot of situations. I'm not trying to make a deep point here about the true nature of wisdom, just to figure out how we use the word. A wise person is someone who usually knows the right thing to do.
And yet isn't being smart also knowing what to do in certain situations? For example, knowing what to do when the teacher tells your elementary school class to add all the numbers from 1 to 100? [1]
Some say wisdom and intelligence apply to different types of problems—wisdom to human problems and intelligence to abstract ones. But that isn't true. Some wisdom has nothing to do with people: for example, the wisdom of the engineer who knows certain structures are less prone to failure than others. And certainly smart people can find clever solutions to human problems as well as abstract ones. [2]
Another popular explanation is that wisdom comes from experience while intelligence is innate. But people are not simply wise in proportion to how much experience they have. Other things must contribute to wisdom besides experience, and some may be innate: a reflective disposition, for example.
Neither of the conventional explanations of the difference between wisdom and intelligence stands up to scrutiny. So what is the difference? If we look at how people use the words "wise" and "smart," what they seem to mean is different shapes of performance.
Curve
"Wise" and "smart" are both ways of saying someone knows what to do. The difference is that "wise" means one has a high average outcome across all situations, and "smart" means one does spectacularly well in a few. That is, if you had a graph in which the x axis represented situations and the y axis the outcome, the graph of the wise person would be high overall, and the graph of the smart person would have high peaks.
The distinction is similar to the rule that one should judge talent at its best and character at its worst. Except you judge intelligence at its best, and wisdom by its average. That's how the two are related: they're the two different senses in which the same curve can be high.
So a wise person knows what to do in most situations, while a smart person knows what to do in situations where few others could. We need to add one more qualification: we should ignore cases where someone knows what to do because they have inside information. [3] But aside from that, I don't think we can get much more specific without starting to be mistaken.
Nor do we need to. Simple as it is, this explanation predicts, or at least accords with, both of the conventional stories about the distinction between wisdom and intelligence. Human problems are the most common type, so being good at solving those is key in achieving a high average outcome. And it seems natural that a high average outcome depends mostly on experience, but that dramatic peaks can only be achieved by people with certain rare, innate qualities; nearly anyone can learn to be a good swimmer, but to be an Olympic swimmer you need a certain body type.
This explanation also suggests why wisdom is such an elusive concept: there's no such thing. "Wise" means something—that one is on average good at making the right choice. But giving the name "wisdom" to the supposed quality that enables one to do that doesn't mean such a thing exists. To the extent "wisdom" means anything, it refers to a grab-bag of qualities as various as self-discipline, experience, and empathy. [4]
Likewise, though "intelligent" means something, we're asking for trouble if we insist on looking for a single thing called "intelligence." And whatever its components, they're not all innate. We use the word "intelligent" as an indication of ability: a smart person can grasp things few others could. It does seem likely there's some inborn predisposition to intelligence (and wisdom too), but this predisposition is not itself intelligence.
One reason we tend to think of intelligence as inborn is that people trying to measure it have concentrated on the aspects of it that are most measurable. A quality that's inborn will obviously be more convenient to work with than one that's influenced by experience, and thus might vary in the course of a study. The problem comes when we drag the word "intelligence" over onto what they're measuring. If they're measuring something inborn, they can't be measuring intelligence. Three year olds aren't smart. When we describe one as smart, it's shorthand for "smarter than other three year olds."
Split
Perhaps it's a technicality to point out that a predisposition to intelligence is not the same as intelligence. But it's an important technicality, because it reminds us that we can become smarter, just as we can become wiser.
The alarming thing is that we may have to choose between the two.
If wisdom and intelligence are the average and peaks of the same curve, then they converge as the number of points on the curve decreases. If there's just one point, they're identical: the average and maximum are the same. But as the number of points increases, wisdom and intelligence diverge. And historically the number of points on the curve seems to have been increasing: our ability is tested in an ever wider range of situations.
In the time of Confucius and Socrates, people seem to have regarded wisdom, learning, and intelligence as more closely related than we do. Distinguishing between "wise" and "smart" is a modern habit. [5] And the reason we do is that they've been diverging. As knowledge gets more specialized, there are more points on the curve, and the distinction between the spikes and the average becomes sharper, like a digital image rendered with more pixels.
One consequence is that some old recipes may have become obsolete. At the very least we have to go back and figure out if they were really recipes for wisdom or intelligence. But the really striking change, as intelligence and wisdom drift apart, is that we may have to decide which we prefer. We may not be able to optimize for both simultaneously.
Society seems to have voted for intelligence. We no longer admire the sage—not the way people did two thousand years ago. Now we admire the genius. Because in fact the distinction we began with has a rather brutal converse: just as you can be smart without being very wise, you can be wise without being very smart. That doesn't sound especially admirable. That gets you James Bond, who knows what to do in a lot of situations, but has to rely on Q for the ones involving math.
Intelligence and wisdom are obviously not mutually exclusive. In fact, a high average may help support high peaks. But there are reasons to believe that at some point you have to choose between them. One is the example of very smart people, who are so often unwise that in popular culture this now seems to be regarded as the rule rather than the exception. Perhaps the absent-minded professor is wise in his way, or wiser than he seems, but he's not wise in the way Confucius or Socrates wanted people to be. [6]
New
For both Confucius and Socrates, wisdom, virtue, and happiness were necessarily related. The wise man was someone who knew what the right choice was and always made it; to be the right choice, it had to be morally right; he was therefore always happy, knowing he'd done the best he could. I can't think of many ancient philosophers who would have disagreed with that, so far as it goes.
"The superior man is always happy; the small man sad," said Confucius. [7]

Whereas a few years ago I read an interview with a mathematician who said that most nights he went to bed discontented, feeling he hadn't made enough progress. [8] The Chinese and Greek words we translate as "happy" didn't mean exactly what we do by it, but there's enough overlap that this remark contradicts them.
Is the mathematician a small man because he's discontented? No; he's just doing a kind of work that wasn't very common in Confucius's day.
Human knowledge seems to grow fractally. Time after time, something that seemed a small and uninteresting area—experimental error, even—turns out, when examined up close, to have as much in it as all knowledge up to that point. Several of the fractal buds that have exploded since ancient times involve inventing and discovering new things. Math, for example, used to be something a handful of people did part-time. Now it's the career of thousands. And in work that involves making new things, some old rules don't apply.
Recently I've spent some time advising people, and there I find the ancient rule still works: try to understand the situation as well as you can, give the best advice you can based on your experience, and then don't worry about it, knowing you did all you could. But I don't have anything like this serenity when I'm writing an essay. Then I'm worried. What if I run out of ideas? And when I'm writing, four nights out of five I go to bed discontented, feeling I didn't get enough done.
Advising people and writing are fundamentally different types of work. When people come to you with a problem and you have to figure out the right thing to do, you don't (usually) have to invent anything. You just weigh the alternatives and try to judge which is the prudent choice. But prudence can't tell me what sentence to write next. The search space is too big.
Someone like a judge or a military officer can in much of his work be guided by duty, but duty is no guide in making things. Makers depend on something more precarious: inspiration. And like most people who lead a precarious existence, they tend to be worried, not contented. In that respect they're more like the small man of Confucius's day, always one bad harvest (or ruler) away from starvation. Except instead of being at the mercy of weather and officials, they're at the mercy of their own imagination.
Limits
To me it was a relief just to realize it might be ok to be discontented. The idea that a successful person should be happy has thousands of years of momentum behind it. If I was any good, why didn't I have the easy confidence winners are supposed to have? But that, I now believe, is like a runner asking "If I'm such a good athlete, why do I feel so tired?" Good runners still get tired; they just get tired at higher speeds.
People whose work is to invent or discover things are in the same position as the runner. There's no way for them to do the best they can, because there's no limit to what they could do. The closest you can come is to compare yourself to other people. But the better you do, the less this matters. An undergrad who gets something published feels like a star. But for someone at the top of the field, what's the test of doing well? Runners can at least compare themselves to others doing exactly the same thing; if you win an Olympic gold medal, you can be fairly content, even if you think you could have run a bit faster. But what is a novelist to do?
Whereas if you're doing the kind of work in which problems are presented to you and you have to choose between several alternatives, there's an upper bound on your performance: choosing the best every time. In ancient societies, nearly all work seems to have been of this type. The peasant had to decide whether a garment was worth mending, and the king whether or not to invade his neighbor, but neither was expected to invent anything. In principle they could have; the king could have invented firearms, then invaded his neighbor. But in practice innovations were so rare that they weren't expected of you, any more than goalkeepers are expected to score goals. [9] In practice, it seemed as if there was a correct decision in every situation, and if you made it you'd done your job perfectly, just as a goalkeeper who prevents the other team from scoring is considered to have played a perfect game.
In this world, wisdom seemed paramount. [10] Even now, most people do work in which problems are put before them and they have to choose the best alternative. But as knowledge has grown more specialized, there are more and more types of work in which people have to make up new things, and in which performance is therefore unbounded. Intelligence has become increasingly important relative to wisdom because there is more room for spikes.
Recipes
Another sign we may have to choose between intelligence and wisdom is how different their recipes are. Wisdom seems to come largely from curing childish qualities, and intelligence largely from cultivating them.
Recipes for wisdom, particularly ancient ones, tend to have a remedial character. To achieve wisdom one must cut away all the debris that fills one's head on emergence from childhood, leaving only the important stuff. Both self-control and experience have this effect: to eliminate the random biases that come from your own nature and from the circumstances of your upbringing respectively. That's not all wisdom is, but it's a large part of it. Much of what's in the sage's head is also in the head of every twelve year old. The difference is that in the head of the twelve year old it's mixed together with a lot of random junk.
The path to intelligence seems to be through working on hard problems. You develop intelligence as you might develop muscles, through exercise. But there can't be too much compulsion here. No amount of discipline can replace genuine curiosity. So cultivating intelligence seems to be a matter of identifying some bias in one's character—some tendency to be interested in certain types of things—and nurturing it. Instead of obliterating your idiosyncrasies in an effort to make yourself a neutral vessel for the truth, you select one and try to grow it from a seedling into a tree.
The wise are all much alike in their wisdom, but very smart people tend to be smart in distinctive ways.
Most of our educational traditions aim at wisdom. So perhaps one reason schools work badly is that they're trying to make intelligence using recipes for wisdom. Most recipes for wisdom have an element of subjection. At the very least, you're supposed to do what the teacher says. The more extreme recipes aim to break down your individuality the way basic training does. But that's not the route to intelligence. Whereas wisdom comes through humility, it may actually help, in cultivating intelligence, to have a mistakenly high opinion of your abilities, because that encourages you to keep working. Ideally till you realize how mistaken you were.
(The reason it's hard to learn new skills late in life is not just that one's brain is less malleable. Another probably even worse obstacle is that one has higher standards.)
I realize we're on dangerous ground here. I'm not proposing the primary goal of education should be to increase students' "self-esteem." That just breeds laziness. And in any case, it doesn't really fool the kids, not the smart ones. They can tell at a young age that a contest where everyone wins is a fraud.
A teacher has to walk a narrow path: you want to encourage kids to come up with things on their own, but you can't simply applaud everything they produce. You have to be a good audience: appreciative, but not too easily impressed. And that's a lot of work. You have to have a good enough grasp of kids' capacities at different ages to know when to be surprised.
That's the opposite of traditional recipes for education. Traditionally the student is the audience, not the teacher; the student's job is not to invent, but to absorb some prescribed body of material. (The use of the term "recitation" for sections in some colleges is a fossil of this.) The problem with these old traditions is that they're too much influenced by recipes for wisdom.
Different
I deliberately gave this essay a provocative title; of course it's worth being wise. But I think it's important to understand the relationship between intelligence and wisdom, and particularly what seems to be the growing gap between them. That way we can avoid applying rules and standards to intelligence that are really meant for wisdom. These two senses of "knowing what to do" are more different than most people realize. The path to wisdom is through discipline, and the path to intelligence through carefully selected self-indulgence. Wisdom is universal, and intelligence idiosyncratic. And while wisdom yields calmness, intelligence much of the time leads to discontentment.
That's particularly worth remembering. A physicist friend recently told me half his department was on Prozac. Perhaps if we acknowledge that some amount of frustration is inevitable in certain kinds of work, we can mitigate its effects. Perhaps we can box it up and put it away some of the time, instead of letting it flow together with everyday sadness to produce what seems an alarmingly large pool. At the very least, we can avoid being discontented about being discontented.
If you feel exhausted, it's not necessarily because there's something wrong with you. Maybe you're just running fast.
Notes
[1] Gauss was supposedly asked this when he was 10. Instead of laboriously adding together the numbers like the other students, he saw that they consisted of 50 pairs that each summed to 101 (100 + 1, 99 + 2, etc), and that he could just multiply 101 by 50 to get the answer, 5050.
[2] A variant is that intelligence is the ability to solve problems, and wisdom the judgement to know how to use those solutions. But while this is certainly an important relationship between wisdom and intelligence, it's not the distinction between them. Wisdom is useful in solving problems too, and intelligence can help in deciding what to do with the solutions.
[3] In judging both intelligence and wisdom we have to factor out some knowledge. People who know the combination of a safe will be better at opening it than people who don't, but no one would say that was a test of intelligence or wisdom.
But knowledge overlaps with wisdom and probably also intelligence. A knowledge of human nature is certainly part of wisdom. So where do we draw the line?
Perhaps the solution is to discount knowledge that at some point has a sharp drop in utility. For example, understanding French will help you in a large number of situations, but its value drops sharply as soon as no one else involved knows French. Whereas the value of understanding vanity would decline more gradually.
The knowledge whose utility drops sharply is the kind that has little relation to other knowledge. This includes mere conventions, like languages and safe combinations, and also what we'd call "random" facts, like movie stars' birthdays, or how to distinguish 1956 from 1957 Studebakers.
[4] People seeking some single thing called "wisdom" have been fooled by grammar. Wisdom is just knowing the right thing to do, and there are a hundred and one different qualities that help in that. Some, like selflessness, might come from meditating in an empty room, and others, like a knowledge of human nature, might come from going to drunken parties.
Perhaps realizing this will help dispel the cloud of semi-sacred mystery that surrounds wisdom in so many people's eyes. The mystery comes mostly from looking for something that doesn't exist. And the reason there have historically been so many different schools of thought about how to achieve wisdom is that they've focused on different components of it.
When I use the word "wisdom" in this essay, I mean no more than whatever collection of qualities helps people make the right choice in a wide variety of situations.
[5] Even in English, our sense of the word "intelligence" is surprisingly recent. Predecessors like "understanding" seem to have had a broader meaning.
[6] There is of course some uncertainty about how closely the remarks attributed to Confucius and Socrates resemble their actual opinions. I'm using these names as we use the name "Homer," to mean the hypothetical people who said the things attributed to them.
[7] Analects VII:36, Fung trans.
Some translators use "calm" instead of "happy." One source of difficulty here is that present-day English speakers have a different idea of happiness from many older societies. Every language probably has a word meaning "how one feels when things are going well," but different cultures react differently when things go well. We react like children, with smiles and laughter. But in a more reserved society, or in one where life was tougher, the reaction might be a quiet contentment.
[8] It may have been Andrew Wiles, but I'm not sure. If anyone remembers such an interview, I'd appreciate hearing from you.
[9] Confucius claimed proudly that he had never invented anything—that he had simply passed on an accurate account of ancient traditions. [Analects VII:1] It's hard for us now to appreciate how important a duty it must have been in preliterate societies to remember and pass on the group's accumulated knowledge. Even in Confucius's time it still seems to have been the first duty of the scholar.
[10] The bias toward wisdom in ancient philosophy may be exaggerated by the fact that, in both Greece and China, many of the first philosophers (including Confucius and Plato) saw themselves as teachers of administrators, and so thought disproportionately about such matters. The few people who did invent things, like storytellers, must have seemed an outlying data point that could be ignored.
Thanks to Trevor Blackwell, Sarah Harlin, Jessica Livingston, and Robert Morris for reading drafts of this.

Why to Not Not Start a Startup

We've now been doing Y Combinator long enough to have some data about success rates. Our first batch, in the summer of 2005, had eight startups in it. Of those eight, it now looks as if at least four succeeded. Three have been acquired: Reddit was a merger of two, Reddit and Infogami, and a third was acquired that we can't talk about yet. Another from that batch was Loopt, which is doing so well they could probably be acquired in about ten minutes if they wanted to.
So about half the founders from that first summer, less than two years ago, are now rich, at least by their standards. (One thing you learn when you get rich is that there are many degrees of it.)
I'm not ready to predict our success rate will stay as high as 50%. That first batch could have been an anomaly. But we should be able to do better than the oft-quoted (and probably made up) standard figure of 10%. I'd feel safe aiming at 25%.
Even the founders who fail don't seem to have such a bad time. Of those first eight startups, three are now probably dead. In two cases the founders just went on to do other things at the end of the summer. I don't think they were traumatized by the experience. The closest to a traumatic failure was Kiko, whose founders kept working on their startup for a whole year before being squashed by Google Calendar. But they ended up happy. They sold their software on eBay for a quarter of a million dollars. After they paid back their angel investors, they had about a year's salary each. [1] Then they immediately went on to start a new and much more exciting startup, Justin.TV.
So here is an even more striking statistic: 0% of that first batch had a terrible experience. They had ups and downs, like every startup, but I don't think any would have traded it for a job in a cubicle. And that statistic is probably not an anomaly. Whatever our long-term success rate ends up being, I think the rate of people who wish they'd gotten a regular job will stay close to 0%.
The big mystery to me is: why don't more people start startups? If nearly everyone who does it prefers it to a regular job, and a significant percentage get rich, why doesn't everyone want to do this? A lot of people think we get thousands of applications for each funding cycle. In fact we usually only get several hundred. Why don't more people apply? And while it must seem to anyone watching this world that startups are popping up like crazy, the number is small compared to the number of people with the necessary skills. The great majority of programmers still go straight from college to cubicle, and stay there.
It seems like people are not acting in their own interest. What's going on? Well, I can answer that. Because of Y Combinator's position at the very start of the venture funding process, we're probably the world's leading experts on the psychology of people who aren't sure if they want to start a company.
There's nothing wrong with being unsure. If you're a hacker thinking about starting a startup and hesitating before taking the leap, you're part of a grand tradition. Larry and Sergey seem to have felt the same before they started Google, and so did Jerry and Filo before they started Yahoo. In fact, I'd guess the most successful startups are the ones started by uncertain hackers rather than gung-ho business guys.
We have some evidence to support this. Several of the most successful startups we've funded told us later that they only decided to apply at the last moment. Some decided only hours before the deadline.
The way to deal with uncertainty is to analyze it into components. Most people who are reluctant to do something have about eight different reasons mixed together in their heads, and don't know themselves which are biggest. Some will be justified and some bogus, but unless you know the relative proportion of each, you don't know whether your overall uncertainty is mostly justified or mostly bogus.
So I'm going to list all the components of people's reluctance to start startups, and explain which are real. Then would-be founders can use this as a checklist to examine their own feelings.
I admit my goal is to increase your self-confidence. But there are two things different here from the usual confidence-building exercise. One is that I'm motivated to be honest. Most people in the confidence-building business have already achieved their goal when you buy the book or pay to attend the seminar where they tell you how great you are. Whereas if I encourage people to start startups who shouldn't, I make my own life worse. If I encourage too many people to apply to Y Combinator, it just means more work for me, because I have to read all the applications.
The other thing that's going to be different is my approach. Instead of being positive, I'm going to be negative. Instead of telling you "come on, you can do it" I'm going to consider all the reasons you aren't doing it, and show why most (but not all) should be ignored. We'll start with the one everyone's born with.
1. Too young
A lot of people think they're too young to start a startup. Many are right. The median age worldwide is about 27, so probably a third of the population can truthfully say they're too young.
What's too young? One of our goals with Y Combinator was to discover the lower bound on the age of startup founders. It always seemed to us that investors were too conservative here—that they wanted to fund professors, when really they should be funding grad students or even undergrads.
The main thing we've discovered from pushing the edge of this envelope is not where the edge is, but how fuzzy it is. The outer limit may be as low as 16. We don't look beyond 18 because people younger than that can't legally enter into contracts. But the most successful founder we've funded so far, Sam Altman, was 19 at the time.
Sam Altman, however, is an outlying data point. When he was 19, he seemed like he had a 40 year old inside him. There are other 19 year olds who are 12 inside.
There's a reason we have a distinct word "adult" for people over a certain age. There is a threshold you cross. It's conventionally fixed at 21, but different people cross it at greatly varying ages. You're old enough to start a startup if you've crossed this threshold, whatever your age.
How do you tell? There are a couple tests adults use. I realized these tests existed after meeting Sam Altman, actually. I noticed that I felt like I was talking to someone much older. Afterward I wondered, what am I even measuring? What made him seem older?
One test adults use is whether you still have the kid flake reflex. When you're a little kid and you're asked to do something hard, you can cry and say "I can't do it" and the adults will probably let you off. As a kid there's a magic button you can press by saying "I'm just a kid" that will get you out of most difficult situations. Whereas adults, by definition, are not allowed to flake. They still do, of course, but when they do they're ruthlessly pruned.
The other way to tell an adult is by how they react to a challenge. Someone who's not yet an adult will tend to respond to a challenge from an adult in a way that acknowledges their dominance. If an adult says "that's a stupid idea," a kid will either crawl away with his tail between his legs, or rebel. But rebelling presumes inferiority as much as submission. The adult response to "that's a stupid idea," is simply to look the other person in the eye and say "Really? Why do you think so?"
There are a lot of adults who still react childishly to challenges, of course. What you don't often find are kids who react to challenges like adults. When you do, you've found an adult, whatever their age.
2. Too inexperienced
I once wrote that startup founders should be at least 23, and that people should work for another company for a few years before starting their own. I no longer believe that, and what changed my mind is the example of the startups we've funded.
I still think 23 is a better age than 21. But the best way to get experience if you're 21 is to start a startup. So, paradoxically, if you're too inexperienced to start a startup, what you should do is start one. That's a way more efficient cure for inexperience than a normal job. In fact, getting a normal job may actually make you less able to start a startup, by turning you into a tame animal who thinks he needs an office to work in and a product manager to tell him what software to write.
What really convinced me of this was the Kikos. They started a startup right out of college. Their inexperience caused them to make a lot of mistakes. But by the time we funded their second startup, a year later, they had become extremely formidable. They were certainly not tame animals. And there is no way they'd have grown so much if they'd spent that year working at Microsoft, or even Google. They'd still have been diffident junior programmers.
So now I'd advise people to go ahead and start startups right out of college. There's no better time to take risks than when you're young. Sure, you'll probably fail. But even failure will get you to the ultimate goal faster than getting a job.
It worries me a bit to be saying this, because in effect we're advising people to educate themselves by failing at our expense, but it's the truth.
3. Not determined enough
You need a lot of determination to succeed as a startup founder. It's probably the single best predictor of success.
Some people may not be determined enough to make it. It's hard for me to say for sure, because I'm so determined that I can't imagine what's going on in the heads of people who aren't. But I know they exist.
Most hackers probably underestimate their determination. I've seen a lot become visibly more determined as they get used to running a startup. I can think of several we've funded who would have been delighted at first to be bought for $2 million, but are now set on world domination.
How can you tell if you're determined enough, when Larry and Sergey themselves were unsure at first about starting a company? I'm guessing here, but I'd say the test is whether you're sufficiently driven to work on your own projects. Though they may have been unsure whether they wanted to start a company, it doesn't seem as if Larry and Sergey were meek little research assistants, obediently doing their advisors' bidding. They started projects of their own.
4. Not smart enough
You may need to be moderately smart to succeed as a startup founder. But if you're worried about this, you're probably mistaken. If you're smart enough to worry that you might not be smart enough to start a startup, you probably are.
And in any case, starting a startup just doesn't require that much intelligence. Some startups do. You have to be good at math to write Mathematica. But most companies do more mundane stuff where the decisive factor is effort, not brains. Silicon Valley can warp your perspective on this, because there's a cult of smartness here. People who aren't smart at least try to act that way. But if you think it takes a lot of intelligence to get rich, try spending a couple days in some of the fancier bits of New York or LA.
If you don't think you're smart enough to start a startup doing something technically difficult, just write enterprise software. Enterprise software companies aren't technology companies, they're sales companies, and sales depends mostly on effort.
5. Know nothing about business
This is another variable whose coefficient should be zero. You don't need to know anything about business to start a startup. The initial focus should be the product. All you need to know in this phase is how to build things people want. If you succeed, you'll have to think about how to make money from it. But this is so easy you can pick it up on the fly.
I get a fair amount of flak for telling founders just to make something great and not worry too much about making money. And yet all the empirical evidence points that way: pretty much 100% of startups that make something popular manage to make money from it. And acquirers tell me privately that revenue is not what they buy startups for, but their strategic value. Which means, because they made something people want. Acquirers know the rule holds for them too: if users love you, you can always make money from that somehow, and if they don't, the cleverest business model in the world won't save you.
So why do so many people argue with me? I think one reason is that they hate the idea that a bunch of twenty year olds could get rich from building something cool that doesn't make any money. They just don't want that to be possible. But how possible it is doesn't depend on how much they want it to be.
For a while it annoyed me to hear myself described as some kind of irresponsible pied piper, leading impressionable young hackers down the road to ruin. But now I realize this kind of controversy is a sign of a good idea.
The most valuable truths are the ones most people don't believe. They're like undervalued stocks. If you start with them, you'll have the whole field to yourself. So when you find an idea you know is good but most people disagree with, you should not merely ignore their objections, but push aggressively in that direction. In this case, that means you should seek out ideas that would be popular but seem hard to make money from.
We'll bet a seed round you can't make something popular that we can't figure out how to make money from.
6. No cofounder
Not having a cofounder is a real problem. A startup is too much for one person to bear. And though we differ from other investors on a lot of questions, we all agree on this. All investors, without exception, are more likely to fund you with a cofounder than without.
We've funded two single founders, but in both cases we suggested their first priority should be to find a cofounder. Both did. But we'd have preferred them to have cofounders before they applied. It's not super hard to get a cofounder for a project that's just been funded, and we'd rather have cofounders committed enough to sign up for something super hard.
If you don't have a cofounder, what should you do? Get one. It's more important than anything else. If there's no one where you live who wants to start a startup with you, move where there are people who do. If no one wants to work with you on your current idea, switch to an idea people want to work on.
If you're still in school, you're surrounded by potential cofounders. A few years out it gets harder to find them. Not only do you have a smaller pool to draw from, but most already have jobs, and perhaps even families to support. So if you had friends in college you used to scheme about startups with, stay in touch with them as well as you can. That may help keep the dream alive.
It's possible you could meet a cofounder through something like a user's group or a conference. But I wouldn't be too optimistic. You need to work with someone to know whether you want them as a cofounder. [2]
The real lesson to draw from this is not how to find a cofounder, but that you should start startups when you're young and there are lots of them around.
7. No idea
In a sense, it's not a problem if you don't have a good idea, because most startups change their idea anyway. In the average Y Combinator startup, I'd guess 70% of the idea is new at the end of the first three months. Sometimes it's 100%.
In fact, we're so sure the founders are more important than the initial idea that we're going to try something new this funding cycle. We're going to let people apply with no idea at all. If you want, you can answer the question on the application form that asks what you're going to do with "We have no idea." If you seem really good we'll accept you anyway. We're confident we can sit down with you and cook up some promising project.
Really this just codifies what we do already. We put little weight on the idea. We ask mainly out of politeness. The kind of question on the application form that we really care about is the one where we ask what cool things you've made. If what you've made is version one of a promising startup, so much the better, but the main thing we care about is whether you're good at making things. Being lead developer of a popular open source project counts almost as much.
That solves the problem if you get funded by Y Combinator. What about in the general case? Because in another sense, it is a problem if you don't have an idea. If you start a startup with no idea, what do you do next?
So here's the brief recipe for getting startup ideas. Find something that's missing in your own life, and supply that need—no matter how specific to you it seems. Steve Wozniak built himself a computer; who knew so many other people would want them? A need that's narrow but genuine is a better starting point than one that's broad but hypothetical. So even if the problem is simply that you don't have a date on Saturday night, if you can think of a way to fix that by writing software, you're onto something, because a lot of other people have the same problem.
8. No room for more startups
A lot of people look at the ever-increasing number of startups and think "this can't continue." Implicit in their thinking is a fallacy: that there is some limit on the number of startups there could be. But this is false. No one claims there's any limit on the number of people who can work for salary at 1000-person companies. Why should there be any limit on the number who can work for equity at 5-person companies? [3]
Nearly everyone who works is satisfying some kind of need. Breaking up companies into smaller units doesn't make those needs go away. Existing needs would probably get satisfied more efficiently by a network of startups than by a few giant, hierarchical organizations, but I don't think that would mean less opportunity, because satisfying current needs would lead to more. Certainly this tends to be the case in individuals. Nor is there anything wrong with that. We take for granted things that medieval kings would have considered effeminate luxuries, like whole buildings heated to spring temperatures year round. And if things go well, our descendants will take for granted things we would consider shockingly luxurious. There is no absolute standard for material wealth. Health care is a component of it, and that alone is a black hole. For the foreseeable future, people will want ever more material wealth, so there is no limit to the amount of work available for companies, and for startups in particular.
Usually the limited-room fallacy is not expressed directly. Usually it's implicit in statements like "there are only so many startups Google, Microsoft, and Yahoo can buy." Maybe, though the list of acquirers is a lot longer than that. And whatever you think of other acquirers, Google is not stupid. The reason big companies buy startups is that they've created something valuable. And why should there be any limit to the number of valuable startups companies can acquire, any more than there is a limit to the amount of wealth individual people want? Maybe there would be practical limits on the number of startups any one acquirer could assimilate, but if there is value to be had, in the form of upside that founders are willing to forgo in return for an immediate payment, acquirers will evolve to consume it. Markets are pretty smart that way.
9. Family to support
This one is real. I wouldn't advise anyone with a family to start a startup. I'm not saying it's a bad idea, just that I don't want to take responsibility for advising it. I'm willing to take responsibility for telling 22 year olds to start startups. So what if they fail? They'll learn a lot, and that job at Microsoft will still be waiting for them if they need it. But I'm not prepared to cross moms.
What you can do, if you have a family and want to start a startup, is start a consulting business you can then gradually turn into a product business. Empirically the chances of pulling that off seem very small. You're never going to produce Google this way. But at least you'll never be without an income.
Another way to decrease the risk is to join an existing startup instead of starting your own. Being one of the first employees of a startup is a lot like being a founder, in both the good ways and the bad. You'll be roughly 1/n^2 founder, where n is your employee number.
As with the question of cofounders, the real lesson here is to start startups when you're young.
10. Independently wealthy
This is my excuse for not starting a startup. Startups are stressful. Why do it if you don't need the money? For every "serial entrepreneur," there are probably twenty sane ones who think "Start another company? Are you crazy?"
I've come close to starting new startups a couple times, but I always pull back because I don't want four years of my life to be consumed by random schleps. I know this business well enough to know you can't do it half-heartedly. What makes a good startup founder so dangerous is his willingness to endure infinite schleps.
There is a bit of a problem with retirement, though. Like a lot of people, I like to work. And one of the many weird little problems you discover when you get rich is that a lot of the interesting people you'd like to work with are not rich. They need to work at something that pays the bills. Which means if you want to have them as colleagues, you have to work at something that pays the bills too, even though you don't need to. I think this is what drives a lot of serial entrepreneurs, actually.
That's why I love working on Y Combinator so much. It's an excuse to work on something interesting with people I like.
11. Not ready for commitment
This was my reason for not starting a startup for most of my twenties. Like a lot of people that age, I valued freedom most of all. I was reluctant to do anything that required a commitment of more than a few months. Nor would I have wanted to do anything that completely took over my life the way a startup does. And that's fine. If you want to spend your time travelling around, or playing in a band, or whatever, that's a perfectly legitimate reason not to start a company.
If you start a startup that succeeds, it's going to consume at least three or four years. (If it fails, you'll be done a lot quicker.) So you shouldn't do it if you're not ready for commitments on that scale. Be aware, though, that if you get a regular job, you'll probably end up working there for as long as a startup would take, and you'll find you have much less spare time than you might expect. So if you're ready to clip on that ID badge and go to that orientation session, you may also be ready to start that startup.
12. Need for structure
I'm told there are people who need structure in their lives. This seems to be a nice way of saying they need someone to tell them what to do. I believe such people exist. There's plenty of empirical evidence: armies, religious cults, and so on. They may even be the majority.
If you're one of these people, you probably shouldn't start a startup. In fact, you probably shouldn't even go to work for one. In a good startup, you don't get told what to do very much. There may be one person whose job title is CEO, but till the company has about twelve people no one should be telling anyone what to do. That's too inefficient. Each person should just do what they need to without anyone telling them.
If that sounds like a recipe for chaos, think about a soccer team. Eleven people manage to work together in quite complicated ways, and yet only in occasional emergencies does anyone tell anyone else what to do. A reporter once asked David Beckham if there were any language problems at Real Madrid, since the players were from about eight different countries. He said it was never an issue, because everyone was so good they never had to talk. They all just did the right thing.
How do you tell if you're independent-minded enough to start a startup? If you'd bristle at the suggestion that you aren't, then you probably are.
13. Fear of uncertainty
Perhaps some people are deterred from starting startups because they don't like the uncertainty. If you go to work for Microsoft, you can predict fairly accurately what the next few years will be like—all too accurately, in fact. If you start a startup, anything might happen.
Well, if you're troubled by uncertainty, I can solve that problem for you: if you start a startup, it will probably fail. Seriously, though, this is not a bad way to think about the whole experience. Hope for the best, but expect the worst. In the worst case, it will at least be interesting. In the best case you might get rich.
No one will blame you if the startup tanks, so long as you made a serious effort. There may once have been a time when employers would regard that as a mark against you, but they wouldn't now. I asked managers at big companies, and they all said they'd prefer to hire someone who'd tried to start a startup and failed over someone who'd spent the same time working at a big company.
Nor will investors hold it against you, as long as you didn't fail out of laziness or incurable stupidity. I'm told there's a lot of stigma attached to failing in other places—in Europe, for example. Not here. In America, companies, like practically everything else, are disposable.
14. Don't realize what you're avoiding
One reason people who've been out in the world for a year or two make better founders than people straight from college is that they know what they're avoiding. If their startup fails, they'll have to get a job, and they know how much jobs suck.
If you've had summer jobs in college, you may think you know what jobs are like, but you probably don't. Summer jobs at technology companies are not real jobs. If you get a summer job as a waiter, that's a real job. Then you have to carry your weight. But software companies don't hire students for the summer as a source of cheap labor. They do it in the hope of recruiting them when they graduate. So while they're happy if you produce, they don't expect you to.
That will change if you get a real job after you graduate. Then you'll have to earn your keep. And since most of what big companies do is boring, you're going to have to work on boring stuff. Easy, compared to college, but boring. At first it may seem cool to get paid for doing easy stuff, after paying to do hard stuff in college. But that wears off after a few months. Eventually it gets demoralizing to work on dumb stuff, even if it's easy and you get paid a lot.
And that's not the worst of it. The thing that really sucks about having a regular job is the expectation that you're supposed to be there at certain times. Even Google is afflicted with this, apparently. And what this means, as everyone who's had a regular job can tell you, is that there are going to be times when you have absolutely no desire to work on anything, and you're going to have to go to work anyway and sit in front of your screen and pretend to. To someone who likes work, as most good hackers do, this is torture.
In a startup, you skip all that. There's no concept of office hours in most startups. Work and life just get mixed together. But the good thing about that is that no one minds if you have a life at work. In a startup you can do whatever you want most of the time. If you're a founder, what you want to do most of the time is work. But you never have to pretend to.
If you took a nap in your office in a big company, it would seem unprofessional. But if you're starting a startup and you fall asleep in the middle of the day, your cofounders will just assume you were tired.
15. Parents want you to be a doctor
A significant number of would-be startup founders are probably dissuaded from doing it by their parents. I'm not going to say you shouldn't listen to them. Families are entitled to their own traditions, and who am I to argue with them? But I will give you a couple reasons why a safe career might not be what your parents really want for you.
One is that parents tend to be more conservative for their kids than they would be for themselves. This is actually a rational response to their situation. Parents end up sharing more of their kids' ill fortune than good fortune. Most parents don't mind this; it's part of the job; but it does tend to make them excessively conservative. And erring on the side of conservatism is still erring. In almost everything, reward is proportionate to risk. So by protecting their kids from risk, parents are, without realizing it, also protecting them from rewards. If they saw that, they'd want you to take more risks.
The other reason parents may be mistaken is that, like generals, they're always fighting the last war. If they want you to be a doctor, odds are it's not just because they want you to help the sick, but also because it's a prestigious and lucrative career. [4] But not so lucrative or prestigious as it was when their opinions were formed. When I was a kid in the seventies, a doctor was the thing to be. There was a sort of golden triangle involving doctors, Mercedes 450SLs, and tennis. All three vertices now seem pretty dated.
The parents who want you to be a doctor may simply not realize how much things have changed. Would they be that unhappy if you were Steve Jobs instead? So I think the way to deal with your parents' opinions about what you should do is to treat them like feature requests. Even if your only goal is to please them, the way to do that is not simply to give them what they ask for. Instead think about why they're asking for something, and see if there's a better way to give them what they need.
16. A job is the default
This leads us to the last and probably most powerful reason people get regular jobs: it's the default thing to do. Defaults are enormously powerful, precisely because they operate without any conscious choice.
To almost everyone except criminals, it seems an axiom that if you need money, you should get a job. Actually this tradition is not much more than a hundred years old. Before that, the default way to make a living was by farming. It's a bad plan to treat something only a hundred years old as an axiom. By historical standards, that's something that's changing pretty rapidly.
We may be seeing another such change right now. I've read a lot of economic history, and I understand the startup world pretty well, and it now seems to me fairly likely that we're seeing the beginning of a change like the one from farming to manufacturing.
And you know what? If you'd been around when that change began (around 1000 in Europe) it would have seemed to nearly everyone that running off to the city to make your fortune was a crazy thing to do. Though serfs were in principle forbidden to leave their manors, it can't have been that hard to run away to a city. There were no guards patrolling the perimeter of the village. What prevented most serfs from leaving was that it seemed insanely risky. Leave one's plot of land? Leave the people you'd spent your whole life with, to live in a giant city of three or four thousand complete strangers? How would you live? How would you get food, if you didn't grow it?
Frightening as it seemed to them, it's now the default with us to live by our wits. So if it seems risky to you to start a startup, think how risky it once seemed to your ancestors to live as we do now. Oddly enough, the people who know this best are the very ones trying to get you to stick to the old model. How can Larry and Sergey say you should come work as their employee, when they didn't get jobs themselves?
Now we look back on medieval peasants and wonder how they stood it. How grim it must have been to till the same fields your whole life with no hope of anything better, under the thumb of lords and priests you had to give all your surplus to and acknowledge as your masters. I wouldn't be surprised if one day people look back on what we consider a normal job in the same way. How grim it would be to commute every day to a cubicle in some soulless office complex, and be told what to do by someone you had to acknowledge as a boss—someone who could call you into their office and say "take a seat," and you'd sit! Imagine having to ask permission to release software to users. Imagine being sad on Sunday afternoons because the weekend was almost over, and tomorrow you'd have to get up and go to work. How did they stand it?
It's exciting to think we may be on the cusp of another shift like the one from farming to manufacturing. That's why I care about startups. Startups aren't interesting just because they're a way to make a lot of money. I couldn't care less about other ways to do that, like speculating in securities. At most those are interesting the way puzzles are. There's more going on with startups. They may represent one of those rare, historic shifts in the way wealth is created.
That's ultimately what drives us to work on Y Combinator. We want to make money, if only so we don't have to stop doing it, but that's not the main goal. There have only been a handful of these great economic shifts in human history. It would be an amazing hack to make one happen faster.
Notes
[1] The only people who lost were us. The angels had convertible debt, so they had first claim on the proceeds of the auction. Y Combinator only got 38 cents on the dollar.
[2] The best kind of organization for that might be an open source project, but those don't involve a lot of face to face meetings. Maybe it would be worth starting one that did.
[3] There need to be some number of big companies to acquire the startups, so the number of big companies couldn't decrease to zero.
[4] Thought experiment: If doctors did the same work, but as impoverished outcasts, which parents would still want their kids to be doctors?
Thanks to Trevor Blackwell, Jessica Livingston, and Robert Morris for reading drafts of this, to the founders of Zenter for letting me use their web-based PowerPoint killer even though it isn't launched yet, and to Ming-Hay Luk of the Berkeley CSUA for inviting me to speak.

Microsoft is Dead

A few days ago I suddenly realized Microsoft was dead. I was talking to a young startup founder about how Google was different from Yahoo. I said that Yahoo had been warped from the start by their fear of Microsoft. That was why they'd positioned themselves as a "media company" instead of a technology company. Then I looked at his face and realized he didn't understand. It was as if I'd told him how much girls liked Barry Manilow in the mid 80s. Barry who?
Microsoft? He didn't say anything, but I could tell he didn't quite believe anyone would be frightened of them.
Microsoft cast a shadow over the software world for almost 20 years starting in the late 80s. I can remember when it was IBM before them. I mostly ignored this shadow. I never used Microsoft software, so it only affected me indirectly—for example, in the spam I got from botnets. And because I wasn't paying attention, I didn't notice when the shadow disappeared.
But it's gone now. I can sense that. No one is even afraid of Microsoft anymore. They still make a lot of money—so does IBM, for that matter. But they're not dangerous.
When did Microsoft die, and of what? I know they seemed dangerous as late as 2001, because I wrote an essay then about how they were less dangerous than they seemed. I'd guess they were dead by 2005. I know when we started Y Combinator we didn't worry about Microsoft as competition for the startups we funded. In fact, we've never even invited them to the demo days we organize for startups to present to investors. We invite Yahoo and Google and some other Internet companies, but we've never bothered to invite Microsoft. Nor has anyone there ever even sent us an email. They're in a different world.
What killed them? Four things, I think, all of them occurring simultaneously in the mid 2000s.
The most obvious is Google. There can only be one big man in town, and they're clearly it. Google is the most dangerous company now by far, in both the good and bad senses of the word. Microsoft can at best limp along afterward.
When did Google take the lead? There will be a tendency to push it back to their IPO in August 2004, but they weren't setting the terms of the debate then. I'd say they took the lead in 2005. Gmail was one of the things that put them over the edge. Gmail showed they could do more than search.
Gmail also showed how much you could do with web-based software, if you took advantage of what later came to be called "Ajax." And that was the second cause of Microsoft's death: everyone can see the desktop is over. It now seems inevitable that applications will live on the web—not just email, but everything, right up to Photoshop. Even Microsoft sees that now.
Ironically, Microsoft unintentionally helped create Ajax. The x in Ajax is from the XMLHttpRequest object, which lets the browser communicate with the server in the background while displaying a page. (Originally the only way to communicate with the server was to ask for a new page.) XMLHttpRequest was created by Microsoft in the late 90s because they needed it for Outlook. What they didn't realize was that it would be useful to a lot of other people too—in fact, to anyone who wanted to make web apps work like desktop ones.
The other critical component of Ajax is Javascript, the programming language that runs in the browser. Microsoft saw the danger of Javascript and tried to keep it broken for as long as they could. [1] But eventually the open source world won, by producing Javascript libraries that grew over the brokenness of Explorer the way a tree grows over barbed wire.
The third cause of Microsoft's death was broadband Internet. Anyone who cares can have fast Internet access now. And the bigger the pipe to the server, the less you need the desktop.
The last nail in the coffin came, of all places, from Apple. Thanks to OS X, Apple has come back from the dead in a way that is extremely rare in technology. [2] Their victory is so complete that I'm now surprised when I come across a computer running Windows. Nearly all the people we fund at Y Combinator use Apple laptops. It was the same in the audience at startup school. All the computer people use Macs or Linux now. Windows is for grandmas, like Macs used to be in the 90s. So not only does the desktop no longer matter, no one who cares about computers uses Microsoft's anyway.
And of course Apple has Microsoft on the run in music too, with TV and phones on the way.
I'm glad Microsoft is dead. They were like Nero or Commodus—evil in the way only inherited power can make you. Because remember, the Microsoft monopoly didn't begin with Microsoft. They got it from IBM. The software business was overhung by a monopoly from about the mid-1950s to about 2005. For practically its whole existence, that is. One of the reasons "Web 2.0" has such an air of euphoria about it is the feeling, conscious or not, that this era of monopoly may finally be over.
Of course, as a hacker I can't help thinking about how something broken could be fixed. Is there some way Microsoft could come back? In principle, yes. To see how, envision two things: (a) the amount of cash Microsoft now has on hand, and (b) Larry and Sergey making the rounds of all the search engines ten years ago trying to sell the idea for Google for a million dollars, and being turned down by everyone.
The surprising fact is, brilliant hackers—dangerously brilliant hackers—can be had very cheaply, by the standards of a company as rich as Microsoft. So if they wanted to be a contender again, this is how they could do it:
Buy all the good "Web 2.0" startups. They could get substantially all of them for less than they'd have to pay for Facebook.
Put them all in a building in Silicon Valley, surrounded by lead shielding to protect them from any contact with Redmond.
I feel safe suggesting this, because they'd never do it. Microsoft's biggest weakness is that they still don't realize how much they suck. They still think they can write software in house. Maybe they can, by the standards of the desktop world. But that world ended a few years ago.
I already know what the reaction to this essay will be. Half the readers will say that Microsoft is still an enormously profitable company, and that I should be more careful about drawing conclusions based on what a few people think in our insular little "Web 2.0" bubble. The other half, the younger half, will complain that this is old news.
Notes
[1] It doesn't take a conscious effort to make software incompatible. All you have to do is not work too hard at fixing bugs—which, if you're a big company, you produce in copious quantities. The situation is exactly analogous to the writing of bogus literary theorists. Most don't try to be obscure; they just don't make an effort to be clear. It wouldn't pay.
[2] In part because Steve Jobs got pushed out by John Sculley in a way that's rare among technology companies. If Apple's board hadn't made that blunder, they wouldn't have had to bounce back.

Two Kinds of Judgement

There are two different ways people judge you. Sometimes judging you correctly is the end goal. But there's a second much more common type of judgement where it isn't. We tend to regard all judgements of us as the first type. We'd probably be happier if we realized which are and which aren't.
The first type of judgement, the type where judging you is the end goal, include court cases, grades in classes, and most competitions. Such judgements can of course be mistaken, but because the goal is to judge you correctly, there's usually some kind of appeals process. If you feel you've been misjudged, you can protest that you've been treated unfairly.
Nearly all the judgements made on children are of this type, so we get into the habit early in life of thinking that all judgements are.
But in fact there is a second much larger class of judgements where judging you is only a means to something else. These include college admissions, hiring and investment decisions, and of course the judgements made in dating. This kind of judgement is not really about you.
Put yourself in the position of someone selecting players for a national team. Suppose for the sake of simplicity that this is a game with no positions, and that you have to select 20 players. There will be a few stars who clearly should make the team, and many players who clearly shouldn't. The only place your judgement makes a difference is in the borderline cases. Suppose you screw up and underestimate the 20th best player, causing him not to make the team, and his place to be taken by the 21st best. You've still picked a good team. If the players have the usual distribution of ability, the 21st best player will be only slightly worse than the 20th best. Probably the difference between them will be less than the measurement error.
The 20th best player may feel he has been misjudged. But your goal here wasn't to provide a service estimating people's ability. It was to pick a team, and if the difference between the 20th and 21st best players is less than the measurement error, you've still done that optimally.
It's a false analogy even to use the word unfair to describe this kind of misjudgement. It's not aimed at producing a correct estimate of any given individual, but at selecting a reasonably optimal set.
One thing that leads us astray here is that the selector seems to be in a position of power. That makes him seem like a judge. If you regard someone judging you as a customer instead of a judge, the expectation of fairness goes away. The author of a good novel wouldn't complain that readers were unfair for preferring a potboiler with a racy cover. Stupid, perhaps, but not unfair.
Our early training and our self-centeredness combine to make us believe that every judgement of us is about us. In fact most aren't. This is a rare case where being less self-centered will make people more confident. Once you realize how little most people judging you care about judging you accurately—once you realize that because of the normal distribution of most applicant pools, it matters least to judge accurately in precisely the cases where judgement has the most effect—you won't take rejection so personally.
And curiously enough, taking rejection less personally may help you to get rejected less often. If you think someone judging you will work hard to judge you correctly, you can afford to be passive. But the more you realize that most judgements are greatly influenced by random, extraneous factors—that most people judging you are more like a fickle novel buyer than a wise and perceptive magistrate—the more you realize you can do things to influence the outcome.
One good place to apply this principle is in college applications. Most high school students applying to college do it with the usual child's mix of inferiority and self-centeredness: inferiority in that they assume that admissions committees must be all-seeing; self-centeredness in that they assume admissions committees care enough about them to dig down into their application and figure out whether they're good or not. These combine to make applicants passive in applying and hurt when they're rejected. If college applicants realized how quick and impersonal most selection processes are, they'd make more effort to sell themselves, and take the outcome less personally.

The Hacker's Guide to Investors

The world of investors is a foreign one to most hackers—partly because investors are so unlike hackers, and partly because they tend to operate in secret. I've been dealing with this world for many years, both as a founder and an investor, and I still don't fully understand it.
In this essay I'm going to list some of the more surprising things I've learned about investors. Some I only learned in the past year.
Teaching hackers how to deal with investors is probably the second most important thing we do at Y Combinator. The most important thing for a startup is to make something good. But everyone knows that's important. The dangerous thing about investors is that hackers don't know how little they know about this strange world.
1. The investors are what make a startup hub.
About a year ago I tried to figure out what you'd need to reproduce Silicon Valley. I decided the critical ingredients were rich people and nerds—investors and founders. People are all you need to make technology, and all the other people will move.
If I had to narrow that down, I'd say investors are the limiting factor. Not because they contribute more to the startup, but simply because they're least willing to move. They're rich. They're not going to move to Albuquerque just because there are some smart hackers there they could invest in. Whereas hackers will move to the Bay Area to find investors.
2. Angel investors are the most critical.
There are several types of investors. The two main categories are angels and VCs: VCs invest other people's money, and angels invest their own.
Though they're less well known, the angel investors are probably the more critical ingredient in creating a silicon valley. Most companies that VCs invest in would never have made it that far if angels hadn't invested first. VCs say between half and three quarters of companies that raise series A rounds have taken some outside investment already. [1]
Angels are willing to fund riskier projects than VCs. They also give valuable advice, because (unlike VCs) many have been startup founders themselves.
Google's story shows the key role angels play. A lot of people know Google raised money from Kleiner and Sequoia. What most don't realize is how late. That VC round was a series B round; the premoney valuation was $75 million. Google was already a successful company at that point. Really, Google was funded with angel money.
It may seem odd that the canonical Silicon Valley startup was funded by angels, but this is not so surprising. Risk is always proportionate to reward. So the most successful startup of all is likely to have seemed an extremely risky bet at first, and that is exactly the kind VCs won't touch.
Where do angel investors come from? From other startups. So startup hubs like Silicon Valley benefit from something like the marketplace effect, but shifted in time: startups are there because startups were there.
3. Angels don't like publicity.
If angels are so important, why do we hear more about VCs? Because VCs like publicity. They need to market themselves to the investors who are their "customers"—the endowments and pension funds and rich families whose money they invest—and also to founders who might come to them for funding.
Angels don't need to market themselves to investors because they invest their own money. Nor do they want to market themselves to founders: they don't want random people pestering them with business plans. Actually, neither do VCs. Both angels and VCs get deals almost exclusively through personal introductions. [2]
The reason VCs want a strong brand is not to draw in more business plans over the transom, but so they win deals when competing against other VCs. Whereas angels are rarely in direct competition, because (a) they do fewer deals, (b) they're happy to split them, and (c) they invest at a point where the stream is broader.
4. Most investors, especially VCs, are not like founders.
Some angels are, or were, hackers. But most VCs are a different type of people: they're dealmakers.
If you're a hacker, here's a thought experiment you can run to understand why there are basically no hacker VCs: How would you like a job where you never got to make anything, but instead spent all your time listening to other people pitch (mostly terrible) projects, deciding whether to fund them, and sitting on their boards if you did? That would not be fun for most hackers. Hackers like to make things. This would be like being an administrator.
Because most VCs are a different species of people from founders, it's hard to know what they're thinking. If you're a hacker, the last time you had to deal with these guys was in high school. Maybe in college you walked past their fraternity on your way to the lab. But don't underestimate them. They're as expert in their world as you are in yours. What they're good at is reading people, and making deals work to their advantage. Think twice before you try to beat them at that.
5. Most investors are momentum investors.
Because most investors are dealmakers rather than technology people, they generally don't understand what you're doing. I knew as a founder that most VCs didn't get technology. I also knew some made a lot of money. And yet it never occurred to me till recently to put those two ideas together and ask "How can VCs make money by investing in stuff they don't understand?"
The answer is that they're like momentum investors. You can (or could once) make a lot of money by noticing sudden changes in stock prices. When a stock jumps upward, you buy, and when it suddenly drops, you sell. In effect you're insider trading, without knowing what you know. You just know someone knows something, and that's making the stock move.
This is how most venture investors operate. They don't try to look at something and predict whether it will take off. They win by noticing that something is taking off a little sooner than everyone else. That generates almost as good returns as actually being able to pick winners. They may have to pay a little more than they would if they got in at the very beginning, but only a little.
Investors always say what they really care about is the team. Actually what they care most about is your traffic, then what other investors think, then the team. If you don't yet have any traffic, they fall back on number 2, what other investors think. And this, as you can imagine, produces wild oscillations in the "stock price" of a startup. One week everyone wants you, and they're begging not to be cut out of the deal. But all it takes is for one big investor to cool on you, and the next week no one will return your phone calls. We regularly have startups go from hot to cold or cold to hot in a matter of days, and literally nothing has changed.
There are two ways to deal with this phenomenon. If you're feeling really confident, you can try to ride it. You can start by asking a comparatively lowly VC for a small amount of money, and then after generating interest there, ask more prestigious VCs for larger amounts, stirring up a crescendo of buzz, and then "sell" at the top. This is extremely risky, and takes months even if you succeed. I wouldn't try it myself. My advice is to err on the side of safety: when someone offers you a decent deal, just take it and get on with building the company. Startups win or lose based on the quality of their product, not the quality of their funding deals.
6. Most investors are looking for big hits.
Venture investors like companies that could go public. That's where the big returns are. They know the odds of any individual startup going public are small, but they want to invest in those that at least have a chance of going public.
Currently the way VCs seem to operate is to invest in a bunch of companies, most of which fail, and one of which is Google. Those few big wins compensate for losses on their other investments. What this means is that most VCs will only invest in you if you're a potential Google. They don't care about companies that are a safe bet to be acquired for $20 million. There needs to be a chance, however small, of the company becoming really big.
Angels are different in this respect. They're happy to invest in a company where the most likely outcome is a $20 million acquisition if they can do it at a low enough valuation. But of course they like companies that could go public too. So having an ambitious long-term plan pleases everyone.
If you take VC money, you have to mean it, because the structure of VC deals prevents early acquisitions. If you take VC money, they won't let you sell early.
7. VCs want to invest large amounts.
The fact that they're running investment funds makes VCs want to invest large amounts. A typical VC fund is now hundreds of millions of dollars. If $400 million has to be invested by 10 partners, they have to invest $40 million each. VCs usually sit on the boards of companies they fund. If the average deal size was $1 million, each partner would have to sit on 40 boards, which would not be fun. So they prefer bigger deals, where they can put a lot of money to work at once.
VCs don't regard you as a bargain if you don't need a lot of money. That may even make you less attractive, because it means their investment creates less of a barrier to entry for competitors.
Angels are in a different position because they're investing their own money. They're happy to invest small amounts—sometimes as little as $20,000—as long as the potential returns look good enough. So if you're doing something inexpensive, go to angels.
8. Valuations are fiction.
VCs admit that valuations are an artifact. They decide how much money you need and how much of the company they want, and those two constraints yield a valuation.
Valuations increase as the size of the investment does. A company that an angel is willing to put $50,000 into at a valuation of a million can't take $6 million from VCs at that valuation. That would leave the founders less than a seventh of the company between them (since the option pool would also come out of that seventh). Most VCs wouldn't want that, which is why you never hear of deals where a VC invests $6 million at a premoney valuation of $1 million.
If valuations change depending on the amount invested, that shows how far they are from reflecting any kind of value of the company.
Since valuations are made up, founders shouldn't care too much about them. That's not the part to focus on. In fact, a high valuation can be a bad thing. If you take funding at a premoney valuation of $10 million, you won't be selling the company for 20. You'll have to sell for over 50 for the VCs to get even a 5x return, which is low to them. More likely they'll want you to hold out for 100. But needing to get a high price decreases the chance of getting bought at all; many companies can buy you for $10 million, but only a handful for 100. And since a startup is like a pass/fail course for the founders, what you want to optimize is your chance of a good outcome, not the percentage of the company you keep.
So why do founders chase high valuations? They're tricked by misplaced ambition. They feel they've achieved more if they get a higher valuation. They usually know other founders, and if they get a higher valuation they can say "mine is bigger than yours." But funding is not the real test. The real test is the final outcome for the founder, and getting too high a valuation may just make a good outcome less likely.
The one advantage of a high valuation is that you get less dilution. But there is another less sexy way to achieve that: just take less money.
9. Investors look for founders like the current stars.
Ten years ago investors were looking for the next Bill Gates. This was a mistake, because Microsoft was a very anomalous startup. They started almost as a contract programming operation, and the reason they became huge was that IBM happened to drop the PC standard in their lap.
Now all the VCs are looking for the next Larry and Sergey. This is a good trend, because Larry and Sergey are closer to the ideal startup founders.
Historically investors thought it was important for a founder to be an expert in business. So they were willing to fund teams of MBAs who planned to use the money to pay programmers to build their product for them. This is like funding Steve Ballmer in the hope that the programmer he'll hire is Bill Gates—kind of backward, as the events of the Bubble showed. Now most VCs know they should be funding technical guys. This is more pronounced among the very top funds; the lamer ones still want to fund MBAs.
If you're a hacker, it's good news that investors are looking for Larry and Sergey. The bad news is, the only investors who can do it right are the ones who knew them when they were a couple of CS grad students, not the confident media stars they are today. What investors still don't get is how clueless and tentative great founders can seem at the very beginning.
10. The contribution of investors tends to be underestimated.
Investors do more for startups than give them money. They're helpful in doing deals and arranging introductions, and some of the smarter ones, particularly angels, can give good advice about the product.
In fact, I'd say what separates the great investors from the mediocre ones is the quality of their advice. Most investors give advice, but the top ones give good advice.
Whatever help investors give a startup tends to be underestimated. It's to everyone's advantage to let the world think the founders thought of everything. The goal of the investors is for the company to become valuable, and the company seems more valuable if it seems like all the good ideas came from within.
This trend is compounded by the obsession that the press has with founders. In a company founded by two people, 10% of the ideas might come from the first guy they hire. Arguably they've done a bad job of hiring otherwise. And yet this guy will be almost entirely overlooked by the press.
I say this as a founder: the contribution of founders is always overestimated. The danger here is that new founders, looking at existing founders, will think that they're supermen that one couldn't possibly equal oneself. Actually they have a hundred different types of support people just offscreen making the whole show possible. [3]
11. VCs are afraid of looking bad.
I've been very surprised to discover how timid most VCs are. They seem to be afraid of looking bad to their partners, and perhaps also to the limited partners—the people whose money they invest.
You can measure this fear in how much less risk VCs are willing to take. You can tell they won't make investments for their fund that they might be willing to make themselves as angels. Though it's not quite accurate to say that VCs are less willing to take risks. They're less willing to do things that might look bad. That's not the same thing.
For example, most VCs would be very reluctant to invest in a startup founded by a pair of 18 year old hackers, no matter how brilliant, because if the startup failed their partners could turn on them and say "What, you invested $x million of our money in a pair of 18 year olds?" Whereas if a VC invested in a startup founded by three former banking executives in their 40s who planned to outsource their product development—which to my mind is actually a lot riskier than investing in a pair of really smart 18 year olds—he couldn't be faulted, if it failed, for making such an apparently prudent investment.
As a friend of mine said, "Most VCs can't do anything that would sound bad to the kind of doofuses who run pension funds." Angels can take greater risks because they don't have to answer to anyone.
12. Being turned down by investors doesn't mean much.
Some founders are quite dejected when they get turned down by investors. They shouldn't take it so much to heart. To start with, investors are often wrong. It's hard to think of a successful startup that wasn't turned down by investors at some point. Lots of VCs rejected Google. So obviously the reaction of investors is not a very meaningful test.
Investors will often reject you for what seem to be superficial reasons. I read of one VC who turned down a startup simply because they'd given away so many little bits of stock that the deal required too many signatures to close. [4] The reason investors can get away with this is that they see so many deals. It doesn't matter if they underestimate you because of some surface imperfection, because the next best deal will be almost as good. Imagine picking out apples at a grocery store. You grab one with a little bruise. Maybe it's just a surface bruise, but why even bother checking when there are so many other unbruised apples to choose from?
Investors would be the first to admit they're often wrong. So when you get rejected by investors, don't think "we suck," but instead ask "do we suck?" Rejection is a question, not an answer.
13. Investors are emotional.
I've been surprised to discover how emotional investors can be. You'd expect them to be cold and calculating, or at least businesslike, but often they're not. I'm not sure if it's their position of power that makes them this way, or the large sums of money involved, but investment negotiations can easily turn personal. If you offend investors, they'll leave in a huff.
A while ago an eminent VC firm offered a series A round to a startup we'd seed funded. Then they heard a rival VC firm was also interested. They were so afraid that they'd be rejected in favor of this other firm that they gave the startup what's known as an "exploding termsheet." They had, I think, 24 hours to say yes or no, or the deal was off. Exploding termsheets are a somewhat dubious device, but not uncommon. What surprised me was their reaction when I called to talk about it. I asked if they'd still be interested in the startup if the rival VC didn't end up making an offer, and they said no. What rational basis could they have had for saying that? If they thought the startup was worth investing in, what difference should it make what some other VC thought? Surely it was their duty to their limited partners simply to invest in the best opportunities they found; they should be delighted if the other VC said no, because it would mean they'd overlooked a good opportunity. But of course there was no rational basis for their decision. They just couldn't stand the idea of taking this rival firm's rejects.
In this case the exploding termsheet was not (or not only) a tactic to pressure the startup. It was more like the high school trick of breaking up with someone before they can break up with you. In an earlier essay I said that VCs were a lot like high school girls. A few VCs have joked about that characterization, but none have disputed it.
14. The negotiation never stops till the closing.
Most deals, for investment or acquisition, happen in two phases. There's an initial phase of negotiation about the big questions. If this succeeds you get a termsheet, so called because it outlines the key terms of a deal. A termsheet is not legally binding, but it is a definite step. It's supposed to mean that a deal is going to happen, once the lawyers work out all the details. In theory these details are minor ones; by definition all the important points are supposed to be covered in the termsheet.
Inexperience and wishful thinking combine to make founders feel that when they have a termsheet, they have a deal. They want there to be a deal; everyone acts like they have a deal; so there must be a deal. But there isn't and may not be for several months. A lot can change for a startup in several months. It's not uncommon for investors and acquirers to get buyer's remorse. So you have to keep pushing, keep selling, all the way to the close. Otherwise all the "minor" details left unspecified in the termsheet will be interpreted to your disadvantage. The other side may even break the deal; if they do that, they'll usually seize on some technicality or claim you misled them, rather than admitting they changed their minds.
It can be hard to keep the pressure on an investor or acquirer all the way to the closing, because the most effective pressure is competition from other investors or acquirers, and these tend to drop away when you get a termsheet. You should try to stay as close friends as you can with these rivals, but the most important thing is just to keep up the momentum in your startup. The investors or acquirers chose you because you seemed hot. Keep doing whatever made you seem hot. Keep releasing new features; keep getting new users; keep getting mentioned in the press and in blogs.
15. Investors like to co-invest.
I've been surprised how willing investors are to split deals. You might think that if they found a good deal they'd want it all to themselves, but they seem positively eager to syndicate. This is understandable with angels; they invest on a smaller scale and don't like to have too much money tied up in any one deal. But VCs also share deals a lot. Why?
Partly I think this is an artifact of the rule I quoted earlier: after traffic, VCs care most what other VCs think. A deal that has multiple VCs interested in it is more likely to close, so of deals that close, more will have multiple investors.
There is one rational reason to want multiple VCs in a deal: Any investor who co-invests with you is one less investor who could fund a competitor. Apparently Kleiner and Sequoia didn't like splitting the Google deal, but it did at least have the advantage, from each one's point of view, that there probably wouldn't be a competitor funded by the other. Splitting deals thus has similar advantages to confusing paternity.
But I think the main reason VCs like splitting deals is the fear of looking bad. If another firm shares the deal, then in the event of failure it will seem to have been a prudent choice—a consensus decision, rather than just the whim of an individual partner.
16. Investors collude.
Investing is not covered by antitrust law. At least, it better not be, because investors regularly do things that would be illegal otherwise. I know personally of cases where one investor has talked another out of making a competitive offer, using the promise of sharing future deals.
In principle investors are all competing for the same deals, but the spirit of cooperation is stronger than the spirit of competition. The reason, again, is that there are so many deals. Though a professional investor may have a closer relationship with a founder he invests in than with other investors, his relationship with the founder is only going to last a couple years, whereas his relationship with other firms will last his whole career. There isn't so much at stake in his interactions with other investors, but there will be a lot of them. Professional investors are constantly trading little favors.
Another reason investors stick together is to preserve the power of investors as a whole. So you will not, as of this writing, be able to get investors into an auction for your series A round. They'd rather lose the deal than establish a precedent of VCs competitively bidding against one another. An efficient startup funding market may be coming in the distant future; things tend to move in that direction; but it's certainly not here now.
17. Large-scale investors care about their portfolio, not any individual company.
The reason startups work so well is that everyone with power also has equity. The only way any of them can succeed is if they all do. This makes everyone naturally pull in the same direction, subject to differences of opinion about tactics.
The problem is, larger scale investors don't have exactly the same motivation. Close, but not identical. They don't need any given startup to succeed, like founders do, just their portfolio as a whole to. So in borderline cases the rational thing for them to do is to sacrifice unpromising startups.
Large-scale investors tend to put startups in three categories: successes, failures, and the "living dead"—companies that are plugging along but don't seem likely in the immediate future to get bought or go public. To the founders, "living dead" sounds harsh. These companies may be far from failures by ordinary standards. But they might as well be from a venture investor's point of view, and they suck up just as much time and attention as the successes. So if such a company has two possible strategies, a conservative one that's slightly more likely to work in the end, or a risky one that within a short time will either yield a giant success or kill the company, VCs will push for the kill-or-cure option. To them the company is already a write-off. Better to have resolution, one way or the other, as soon as possible.
If a startup gets into real trouble, instead of trying to save it VCs may just sell it at a low price to another of their portfolio companies. Philip Greenspun said in Founders at Work that Ars Digita's VCs did this to them.
18. Investors have different risk profiles from founders.
Most people would rather a 100% chance of $1 million than a 20% chance of $10 million. Investors are rich enough to be rational and prefer the latter. So they'll always tend to encourage founders to keep rolling the dice. If a company is doing well, investors will want founders to turn down most acquisition offers. And indeed, most startups that turn down acquisition offers ultimately do better. But it's still hair-raising for the founders, because they might end up with nothing. When someone's offering to buy you for a price at which your stock is worth $5 million, saying no is equivalent to having $5 million and betting it all on one spin of the roulette wheel.
Investors will tell you the company is worth more. And they may be right. But that doesn't mean it's wrong to sell. Any financial advisor who put all his client's assets in the stock of a single, private company would probably lose his license for it.
More and more, investors are letting founders cash out partially. That should correct the problem. Most founders have such low standards that they'll feel rich with a sum that doesn't seem huge to investors. But this custom is spreading too slowly, because VCs are afraid of seeming irresponsible. No one wants to be the first VC to give someone fuck-you money and then actually get told "fuck you." But until this does start to happen, we know VCs are being too conservative.
19. Investors vary greatly.
Back when I was a founder I used to think all VCs were the same. And in fact they do all look the same. They're all what hackers call "suits." But since I've been dealing with VCs more I've learned that some suits are smarter than others.
They're also in a business where winners tend to keep winning and losers to keep losing. When a VC firm has been successful in the past, everyone wants funding from them, so they get the pick of all the new deals. The self-reinforcing nature of the venture funding market means that the top ten firms live in a completely different world from, say, the hundredth. As well as being smarter, they tend to be calmer and more upstanding; they don't need to do iffy things to get an edge, and don't want to because they have more brand to protect.
There are only two kinds of VCs you want to take money from, if you have the luxury of choosing: the "top tier" VCs, meaning about the top 20 or so firms, plus a few new ones that are not among the top 20 only because they haven't been around long enough.
It's particularly important to raise money from a top firm if you're a hacker, because they're more confident. That means they're less likely to stick you with a business guy as CEO, like VCs used to do in the 90s. If you seem smart and want to do it, they'll let you run the company.
20. Investors don't realize how much it costs to raise money from them.
Raising money is a huge time suck at just the point where startups can least afford it. It's not unusual for it to take five or six months to close a funding round. Six weeks is fast. And raising money is not just something you can leave running as a background process. When you're raising money, it's inevitably the main focus of the company. Which means building the product isn't.
Suppose a Y Combinator company starts talking to VCs after demo day, and is successful in raising money from them, closing the deal after a comparatively short 8 weeks. Since demo day occurs after 10 weeks, the company is now 18 weeks old. Raising money, rather than working on the product, has been the company's main focus for 44% of its existence. And mind you, this an example where things turned out well.
When a startup does return to working on the product after a funding round finally closes, it's as if they were returning to work after a months-long illness. They've lost most of their momentum.
Investors have no idea how much they damage the companies they invest in by taking so long to do it. But companies do. So there is a big opportunity here for a new kind of venture fund that invests smaller amounts at lower valuations, but promises to either close or say no very quickly. If there were such a firm, I'd recommend it to startups in preference to any other, no matter how prestigious. Startups live on speed and momentum.
21. Investors don't like to say no.
The reason funding deals take so long to close is mainly that investors can't make up their minds. VCs are not big companies; they can do a deal in 24 hours if they need to. But they usually let the initial meetings stretch out over a couple weeks. The reason is the selection algorithm I mentioned earlier. Most don't try to predict whether a startup will win, but to notice quickly that it already is winning. They care what the market thinks of you and what other VCs think of you, and they can't judge those just from meeting you.
Because they're investing in things that (a) change fast and (b) they don't understand, a lot of investors will reject you in a way that can later be claimed not to have been a rejection. Unless you know this world, you may not even realize you've been rejected. Here's a VC saying no:
We're really excited about your project, and we want to keep in close touch as you develop it further.
Translated into more straightforward language, this means: We're not investing in you, but we may change our minds if it looks like you're taking off. Sometimes they're more candid and say explicitly that they need to "see some traction." They'll invest in you if you start to get lots of users. But so would any VC. So all they're saying is that you're still at square 1.
Here's a test for deciding whether a VC's response was yes or no. Look down at your hands. Are you holding a termsheet?
22. You need investors.
Some founders say "Who needs investors?" Empirically the answer seems to be: everyone who wants to succeed. Practically every successful startup takes outside investment at some point.
Why? What the people who think they don't need investors forget is that they will have competitors. The question is not whether you need outside investment, but whether it could help you at all. If the answer is yes, and you don't take investment, then competitors who do will have an advantage over you. And in the startup world a little advantage can expand into a lot.
Mike Moritz famously said that he invested in Yahoo because he thought they had a few weeks' lead over their competitors. That may not have mattered quite so much as he thought, because Google came along three years later and kicked Yahoo's ass. But there is something in what he said. Sometimes a small lead can grow into the yes half of a binary choice.
Maybe as it gets cheaper to start a startup, it will start to be possible to succeed in a competitive market without outside funding. There are certainly costs to raising money. But as of this writing the empirical evidence says it's a net win.
23. Investors like it when you don't need them.
A lot of founders approach investors as if they needed their permission to start a company—as if it were like getting into college. But you don't need investors to start most companies; they just make it easier.
And in fact, investors greatly prefer it if you don't need them. What excites them, both consciously and unconsciously, is the sort of startup that approaches them saying "the train's leaving the station; are you in or out?" not the one saying "please can we have some money to start a company?"
Most investors are "bottoms" in the sense that the startups they like most are those that are rough with them. When Google stuck Kleiner and Sequoia with a $75 million premoney valuation, their reaction was probably "Ouch! That feels so good." And they were right, weren't they? That deal probably made them more than any other they've done.
The thing is, VCs are pretty good at reading people. So don't try to act tough with them unless you really are the next Google, or they'll see through you in a second. Instead of acting tough, what most startups should do is simply always have a backup plan. Always have some alternative plan for getting started if any given investor says no. Having one is the best insurance against needing one.
So you shouldn't start a startup that's expensive to start, because then you'll be at the mercy of investors. If you ultimately want to do something that will cost a lot, start by doing a cheaper subset of it, and expand your ambitions when and if you raise more money.
Apparently the most likely animals to be left alive after a nuclear war are cockroaches, because they're so hard to kill. That's what you want to be as a startup, initially. Instead of a beautiful but fragile flower that needs to have its stem in a plastic tube to support itself, better to be small, ugly, and indestructible.
Notes
[1] I may be underestimating VCs. They may play some behind the scenes role in IPOs, which you ultimately need if you want to create a silicon valley.
[2] A few VCs have an email address you can send your business plan to, but the number of startups that get funded this way is basically zero. You should always get a personal introduction—and to a partner, not an associate.
[3] Several people have told us that the most valuable thing about startup school was that they got to see famous startup founders and realized they were just ordinary guys. Though we're happy to provide this service, this is not generally the way we pitch startup school to potential speakers.
[4] Actually this sounds to me like a VC who got buyer's remorse, then used a technicality to get out of the deal. But it's telling that it even seemed a plausible excuse.
Thanks to Sam Altman, Paul Buchheit, Hutch Fishman, and Robert Morris for reading drafts of this, and to Kenneth King of ASES for inviting me to speak.

An Alternative Theory of Unions

People who worry about the increasing gap between rich and poor generally look back on the mid twentieth century as a golden age. In those days we had a large number of high-paying union manufacturing jobs that boosted the median income. I wouldn't quite call the high-paying union job a myth, but I think people who dwell on it are reading too much into it.
Oddly enough, it was working with startups that made me realize where the high-paying union job came from. In a rapidly growing market, you don't worry too much about efficiency. It's more important to grow fast. If there's some mundane problem getting in your way, and there's a simple solution that's somewhat expensive, just take it and get on with more important things. EBay didn't win by paying less for servers than their competitors.
Difficult though it may be to imagine now, manufacturing was a growth industry in the mid twentieth century. This was an era when small firms making everything from cars to candy were getting consolidated into a new kind of corporation with national reach and huge economies of scale. You had to grow fast or die. Workers were for these companies what servers are for an Internet startup. A reliable supply was more important than low cost.
If you looked in the head of a 1950s auto executive, the attitude must have been: sure, give 'em whatever they ask for, so long as the new model isn't delayed.
In other words, those workers were not paid what their work was worth. Circumstances being what they were, companies would have been stupid to insist on paying them so little.
If you want a less controversial example of this phenomenon, ask anyone who worked as a consultant building web sites during the Internet Bubble. In the late nineties you could get paid huge sums of money for building the most trivial things. And yet does anyone who was there have any expectation those days will ever return? I doubt it. Surely everyone realizes that was just a temporary aberration.
The era of labor unions seems to have been the same kind of aberration, just spread over a longer period, and mixed together with a lot of ideology that prevents people from viewing it with as cold an eye as they would something like consulting during the Bubble.
Basically, unions were just Razorfish.
People who think the labor movement was the creation of heroic union organizers have a problem to explain: why are unions shrinking now? The best they can do is fall back on the default explanation of people living in fallen civilizations. Our ancestors were giants. The workers of the early twentieth century must have had a moral courage that's lacking today.
In fact there's a simpler explanation. The early twentieth century was just a fast-growing startup overpaying for infrastructure. And we in the present are not a fallen people, who have abandoned whatever mysterious high-minded principles produced the high-paying union job. We simply live in a time when the fast-growing companies overspend on different things.

The Equity Equation

An investor wants to give you money for a certain percentage of your startup. Should you take it? You're about to hire your first employee. How much stock should you give him?
These are some of the hardest questions founders face. And yet both have the same answer:
1/(1 - n)
Whenever you're trading stock in your company for anything, whether it's money or an employee or a deal with another company, the test for whether to do it is the same. You should give up n% of your company if what you trade it for improves your average outcome enough that the (100 - n)% you have left is worth more than the whole company was before.
For example, if an investor wants to buy half your company, how much does that investment have to improve your average outcome for you to break even? Obviously it has to double: if you trade half your company for something that more than doubles the company's average outcome, you're net ahead. You have half as big a share of something worth more than twice as much.
In the general case, if n is the fraction of the company you're giving up, the deal is a good one if it makes the company worth more than 1/(1 - n).
For example, suppose Y Combinator offers to fund you in return for 6% of your company. In this case, n is .06 and 1/(1 - n) is 1.064. So you should take the deal if you believe we can improve your average outcome by more than 6.4%. If we improve your outcome by 10%, you're net ahead, because the remaining .94 you hold is worth .94 x 1.1 = 1.034. [1]
One of the things the equity equation shows us is that, financially at least, taking money from a top VC firm can be a really good deal. Greg Mcadoo from Sequoia recently said at a YC dinner that when Sequoia invests alone they like to take about 30% of a company. 1/.7 = 1.43, meaning that deal is worth taking if they can improve your outcome by more than 43%. For the average startup, that would be an extraordinary bargain. It would improve the average startup's prospects by more than 43% just to be able to say they were funded by Sequoia, even if they never actually got the money.
The reason Sequoia is such a good deal is that the percentage of the company they take is artificially low. They don't even try to get market price for their investment; they limit their holdings to leave the founders enough stock to feel the company is still theirs.
The catch is that Sequoia gets about 6000 business plans a year and funds about 20 of them, so the odds of getting this great deal are 1 in 300. The companies that make it through are not average startups.
Of course, there are other factors to consider in a VC deal. It's never just a straight trade of money for stock. But if it were, taking money from a top firm would generally be a bargain.
You can use the same formula when giving stock to employees, but it works in the other direction. If i is the average outcome for the company with the addition of some new person, then they're worth n such that i = 1/(1 - n). Which means n = (i - 1)/i.
For example, suppose you're just two founders and you want to hire an additional hacker who's so good you feel he'll increase the average outcome of the whole company by 20%. n = (1.2 - 1)/1.2 = .167. So you'll break even if you trade 16.7% of the company for him.
That doesn't mean 16.7% is the right amount of stock to give him. Stock is not the only cost of hiring someone: there's usually salary and overhead as well. And if the company merely breaks even on the deal, there's no reason to do it.
I think to translate salary and overhead into stock you should multiply the annual rate by about 1.5. Most startups grow fast or die; if you die you don't have to pay the guy, and if you grow fast you'll be paying next year's salary out of next year's valuation, which should be 3x this year's. If your valuation grows 3x a year, the total cost in stock of a new hire's salary and overhead is 1.5 years' cost at the present valuation. [2]
How much of an additional margin should the company need as the "activation energy" for the deal? Since this is in effect the company's profit on a hire, the market will determine that: if you're a hot opportunity, you can charge more.
Let's run through an example. Suppose the company wants to make a "profit" of 50% on the new hire mentioned above. So subtract a third from 16.7% and we have 11.1% as his "retail" price. Suppose further that he's going to cost $60k a year in salary and overhead, x 1.5 = $90k total. If the company's valuation is $2 million, $90k is 4.5%. 11.1% - 4.5% = an offer of 6.6%.
Incidentally, notice how important it is for early employees to take little salary. It comes right out of stock that could otherwise be given to them.
Obviously there is a great deal of play in these numbers. I'm not claiming that stock grants can now be reduced to a formula. Ultimately you always have to guess. But at least know what you're guessing. If you choose a number based on your gut feel, or a table of typical grant sizes supplied by a VC firm, understand what those are estimates of.
And more generally, when you make any decision involving equity, run it through 1/(1 - n) to see if it makes sense. You should always feel richer after trading equity. If the trade didn't increase the value of your remaining shares enough to put you net ahead, you wouldn't have (or shouldn't have) done it.
Notes
[1] This is why we can't believe anyone would think Y Combinator was a bad deal. Does anyone really think we're so useless that in three months we can't improve a startup's prospects by 6.4%?
[2] The obvious choice for your present valuation is the post-money valuation of your last funding round. This probably undervalues the company, though, because (a) unless your last round just happened, the company is presumably worth more, and (b) the valuation of an early funding round usually reflects some other contribution by the investors.
Thanks to Sam Altman, Trevor Blackwell, Paul Buchheit, Hutch Fishman, David Hornik, Paul Kedrosky, Jessica Livingston, Gary Sabot, and Joshua Schachter for reading drafts of this.

Stuff

I have too much stuff. Most people in America do. In fact, the poorer people are, the more stuff they seem to have. Hardly anyone is so poor that they can't afford a front yard full of old cars.
It wasn't always this way. Stuff used to be rare and valuable. You can still see evidence of that if you look for it. For example, in my house in Cambridge, which was built in 1876, the bedrooms don't have closets. In those days people's stuff fit in a chest of drawers. Even as recently as a few decades ago there was a lot less stuff. When I look back at photos from the 1970s, I'm surprised how empty houses look. As a kid I had what I thought was a huge fleet of toy cars, but they'd be dwarfed by the number of toys my nephews have. All together my Matchboxes and Corgis took up about a third of the surface of my bed. In my nephews' rooms the bed is the only clear space.
Stuff has gotten a lot cheaper, but our attitudes toward it haven't changed correspondingly. We overvalue stuff.
That was a big problem for me when I had no money. I felt poor, and stuff seemed valuable, so almost instinctively I accumulated it. Friends would leave something behind when they moved, or I'd see something as I was walking down the street on trash night (beware of anything you find yourself describing as "perfectly good"), or I'd find something in almost new condition for a tenth its retail price at a garage sale. And pow, more stuff.
In fact these free or nearly free things weren't bargains, because they were worth even less than they cost. Most of the stuff I accumulated was worthless, because I didn't need it.
What I didn't understand was that the value of some new acquisition wasn't the difference between its retail price and what I paid for it. It was the value I derived from it. Stuff is an extremely illiquid asset. Unless you have some plan for selling that valuable thing you got so cheaply, what difference does it make what it's "worth?" The only way you're ever going to extract any value from it is to use it. And if you don't have any immediate use for it, you probably never will.
Companies that sell stuff have spent huge sums training us to think stuff is still valuable. But it would be closer to the truth to treat stuff as worthless.
In fact, worse than worthless, because once you've accumulated a certain amount of stuff, it starts to own you rather than the other way around. I know of one couple who couldn't retire to the town they preferred because they couldn't afford a place there big enough for all their stuff. Their house isn't theirs; it's their stuff's.
And unless you're extremely organized, a house full of stuff can be very depressing. A cluttered room saps one's spirits. One reason, obviously, is that there's less room for people in a room full of stuff. But there's more going on than that. I think humans constantly scan their environment to build a mental model of what's around them. And the harder a scene is to parse, the less energy you have left for conscious thoughts. A cluttered room is literally exhausting.
(This could explain why clutter doesn't seem to bother kids as much as adults. Kids are less perceptive. They build a coarser model of their surroundings, and this consumes less energy.)
I first realized the worthlessness of stuff when I lived in Italy for a year. All I took with me was one large backpack of stuff. The rest of my stuff I left in my landlady's attic back in the US. And you know what? All I missed were some of the books. By the end of the year I couldn't even remember what else I had stored in that attic.
And yet when I got back I didn't discard so much as a box of it. Throw away a perfectly good rotary telephone? I might need that one day.
The really painful thing to recall is not just that I accumulated all this useless stuff, but that I often spent money I desperately needed on stuff that I didn't.
Why would I do that? Because the people whose job is to sell you stuff are really, really good at it. The average 25 year old is no match for companies that have spent years figuring out how to get you to spend money on stuff. They make the experience of buying stuff so pleasant that "shopping" becomes a leisure activity.
How do you protect yourself from these people? It can't be easy. I'm a fairly skeptical person, and their tricks worked on me well into my thirties. But one thing that might work is to ask yourself, before buying something, "is this going to make my life noticeably better?"
A friend of mine cured herself of a clothes buying habit by asking herself before she bought anything "Am I going to wear this all the time?" If she couldn't convince herself that something she was thinking of buying would become one of those few things she wore all the time, she wouldn't buy it. I think that would work for any kind of purchase. Before you buy anything, ask yourself: will this be something I use constantly? Or is it just something nice? Or worse still, a mere bargain?
The worst stuff in this respect may be stuff you don't use much because it's too good. Nothing owns you like fragile stuff. For example, the "good china" so many households have, and whose defining quality is not so much that it's fun to use, but that one must be especially careful not to break it.
Another way to resist acquiring stuff is to think of the overall cost of owning it. The purchase price is just the beginning. You're going to have to think about that thing for years—perhaps for the rest of your life. Every thing you own takes energy away from you. Some give more than they take. Those are the only things worth having.
I've now stopped accumulating stuff. Except books—but books are different. Books are more like a fluid than individual objects. It's not especially inconvenient to own several thousand books, whereas if you owned several thousand random possessions you'd be a local celebrity. But except for books, I now actively avoid stuff. If I want to spend money on some kind of treat, I'll take services over goods any day.
I'm not claiming this is because I've achieved some kind of zenlike detachment from material things. I'm talking about something more mundane. A historical change has taken place, and I've now realized it. Stuff used to be valuable, and now it's not.
In industrialized countries the same thing happened with food in the middle of the twentieth century. As food got cheaper (or we got richer; they're indistinguishable), eating too much started to be a bigger danger than eating too little. We've now reached that point with stuff. For most people, rich or poor, stuff has become a burden.
The good news is, if you're carrying a burden without knowing it, your life could be better than you realize. Imagine walking around for years with five pound ankle weights, then suddenly having them removed.

Holding a Program in One's Head

A good programmer working intensively on his own code can hold it in his mind the way a mathematician holds a problem he's working on. Mathematicians don't answer questions by working them out on paper the way schoolchildren are taught to. They do more in their heads: they try to understand a problem space well enough that they can walk around it the way you can walk around the memory of the house you grew up in. At its best programming is the same. You hold the whole program in your head, and you can manipulate it at will.
That's particularly valuable at the start of a project, because initially the most important thing is to be able to change what you're doing. Not just to solve the problem in a different way, but to change the problem you're solving.
Your code is your understanding of the problem you're exploring. So it's only when you have your code in your head that you really understand the problem.
It's not easy to get a program into your head. If you leave a project for a few months, it can take days to really understand it again when you return to it. Even when you're actively working on a program it can take half an hour to load into your head when you start work each day. And that's in the best case. Ordinary programmers working in typical office conditions never enter this mode. Or to put it more dramatically, ordinary programmers working in typical office conditions never really understand the problems they're solving.
Even the best programmers don't always have the whole program they're working on loaded into their heads. But there are things you can do to help:
Avoid distractions. Distractions are bad for many types of work, but especially bad for programming, because programmers tend to operate at the limit of the detail they can handle.
The danger of a distraction depends not on how long it is, but on how much it scrambles your brain. A programmer can leave the office and go and get a sandwich without losing the code in his head. But the wrong kind of interruption can wipe your brain in 30 seconds.
Oddly enough, scheduled distractions may be worse than unscheduled ones. If you know you have a meeting in an hour, you don't even start working on something hard.
Work in long stretches. Since there's a fixed cost each time you start working on a program, it's more efficient to work in a few long sessions than many short ones. There will of course come a point where you get stupid because you're tired. This varies from person to person. I've heard of people hacking for 36 hours straight, but the most I've ever been able to manage is about 18, and I work best in chunks of no more than 12.
The optimum is not the limit you can physically endure. There's an advantage as well as a cost of breaking up a project. Sometimes when you return to a problem after a rest, you find your unconscious mind has left an answer waiting for you.
Use succinct languages. More powerful programming languages make programs shorter. And programmers seem to think of programs at least partially in the language they're using to write them. The more succinct the language, the shorter the program, and the easier it is to load and keep in your head.
You can magnify the effect of a powerful language by using a style called bottom-up programming, where you write programs in multiple layers, the lower ones acting as programming languages for those above. If you do this right, you only have to keep the topmost layer in your head.
Keep rewriting your program. Rewriting a program often yields a cleaner design. But it would have advantages even if it didn't: you have to understand a program completely to rewrite it, so there is no better way to get one loaded into your head.
Write rereadable code. All programmers know it's good to write readable code. But you yourself are the most important reader. Especially in the beginning; a prototype is a conversation with yourself. And when writing for yourself you have different priorities. If you're writing for other people, you may not want to make code too dense. Some parts of a program may be easiest to to read if you spread things out, like an introductory textbook. Whereas if you're writing code to make it easy to reload into your head, it may be best to go for brevity.
Work in small groups. When you manipulate a program in your head, your vision tends to stop at the edge of the code you own. Other parts you don't understand as well, and more importantly, can't take liberties with. So the smaller the number of programmers, the more completely a project can mutate. If there's just one programmer, as there often is at first, you can do all-encompassing redesigns.
Don't have multiple people editing the same piece of code. You never understand other people's code as well as your own. No matter how thoroughly you've read it, you've only read it, not written it. So if a piece of code is written by multiple authors, none of them understand it as well as a single author would.
And of course you can't safely redesign something other people are working on. It's not just that you'd have to ask permission. You don't even let yourself think of such things. Redesigning code with several authors is like changing laws; redesigning code you alone control is like seeing the other interpretation of an ambiguous image.
If you want to put several people to work on a project, divide it into components and give each to one person.
Start small. A program gets easier to hold in your head as you become familiar with it. You can start to treat parts as black boxes once you feel confident you've fully explored them. But when you first start working on a project, you're forced to see everything. If you start with too big a problem, you may never quite be able to encompass it. So if you need to write a big, complex program, the best way to begin may not be to write a spec for it, but to write a prototype that solves a subset of the problem. Whatever the advantages of planning, they're often outweighed by the advantages of being able to keep a program in your head.
It's striking how often programmers manage to hit all eight points by accident. Someone has an idea for a new project, but because it's not officially sanctioned, he has to do it in off hours—which turn out to be more productive because there are no distractions. Driven by his enthusiasm for the new project he works on it for many hours at a stretch. Because it's initially just an experiment, instead of a "production" language he uses a mere "scripting" language—which is in fact far more powerful. He completely rewrites the program several times; that wouldn't be justifiable for an official project, but this is a labor of love and he wants it to be perfect. And since no one is going to see it except him, he omits any comments except the note-to-self variety. He works in a small group perforce, because he either hasn't told anyone else about the idea yet, or it seems so unpromising that no one else is allowed to work on it. Even if there is a group, they couldn't have multiple people editing the same code, because it changes too fast for that to be possible. And the project starts small because the idea is small at first; he just has some cool hack he wants to try out.
Even more striking are the number of officially sanctioned projects that manage to do all eight things wrong. In fact, if you look at the way software gets written in most organizations, it's almost as if they were deliberately trying to do things wrong. In a sense, they are. One of the defining qualities of organizations since there have been such a thing is to treat individuals as interchangeable parts. This works well for more parallelizable tasks, like fighting wars. For most of history a well-drilled army of professional soldiers could be counted on to beat an army of individual warriors, no matter how valorous. But having ideas is not very parallelizable. And that's what programs are: ideas.
It's not merely true that organizations dislike the idea of depending on individual genius, it's a tautology. It's part of the definition of an organization not to. Of our current concept of an organization, at least.
Maybe we could define a new kind of organization that combined the efforts of individuals without requiring them to be interchangeable. Arguably a market is such a form of organization, though it may be more accurate to describe a market as a degenerate case—as what you get by default when organization isn't possible.
Probably the best we'll do is some kind of hack, like making the programming parts of an organization work differently from the rest. Perhaps the optimal solution is for big companies not even to try to develop ideas in house, but simply to buy them. But regardless of what the solution turns out to be, the first step is to realize there's a problem. There is a contradiction in the very phrase "software company." The two words are pulling in opposite directions. Any good programmer in a large organization is going to be at odds with it, because organizations are designed to prevent what programmers strive for.
Good programmers manage to get a lot done anyway. But often it requires practically an act of rebellion against the organizations that employ them. Perhaps it will help if more people understand that the way programmers behave is driven by the demands of the work they do. It's not because they're irresponsible that they work in long binges during which they blow off all other obligations, plunge straight into programming instead of writing specs first, and rewrite code that already works. It's not because they're unfriendly that they prefer to work alone, or growl at people who pop their head in the door to say hello. This apparently random collection of annoying habits has a single explanation: the power of holding a program in one's head.
Whether or not understanding this can help large organizations, it can certainly help their competitors. The weakest point in big companies is that they don't let individual programmers do great work. So if you're a little startup, this is the place to attack them. Take on the kind of problems that have to be solved in one big brain.

How Not to Die

A couple days ago I told a reporter that we expected about a third of the companies we funded to succeed. Actually I was being conservative. I'm hoping it might be as much as a half. Wouldn't it be amazing if we could achieve a 50% success rate?
Another way of saying that is that half of you are going to die. Phrased that way, it doesn't sound good at all. In fact, it's kind of weird when you think about it, because our definition of success is that the founders get rich. If half the startups we fund succeed, then half of you are going to get rich and the other half are going to get nothing.
If you can just avoid dying, you get rich. That sounds like a joke, but it's actually a pretty good description of what happens in a typical startup. It certainly describes what happened in Viaweb. We avoided dying till we got rich.
It was really close, too. When we were visiting Yahoo to talk about being acquired, we had to interrupt everything and borrow one of their conference rooms to talk down an investor who was about to back out of a new funding round we needed to stay alive. So even in the middle of getting rich we were fighting off the grim reaper.
You may have heard that quote about luck consisting of opportunity meeting preparation. You've now done the preparation. The work you've done so far has, in effect, put you in a position to get lucky: you can now get rich by not letting your company die. That's more than most people have. So let's talk about how not to die.
We've done this five times now, and we've seen a bunch of startups die. About 10 of them so far. We don't know exactly what happens when they die, because they generally don't die loudly and heroically. Mostly they crawl off somewhere and die.
For us the main indication of impending doom is when we don't hear from you. When we haven't heard from, or about, a startup for a couple months, that's a bad sign. If we send them an email asking what's up, and they don't reply, that's a really bad sign. So far that is a 100% accurate predictor of death.
Whereas if a startup regularly does new deals and releases and either sends us mail or shows up at YC events, they're probably going to live.
I realize this will sound naive, but maybe the linkage works in both directions. Maybe if you can arrange that we keep hearing from you, you won't die.
That may not be so naive as it sounds. You've probably noticed that having dinners every Tuesday with us and the other founders causes you to get more done than you would otherwise, because every dinner is a mini Demo Day. Every dinner is a kind of a deadline. So the mere constraint of staying in regular contact with us will push you to make things happen, because otherwise you'll be embarrassed to tell us that you haven't done anything new since the last time we talked.
If this works, it would be an amazing hack. It would be pretty cool if merely by staying in regular contact with us you could get rich. It sounds crazy, but there's a good chance that would work.
A variant is to stay in touch with other YC-funded startups. There is now a whole neighborhood of them in San Franscisco. If you move there, the peer pressure that made you work harder all summer will continue to operate.
When startups die, the official cause of death is always either running out of money or a critical founder bailing. Often the two occur simultaneously. But I think the underlying cause is usually that they've become demoralized. You rarely hear of a startup that's working around the clock doing deals and pumping out new features, and dies because they can't pay their bills and their ISP unplugs their server.
Startups rarely die in mid keystroke. So keep typing!
If so many startups get demoralized and fail when merely by hanging on they could get rich, you have to assume that running a startup can be demoralizing. That is certainly true. I've been there, and that's why I've never done another startup. The low points in a startup are just unbelievably low. I bet even Google had moments where things seemed hopeless.
Knowing that should help. If you know it's going to feel terrible sometimes, then when it feels terrible you won't think "ouch, this feels terrible, I give up." It feels that way for everyone. And if you just hang on, things will probably get better. The metaphor people use to describe the way a startup feels is at least a roller coaster and not drowning. You don't just sink and sink; there are ups after the downs.
Another feeling that seems alarming but is in fact normal in a startup is the feeling that what you're doing isn't working. The reason you can expect to feel this is that what you do probably won't work. Startups almost never get it right the first time. Much more commonly you launch something, and no one cares. Don't assume when this happens that you've failed. That's normal for startups. But don't sit around doing nothing. Iterate.
I like Paul Buchheit's suggestion of trying to make something that at least someone really loves. As long as you've made something that a few users are ecstatic about, you're on the right track. It will be good for your morale to have even a handful of users who really love you, and startups run on morale. But also it will tell you what to focus on. What is it about you that they love? Can you do more of that? Where can you find more people who love that sort of thing? As long as you have some core of users who love you, all you have to do is expand it. It may take a while, but as long as you keep plugging away, you'll win in the end. Both Blogger and Delicious did that. Both took years to succeed. But both began with a core of fanatically devoted users, and all Evan and Joshua had to do was grow that core incrementally. Wufoo is on the same trajectory now.
So when you release something and it seems like no one cares, look more closely. Are there zero users who really love you, or is there at least some little group that does? It's quite possible there will be zero. In that case, tweak your product and try again. Every one of you is working on a space that contains at least one winning permutation somewhere in it. If you just keep trying, you'll find it.
Let me mention some things not to do. The number one thing not to do is other things. If you find yourself saying a sentence that ends with "but we're going to keep working on the startup," you are in big trouble. Bob's going to grad school, but we're going to keep working on the startup. We're moving back to Minnesota, but we're going to keep working on the startup. We're taking on some consulting projects, but we're going to keep working on the startup. You may as well just translate these to "we're giving up on the startup, but we're not willing to admit that to ourselves," because that's what it means most of the time. A startup is so hard that working on it can't be preceded by "but."
In particular, don't go to graduate school, and don't start other projects. Distraction is fatal to startups. Going to (or back to) school is a huge predictor of death because in addition to the distraction it gives you something to say you're doing. If you're only doing a startup, then if the startup fails, you fail. If you're in grad school and your startup fails, you can say later "Oh yeah, we had this startup on the side when I was in grad school, but it didn't go anywhere."
You can't use euphemisms like "didn't go anywhere" for something that's your only occupation. People won't let you.
One of the most interesting things we've discovered from working on Y Combinator is that founders are more motivated by the fear of looking bad than by the hope of getting millions of dollars. So if you want to get millions of dollars, put yourself in a position where failure will be public and humiliating.
When we first met the founders of Octopart, they seemed very smart, but not a great bet to succeed, because they didn't seem especially committed. One of the two founders was still in grad school. It was the usual story: he'd drop out if it looked like the startup was taking off. Since then he has not only dropped out of grad school, but appeared full length in Newsweek with the word "Billionaire" printed across his chest. He just cannot fail now. Everyone he knows has seen that picture. Girls who dissed him in high school have seen it. His mom probably has it on the fridge. It would be unthinkably humiliating to fail now. At this point he is committed to fight to the death.
I wish every startup we funded could appear in a Newsweek article describing them as the next generation of billionaires, because then none of them would be able to give up. The success rate would be 90%. I'm not kidding.
When we first knew the Octoparts they were lighthearted, cheery guys. Now when we talk to them they seem grimly determined. The electronic parts distributors are trying to squash them to keep their monopoly pricing. (If it strikes you as odd that people still order electronic parts out of thick paper catalogs in 2007, there's a reason for that. The distributors want to prevent the transparency that comes from having prices online.) I feel kind of bad that we've transformed these guys from lighthearted to grimly determined. But that comes with the territory. If a startup succeeds, you get millions of dollars, and you don't get that kind of money just by asking for it. You have to assume it takes some amount of pain.
And however tough things get for the Octoparts, I predict they'll succeed. They may have to morph themselves into something totally different, but they won't just crawl off and die. They're smart; they're working in a promising field; and they just cannot give up.
All of you guys already have the first two. You're all smart and working on promising ideas. Whether you end up among the living or the dead comes down to the third ingredient, not giving up.
So I'll tell you now: bad shit is coming. It always is in a startup. The odds of getting from launch to liquidity without some kind of disaster happening are one in a thousand. So don't get demoralized. When the disaster strikes, just say to yourself, ok, this was what Paul was talking about. What did he say to do? Oh, yeah. Don't give up.

News from the Front

A few weeks ago I had a thought so heretical that it really surprised me. It may not matter all that much where you go to college.
For me, as for a lot of middle class kids, getting into a good college was more or less the meaning of life when I was growing up. What was I? A student. To do that well meant to get good grades. Why did one have to get good grades? To get into a good college. And why did one want to do that? There seemed to be several reasons: you'd learn more, get better jobs, make more money. But it didn't matter exactly what the benefits would be. College was a bottleneck through which all your future prospects passed; everything would be better if you went to a better college.
A few weeks ago I realized that somewhere along the line I had stopped believing that.
What first set me thinking about this was the new trend of worrying obsessively about what kindergarten your kids go to. It seemed to me this couldn't possibly matter. Either it won't help your kid get into Harvard, or if it does, getting into Harvard won't mean much anymore. And then I thought: how much does it mean even now?
It turns out I have a lot of data about that. My three partners and I run a seed stage investment firm called Y Combinator. We invest when the company is just a couple guys and an idea. The idea doesn't matter much; it will change anyway. Most of our decision is based on the founders. The average founder is three years out of college. Many have just graduated; a few are still in school. So we're in much the same position as a graduate program, or a company hiring people right out of college. Except our choices are immediately and visibly tested. There are two possible outcomes for a startup: success or failure—and usually you know within a year which it will be.
The test applied to a startup is among the purest of real world tests. A startup succeeds or fails depending almost entirely on the efforts of the founders. Success is decided by the market: you only succeed if users like what you've built. And users don't care where you went to college.
As well as having precisely measurable results, we have a lot of them. Instead of doing a small number of large deals like a traditional venture capital fund, we do a large number of small ones. We currently fund about 40 companies a year, selected from about 900 applications representing a total of about 2000 people. [1]
Between the volume of people we judge and the rapid, unequivocal test that's applied to our choices, Y Combinator has been an unprecedented opportunity for learning how to pick winners. One of the most surprising things we've learned is how little it matters where people went to college.
I thought I'd already been cured of caring about that. There's nothing like going to grad school at Harvard to cure you of any illusions you might have about the average Harvard undergrad. And yet Y Combinator showed us we were still overestimating people who'd been to elite colleges. We'd interview people from MIT or Harvard or Stanford and sometimes find ourselves thinking: they must be smarter than they seem. It took us a few iterations to learn to trust our senses.
Practically everyone thinks that someone who went to MIT or Harvard or Stanford must be smart. Even people who hate you for it believe it.
But when you think about what it means to have gone to an elite college, how could this be true? We're talking about a decision made by admissions officers—basically, HR people—based on a cursory examination of a huge pile of depressingly similar applications submitted by seventeen year olds. And what do they have to go on? An easily gamed standardized test; a short essay telling you what the kid thinks you want to hear; an interview with a random alum; a high school record that's largely an index of obedience. Who would rely on such a test?
And yet a lot of companies do. A lot of companies are very much influenced by where applicants went to college. How could they be? I think I know the answer to that.
There used to be a saying in the corporate world: "No one ever got fired for buying IBM." You no longer hear this about IBM specifically, but the idea is very much alive; there is a whole category of "enterprise" software companies that exist to take advantage of it. People buying technology for large organizations don't care if they pay a fortune for mediocre software. It's not their money. They just want to buy from a supplier who seems safe—a company with an established name, confident salesmen, impressive offices, and software that conforms to all the current fashions. Not necessarily a company that will deliver so much as one that, if they do let you down, will still seem to have been a prudent choice. So companies have evolved to fill that niche.
A recruiter at a big company is in much the same position as someone buying technology for one. If someone went to Stanford and is not obviously insane, they're probably a safe bet. And a safe bet is enough. No one ever measures recruiters by the later performance of people they turn down. [2]
I'm not saying, of course, that elite colleges have evolved to prey upon the weaknesses of large organizations the way enterprise software companies have. But they work as if they had. In addition to the power of the brand name, graduates of elite colleges have two critical qualities that plug right into the way large organizations work. They're good at doing what they're asked, since that's what it takes to please the adults who judge you at seventeen. And having been to an elite college makes them more confident.
Back in the days when people might spend their whole career at one big company, these qualities must have been very valuable. Graduates of elite colleges would have been capable, yet amenable to authority. And since individual performance is so hard to measure in large organizations, their own confidence would have been the starting point for their reputation.
Things are very different in the new world of startups. We couldn't save someone from the market's judgement even if we wanted to. And being charming and confident counts for nothing with users. All users care about is whether you make something they like. If you don't, you're dead.
Knowing that test is coming makes us work a lot harder to get the right answers than anyone would if they were merely hiring people. We can't afford to have any illusions about the predictors of success. And what we've found is that the variation between schools is so much smaller than the variation between individuals that it's negligible by comparison. We can learn more about someone in the first minute of talking to them than by knowing where they went to school.
It seems obvious when you put it that way. Look at the individual, not where they went to college. But that's a weaker statement than the idea I began with, that it doesn't matter much where a given individual goes to college. Don't you learn things at the best schools that you wouldn't learn at lesser places?
Apparently not. Obviously you can't prove this in the case of a single individual, but you can tell from aggregate evidence: you can't, without asking them, distinguish people who went to one school from those who went to another three times as far down the US News list. [3] Try it and see.
How can this be? Because how much you learn in college depends a lot more on you than the college. A determined party animal can get through the best school without learning anything. And someone with a real thirst for knowledge will be able to find a few smart people to learn from at a school that isn't prestigious at all.
The other students are the biggest advantage of going to an elite college; you learn more from them than the professors. But you should be able to reproduce this at most colleges if you make a conscious effort to find smart friends. At most colleges you can find at least a handful of other smart students, and most people have only a handful of close friends in college anyway. [4] The odds of finding smart professors are even better. The curve for faculty is a lot flatter than for students, especially in math and the hard sciences; you have to go pretty far down the list of colleges before you stop finding smart professors in the math department.
So it's not surprising that we've found the relative prestige of different colleges useless in judging individuals. There's a lot of randomness in how colleges select people, and what they learn there depends much more on them than the college. Between these two sources of variation, the college someone went to doesn't mean a lot. It is to some degree a predictor of ability, but so weak that we regard it mainly as a source of error and try consciously to ignore it.
I doubt what we've discovered is an anomaly specific to startups. Probably people have always overestimated the importance of where one goes to college. We're just finally able to measure it.
The unfortunate thing is not just that people are judged by such a superficial test, but that so many judge themselves by it. A lot of people, probably the majority of people in America, have some amount of insecurity about where, or whether, they went to college. The tragedy of the situation is that by far the greatest liability of not having gone to the college you'd have liked is your own feeling that you're thereby lacking something. Colleges are a bit like exclusive clubs in this respect. There is only one real advantage to being a member of most exclusive clubs: you know you wouldn't be missing much if you weren't. When you're excluded, you can only imagine the advantages of being an insider. But invariably they're larger in your imagination than in real life.
So it is with colleges. Colleges differ, but they're nothing like the stamp of destiny so many imagine them to be. People aren't what some admissions officer decides about them at seventeen. They're what they make themselves.
Indeed, the great advantage of not caring where people went to college is not just that you can stop judging them (and yourself) by superficial measures, but that you can focus instead on what really matters. What matters is what you make of yourself. I think that's what we should tell kids. Their job isn't to get good grades so they can get into a good college, but to learn and do. And not just because that's more rewarding than worldly success. That will increasingly be the route to worldly success.
Notes
[1] Is what we measure worth measuring? I think so. You can get rich simply by being energetic and unscrupulous, but getting rich from a technology startup takes some amount of brains. It is just the kind of work the upper middle class values; it has about the same intellectual component as being a doctor.
[2] Actually, someone did, once. Mitch Kapor's wife Freada was in charge of HR at Lotus in the early years. (As he is at pains to point out, they did not become romantically involved till afterward.) At one point they worried Lotus was losing its startup edge and turning into a big company. So as an experiment she sent their recruiters the resumes of the first 40 employees, with identifying details changed. These were the people who had made Lotus into the star it was. Not one got an interview.
[3] The US News list? Surely no one trusts that. Even if the statistics they consider are useful, how do they decide on the relative weights? The reason the US News list is meaningful is precisely because they are so intellectually dishonest in that respect. There is no external source they can use to calibrate the weighting of the statistics they use; if there were, we could just use that instead. What they must do is adjust the weights till the top schools are the usual suspects in about the right order. So in effect what the US News list tells us is what the editors think the top schools are, which is probably not far from the conventional wisdom on the matter. The amusing thing is, because some schools work hard to game the system, the editors will have to keep tweaking their algorithm to get the rankings they want.
[4] Possible doesn't mean easy, of course. A smart student at a party school will inevitably be something of an outcast, just as he or she would be in most high schools.

How to Do Philosophy

In high school I decided I was going to study philosophy in college. I had several motives, some more honorable than others. One of the less honorable was to shock people. College was regarded as job training where I grew up, so studying philosophy seemed an impressively impractical thing to do. Sort of like slashing holes in your clothes or putting a safety pin through your ear, which were other forms of impressive impracticality then just coming into fashion.
But I had some more honest motives as well. I thought studying philosophy would be a shortcut straight to wisdom. All the people majoring in other things would just end up with a bunch of domain knowledge. I would be learning what was really what.
I'd tried to read a few philosophy books. Not recent ones; you wouldn't find those in our high school library. But I tried to read Plato and Aristotle. I doubt I believed I understood them, but they sounded like they were talking about something important. I assumed I'd learn what in college.
The summer before senior year I took some college classes. I learned a lot in the calculus class, but I didn't learn much in Philosophy 101. And yet my plan to study philosophy remained intact. It was my fault I hadn't learned anything. I hadn't read the books we were assigned carefully enough. I'd give Berkeley's Principles of Human Knowledge another shot in college. Anything so admired and so difficult to read must have something in it, if one could only figure out what.
Twenty-six years later, I still don't understand Berkeley. I have a nice edition of his collected works. Will I ever read it? Seems unlikely.
The difference between then and now is that now I understand why Berkeley is probably not worth trying to understand. I think I see now what went wrong with philosophy, and how we might fix it.
Words
I did end up being a philosophy major for most of college. It didn't work out as I'd hoped. I didn't learn any magical truths compared to which everything else was mere domain knowledge. But I do at least know now why I didn't. Philosophy doesn't really have a subject matter in the way math or history or most other university subjects do. There is no core of knowledge one must master. The closest you come to that is a knowledge of what various individual philosophers have said about different topics over the years. Few were sufficiently correct that people have forgotten who discovered what they discovered.
Formal logic has some subject matter. I took several classes in logic. I don't know if I learned anything from them. [1] It does seem to me very important to be able to flip ideas around in one's head: to see when two ideas don't fully cover the space of possibilities, or when one idea is the same as another but with a couple things changed. But did studying logic teach me the importance of thinking this way, or make me any better at it? I don't know.
There are things I know I learned from studying philosophy. The most dramatic I learned immediately, in the first semester of freshman year, in a class taught by Sydney Shoemaker. I learned that I don't exist. I am (and you are) a collection of cells that lurches around driven by various forces, and calls itself I. But there's no central, indivisible thing that your identity goes with. You could conceivably lose half your brain and live. Which means your brain could conceivably be split into two halves and each transplanted into different bodies. Imagine waking up after such an operation. You have to imagine being two people.
The real lesson here is that the concepts we use in everyday life are fuzzy, and break down if pushed too hard. Even a concept as dear to us as I. It took me a while to grasp this, but when I did it was fairly sudden, like someone in the nineteenth century grasping evolution and realizing the story of creation they'd been told as a child was all wrong. [2] Outside of math there's a limit to how far you can push words; in fact, it would not be a bad definition of math to call it the study of terms that have precise meanings. Everyday words are inherently imprecise. They work well enough in everyday life that you don't notice. Words seem to work, just as Newtonian physics seems to. But you can always make them break if you push them far enough.
I would say that this has been, unfortunately for philosophy, the central fact of philosophy. Most philosophical debates are not merely afflicted by but driven by confusions over words. Do we have free will? Depends what you mean by "free." Do abstract ideas exist? Depends what you mean by "exist."
Wittgenstein is popularly credited with the idea that most philosophical controversies are due to confusions over language. I'm not sure how much credit to give him. I suspect a lot of people realized this, but reacted simply by not studying philosophy, rather than becoming philosophy professors.
How did things get this way? Can something people have spent thousands of years studying really be a waste of time? Those are interesting questions. In fact, some of the most interesting questions you can ask about philosophy. The most valuable way to approach the current philosophical tradition may be neither to get lost in pointless speculations like Berkeley, nor to shut them down like Wittgenstein, but to study it as an example of reason gone wrong.
History
Western philosophy really begins with Socrates, Plato, and Aristotle. What we know of their predecessors comes from fragments and references in later works; their doctrines could be described as speculative cosmology that occasionally strays into analysis. Presumably they were driven by whatever makes people in every other society invent cosmologies. [3]
With Socrates, Plato, and particularly Aristotle, this tradition turned a corner. There started to be a lot more analysis. I suspect Plato and Aristotle were encouraged in this by progress in math. Mathematicians had by then shown that you could figure things out in a much more conclusive way than by making up fine sounding stories about them. [4]
People talk so much about abstractions now that we don't realize what a leap it must have been when they first started to. It was presumably many thousands of years between when people first started describing things as hot or cold and when someone asked "what is heat?" No doubt it was a very gradual process. We don't know if Plato or Aristotle were the first to ask any of the questions they did. But their works are the oldest we have that do this on a large scale, and there is a freshness (not to say naivete) about them that suggests some of the questions they asked were new to them, at least.
Aristotle in particular reminds me of the phenomenon that happens when people discover something new, and are so excited by it that they race through a huge percentage of the newly discovered territory in one lifetime. If so, that's evidence of how new this kind of thinking was. [5]
This is all to explain how Plato and Aristotle can be very impressive and yet naive and mistaken. It was impressive even to ask the questions they did. That doesn't mean they always came up with good answers. It's not considered insulting to say that ancient Greek mathematicians were naive in some respects, or at least lacked some concepts that would have made their lives easier. So I hope people will not be too offended if I propose that ancient philosophers were similarly naive. In particular, they don't seem to have fully grasped what I earlier called the central fact of philosophy: that words break if you push them too far.
"Much to the surprise of the builders of the first digital computers," Rod Brooks wrote, "programs written for them usually did not work." [6] Something similar happened when people first started trying to talk about abstractions. Much to their surprise, they didn't arrive at answers they agreed upon. In fact, they rarely seemed to arrive at answers at all.
They were in effect arguing about artifacts induced by sampling at too low a resolution.
The proof of how useless some of their answers turned out to be is how little effect they have. No one after reading Aristotle's Metaphysics does anything differently as a result. [7]
Surely I'm not claiming that ideas have to have practical applications to be interesting? No, they may not have to. Hardy's boast that number theory had no use whatsoever wouldn't disqualify it. But he turned out to be mistaken. In fact, it's suspiciously hard to find a field of math that truly has no practical use. And Aristotle's explanation of the ultimate goal of philosophy in Book A of the Metaphysics implies that philosophy should be useful too.
Theoretical Knowledge
Aristotle's goal was to find the most general of general principles. The examples he gives are convincing: an ordinary worker builds things a certain way out of habit; a master craftsman can do more because he grasps the underlying principles. The trend is clear: the more general the knowledge, the more admirable it is. But then he makes a mistake—possibly the most important mistake in the history of philosophy. He has noticed that theoretical knowledge is often acquired for its own sake, out of curiosity, rather than for any practical need. So he proposes there are two kinds of theoretical knowledge: some that's useful in practical matters and some that isn't. Since people interested in the latter are interested in it for its own sake, it must be more noble. So he sets as his goal in the Metaphysics the exploration of knowledge that has no practical use. Which means no alarms go off when he takes on grand but vaguely understood questions and ends up getting lost in a sea of words.
His mistake was to confuse motive and result. Certainly, people who want a deep understanding of something are often driven by curiosity rather than any practical need. But that doesn't mean what they end up learning is useless. It's very valuable in practice to have a deep understanding of what you're doing; even if you're never called on to solve advanced problems, you can see shortcuts in the solution of simple ones, and your knowledge won't break down in edge cases, as it would if you were relying on formulas you didn't understand. Knowledge is power. That's what makes theoretical knowledge prestigious. It's also what causes smart people to be curious about certain things and not others; our DNA is not so disinterested as we might think.
So while ideas don't have to have immediate practical applications to be interesting, the kinds of things we find interesting will surprisingly often turn out to have practical applications.
The reason Aristotle didn't get anywhere in the Metaphysics was partly that he set off with contradictory aims: to explore the most abstract ideas, guided by the assumption that they were useless. He was like an explorer looking for a territory to the north of him, starting with the assumption that it was located to the south.
And since his work became the map used by generations of future explorers, he sent them off in the wrong direction as well. [8] Perhaps worst of all, he protected them from both the criticism of outsiders and the promptings of their own inner compass by establishing the principle that the most noble sort of theoretical knowledge had to be useless.
The Metaphysics is mostly a failed experiment. A few ideas from it turned out to be worth keeping; the bulk of it has had no effect at all. The Metaphysics is among the least read of all famous books. It's not hard to understand the way Newton's Principia is, but the way a garbled message is.
Arguably it's an interesting failed experiment. But unfortunately that was not the conclusion Aristotle's successors derived from works like the Metaphysics. [9] Soon after, the western world fell on intellectual hard times. Instead of version 1s to be superseded, the works of Plato and Aristotle became revered texts to be mastered and discussed. And so things remained for a shockingly long time. It was not till around 1600 (in Europe, where the center of gravity had shifted by then) that one found people confident enough to treat Aristotle's work as a catalog of mistakes. And even then they rarely said so outright.
If it seems surprising that the gap was so long, consider how little progress there was in math between Hellenistic times and the Renaissance.
In the intervening years an unfortunate idea took hold: that it was not only acceptable to produce works like the Metaphysics, but that it was a particularly prestigious line of work, done by a class of people called philosophers. No one thought to go back and debug Aristotle's motivating argument. And so instead of correcting the problem Aristotle discovered by falling into it—that you can easily get lost if you talk too loosely about very abstract ideas—they continued to fall into it.
The Singularity
Curiously, however, the works they produced continued to attract new readers. Traditional philosophy occupies a kind of singularity in this respect. If you write in an unclear way about big ideas, you produce something that seems tantalizingly attractive to inexperienced but intellectually ambitious students. Till one knows better, it's hard to distinguish something that's hard to understand because the writer was unclear in his own mind from something like a mathematical proof that's hard to understand because the ideas it represents are hard to understand. To someone who hasn't learned the difference, traditional philosophy seems extremely attractive: as hard (and therefore impressive) as math, yet broader in scope. That was what lured me in as a high school student.
This singularity is even more singular in having its own defense built in. When things are hard to understand, people who suspect they're nonsense generally keep quiet. There's no way to prove a text is meaningless. The closest you can get is to show that the official judges of some class of texts can't distinguish them from placebos. [10]
And so instead of denouncing philosophy, most people who suspected it was a waste of time just studied other things. That alone is fairly damning evidence, considering philosophy's claims. It's supposed to be about the ultimate truths. Surely all smart people would be interested in it, if it delivered on that promise.
Because philosophy's flaws turned away the sort of people who might have corrected them, they tended to be self-perpetuating. Bertrand Russell wrote in a letter in 1912:
Hitherto the people attracted to philosophy have been mostly those who loved the big generalizations, which were all wrong, so that few people with exact minds have taken up the subject. [11]
His response was to launch Wittgenstein at it, with dramatic results.
I think Wittgenstein deserves to be famous not for the discovery that most previous philosophy was a waste of time, which judging from the circumstantial evidence must have been made by every smart person who studied a little philosophy and declined to pursue it further, but for how he acted in response. [12] Instead of quietly switching to another field, he made a fuss, from inside. He was Gorbachev.
The field of philosophy is still shaken from the fright Wittgenstein gave it. [13] Later in life he spent a lot of time talking about how words worked. Since that seems to be allowed, that's what a lot of philosophers do now. Meanwhile, sensing a vacuum in the metaphysical speculation department, the people who used to do literary criticism have been edging Kantward, under new names like "literary theory," "critical theory," and when they're feeling ambitious, plain "theory." The writing is the familiar word salad:
Gender is not like some of the other grammatical modes which express precisely a mode of conception without any reality that corresponds to the conceptual mode, and consequently do not express precisely something in reality by which the intellect could be moved to conceive a thing the way it does, even where that motive is not something in the thing as such. [14]
The singularity I've described is not going away. There's a market for writing that sounds impressive and can't be disproven. There will always be both supply and demand. So if one group abandons this territory, there will always be others ready to occupy it.
A Proposal
We may be able to do better. Here's an intriguing possibility. Perhaps we should do what Aristotle meant to do, instead of what he did. The goal he announces in the Metaphysics seems one worth pursuing: to discover the most general truths. That sounds good. But instead of trying to discover them because they're useless, let's try to discover them because they're useful.
I propose we try again, but that we use that heretofore despised criterion, applicability, as a guide to keep us from wondering off into a swamp of abstractions. Instead of trying to answer the question:
What are the most general truths?
let's try to answer the question
Of all the useful things we can say, which are the most general?
The test of utility I propose is whether we cause people who read what we've written to do anything differently afterward. Knowing we have to give definite (if implicit) advice will keep us from straying beyond the resolution of the words we're using.
The goal is the same as Aristotle's; we just approach it from a different direction.
As an example of a useful, general idea, consider that of the controlled experiment. There's an idea that has turned out to be widely applicable. Some might say it's part of science, but it's not part of any specific science; it's literally meta-physics (in our sense of "meta"). The idea of evolution is another. It turns out to have quite broad applications—for example, in genetic algorithms and even product design. Frankfurt's distinction between lying and bullshitting seems a promising recent example. [15]
These seem to me what philosophy should look like: quite general observations that would cause someone who understood them to do something differently.
Such observations will necessarily be about things that are imprecisely defined. Once you start using words with precise meanings, you're doing math. So starting from utility won't entirely solve the problem I described above—it won't flush out the metaphysical singularity. But it should help. It gives people with good intentions a new roadmap into abstraction. And they may thereby produce things that make the writing of the people with bad intentions look bad by comparison.
One drawback of this approach is that it won't produce the sort of writing that gets you tenure. And not just because it's not currently the fashion. In order to get tenure in any field you must not arrive at conclusions that members of tenure committees can disagree with. In practice there are two kinds of solutions to this problem. In math and the sciences, you can prove what you're saying, or at any rate adjust your conclusions so you're not claiming anything false ("6 of 8 subjects had lower blood pressure after the treatment"). In the humanities you can either avoid drawing any definite conclusions (e.g. conclude that an issue is a complex one), or draw conclusions so narrow that no one cares enough to disagree with you.
The kind of philosophy I'm advocating won't be able to take either of these routes. At best you'll be able to achieve the essayist's standard of proof, not the mathematician's or the experimentalist's. And yet you won't be able to meet the usefulness test without implying definite and fairly broadly applicable conclusions. Worse still, the usefulness test will tend to produce results that annoy people: there's no use in telling people things they already believe, and people are often upset to be told things they don't.
Here's the exciting thing, though. Anyone can do this. Getting to general plus useful by starting with useful and cranking up the generality may be unsuitable for junior professors trying to get tenure, but it's better for everyone else, including professors who already have it. This side of the mountain is a nice gradual slope. You can start by writing things that are useful but very specific, and then gradually make them more general. Joe's has good burritos. What makes a good burrito? What makes good food? What makes anything good? You can take as long as you want. You don't have to get all the way to the top of the mountain. You don't have to tell anyone you're doing philosophy.
If it seems like a daunting task to do philosophy, here's an encouraging thought. The field is a lot younger than it seems. Though the first philosophers in the western tradition lived about 2500 years ago, it would be misleading to say the field is 2500 years old, because for most of that time the leading practitioners weren't doing much more than writing commentaries on Plato or Aristotle while watching over their shoulders for the next invading army. In the times when they weren't, philosophy was hopelessly intermingled with religion. It didn't shake itself free till a couple hundred years ago, and even then was afflicted by the structural problems I've described above. If I say this, some will say it's a ridiculously overbroad and uncharitable generalization, and others will say it's old news, but here goes: judging from their works, most philosophers up to the present have been wasting their time. So in a sense the field is still at the first step. [16]
That sounds a preposterous claim to make. It won't seem so preposterous in 10,000 years. Civilization always seems old, because it's always the oldest it's ever been. The only way to say whether something is really old or not is by looking at structural evidence, and structurally philosophy is young; it's still reeling from the unexpected breakdown of words.
Philosophy is as young now as math was in 1500. There is a lot more to discover.
Notes
[1] In practice formal logic is not much use, because despite some progress in the last 150 years we're still only able to formalize a small percentage of statements. We may never do that much better, for the same reason 1980s-style "knowledge representation" could never have worked; many statements may have no representation more concise than a huge, analog brain state.
[2] It was harder for Darwin's contemporaries to grasp this than we can easily imagine. The story of creation in the Bible is not just a Judeo-Christian concept; it's roughly what everyone must have believed since before people were people. The hard part of grasping evolution was to realize that species weren't, as they seem to be, unchanging, but had instead evolved from different, simpler organisms over unimaginably long periods of time.
Now we don't have to make that leap. No one in an industrialized country encounters the idea of evolution for the first time as an adult. Everyone's taught about it as a child, either as truth or heresy.
[3] Greek philosophers before Plato wrote in verse. This must have affected what they said. If you try to write about the nature of the world in verse, it inevitably turns into incantation. Prose lets you be more precise, and more tentative.
[4] Philosophy is like math's ne'er-do-well brother. It was born when Plato and Aristotle looked at the works of their predecessors and said in effect "why can't you be more like your brother?" Russell was still saying the same thing 2300 years later.
Math is the precise half of the most abstract ideas, and philosophy the imprecise half. It's probably inevitable that philosophy will suffer by comparison, because there's no lower bound to its precision. Bad math is merely boring, whereas bad philosophy is nonsense. And yet there are some good ideas in the imprecise half.
[5] Aristotle's best work was in logic and zoology, both of which he can be said to have invented. But the most dramatic departure from his predecessors was a new, much more analytical style of thinking. He was arguably the first scientist.
[6] Brooks, Rodney, Programming in Common Lisp, Wiley, 1985, p. 94.
[7] Some would say we depend on Aristotle more than we realize, because his ideas were one of the ingredients in our common culture. Certainly a lot of the words we use have a connection with Aristotle, but it seems a bit much to suggest that we wouldn't have the concept of the essence of something or the distinction between matter and form if Aristotle hadn't written about them.
One way to see how much we really depend on Aristotle would be to diff European culture with Chinese: what ideas did European culture have in 1800 that Chinese culture didn't, in virtue of Aristotle's contribution?
[8] The meaning of the word "philosophy" has changed over time. In ancient times it covered a broad range of topics, comparable in scope to our "scholarship" (though without the methodological implications). Even as late as Newton's time it included what we now call "science." But core of the subject today is still what seemed to Aristotle the core: the attempt to discover the most general truths.
Aristotle didn't call this "metaphysics." That name got assigned to it because the books we now call the Metaphysics came after (meta = after) the Physics in the standard edition of Aristotle's works compiled by Andronicus of Rhodes three centuries later. What we call "metaphysics" Aristotle called "first philosophy."
[9] Some of Aristotle's immediate successors may have realized this, but it's hard to say because most of their works are lost.
[10] Sokal, Alan, "Transgressing the Boundaries: Toward a Transformative Hermeneutics of Quantum Gravity," Social Text 46/47, pp. 217-252.
Abstract-sounding nonsense seems to be most attractive when it's aligned with some axe the audience already has to grind. If this is so we should find it's most popular with groups that are (or feel) weak. The powerful don't need its reassurance.
[11] Letter to Ottoline Morrell, December 1912. Quoted in:
Monk, Ray, Ludwig Wittgenstein: The Duty of Genius, Penguin, 1991, p. 75.
[12] A preliminary result, that all metaphysics between Aristotle and 1783 had been a waste of time, is due to I. Kant.
[13] Wittgenstein asserted a sort of mastery to which the inhabitants of early 20th century Cambridge seem to have been peculiarly vulnerable—perhaps partly because so many had been raised religious and then stopped believing, so had a vacant space in their heads for someone to tell them what to do (others chose Marx or Cardinal Newman), and partly because a quiet, earnest place like Cambridge in that era had no natural immunity to messianic figures, just as European politics then had no natural immunity to dictators.
[14] This is actually from the Ordinatio of Duns Scotus (ca. 1300), with "number" replaced by "gender." Plus ca change.
Wolter, Allan (trans), Duns Scotus: Philosophical Writings, Nelson, 1963, p. 92.
[15] Frankfurt, Harry, On Bullshit, Princeton University Press, 2005.
[16] Some introductions to philosophy now take the line that philosophy is worth studying as a process rather than for any particular truths you'll learn. The philosophers whose works they cover would be rolling in their graves at that. They hoped they were doing more than serving as examples of how to argue: they hoped they were getting results. Most were wrong, but it doesn't seem an impossible hope.
This argument seems to me like someone in 1500 looking at the lack of results achieved by alchemy and saying its value was as a process. No, they were going about it wrong. It turns out it is possible to transmute lead into gold (though not economically at current energy prices), but the route to that knowledge was to backtrack and try another approach.

The Future of Web Startups

There's something interesting happening right now. Startups are undergoing the same transformation that technology does when it becomes cheaper.
It's a pattern we see over and over in technology. Initially there's some device that's very expensive and made in small quantities. Then someone discovers how to make them cheaply; many more get built; and as a result they can be used in new ways.
Computers are a familiar example. When I was a kid, computers were big, expensive machines built one at a time. Now they're a commodity. Now we can stick computers in everything.
This pattern is very old. Most of the turning points in economic history are instances of it. It happened to steel in the 1850s, and to power in the 1780s. It happened to cloth manufacture in the thirteenth century, generating the wealth that later brought about the Renaissance. Agriculture itself was an instance of this pattern.
Now as well as being produced by startups, this pattern is happening to startups. It's so cheap to start web startups that orders of magnitudes more will be started. If the pattern holds true, that should cause dramatic changes.
1. Lots of Startups
So my first prediction about the future of web startups is pretty straightforward: there will be a lot of them. When starting a startup was expensive, you had to get the permission of investors to do it. Now the only threshold is courage.
Even that threshold is getting lower, as people watch others take the plunge and survive. In the last batch of startups we funded, we had several founders who said they'd thought of applying before, but weren't sure and got jobs instead. It was only after hearing reports of friends who'd done it that they decided to try it themselves.
Starting a startup is hard, but having a 9 to 5 job is hard too, and in some ways a worse kind of hard. In a startup you have lots of worries, but you don't have that feeling that your life is flying by like you do in a big company. Plus in a startup you could make much more money.
As word spreads that startups work, the number may grow to a point that would now seem surprising.
We now think of it as normal to have a job at a company, but this is the thinnest of historical veneers. Just two or three lifetimes ago, most people in what are now called industrialized countries lived by farming. So while it may seem surprising to propose that large numbers of people will change the way they make a living, it would be more surprising if they didn't.
2. Standardization
When technology makes something dramatically cheaper, standardization always follows. When you make things in large volumes you tend to standardize everything that doesn't need to change.
At Y Combinator we still only have four people, so we try to standardize everything. We could hire employees, but we want to be forced to figure out how to scale investing.
We often tell startups to release a minimal version one quickly, then let the needs of the users determine what to do next. In essense, let the market design the product. We've done the same thing ourselves. We think of the techniques we're developing for dealing with large numbers of startups as like software. Sometimes it literally is software, like Hacker News and our application system.
One of the most important things we've been working on standardizing are investment terms. Till now investment terms have been individually negotiated. This is a problem for founders, because it makes raising money take longer and cost more in legal fees. So as well as using the same paperwork for every deal we do, we've commissioned generic angel paperwork that all the startups we fund can use for future rounds.
Some investors will still want to cook up their own deal terms. Series A rounds, where you raise a million dollars or more, will be custom deals for the forseeable future. But I think angel rounds will start to be done mostly with standardized agreements. An angel who wants to insert a bunch of complicated terms into the agreement is probably not one you want anyway.
3. New Attitude to Acquisition
Another thing I see starting to get standardized is acquisitions. As the volume of startups increases, big companies will start to develop standardized procedures that make acquisitions little more work than hiring someone.
Google is the leader here, as in so many areas of technology. They buy a lot of startups— more than most people realize, because they only announce a fraction of them. And being Google, they're figuring out how to do it efficiently.
One problem they've solved is how to think about acquisitions. For most companies, acquisitions still carry some stigma of inadequacy. Companies do them because they have to, but there's usually some feeling they shouldn't have to—that their own programmers should be able to build everything they need.
Google's example should cure the rest of the world of this idea. Google has by far the best programmers of any public technology company. If they don't have a problem doing acquisitions, the others should have even less problem. However many Google does, Microsoft should do ten times as many.
One reason Google doesn't have a problem with acquisitions is that they know first-hand the quality of the people they can get that way. Larry and Sergey only started Google after making the rounds of the search engines trying to sell their idea and finding no takers. They've been the guys coming in to visit the big company, so they know who might be sitting across that conference table from them.
4. Riskier Strategies are Possible
Risk is always proportionate to reward. The way to get really big returns is to do things that seem crazy, like starting a new search engine in 1998, or turning down a billion dollar acquisition offer.
This has traditionally been a problem in venture funding. Founders and investors have different attitudes to risk. Knowing that risk is on average proportionate to reward, investors like risky strategies, while founders, who don't have a big enough sample size to care what's true on average, tend to be more conservative.
If startups are easy to start, this conflict goes away, because founders can start them younger, when it's rational to take more risk, and can start more startups total in their careers. When founders can do lots of startups, they can start to look at the world in the same portfolio-optimizing way as investors. And that means the overall amount of wealth created can be greater, because strategies can be riskier.
5. Younger, Nerdier Founders
If startups become a cheap commodity, more people will be able to have them, just as more people could have computers once microprocessors made them cheap. And in particular, younger and more technical founders will be able to start startups than could before.
Back when it cost a lot to start a startup, you had to convince investors to let you do it. And that required very different skills from actually doing the startup. If investors were perfect judges, the two would require exactly the same skills. But unfortunately most investors are terrible judges. I know because I see behind the scenes what an enormous amount of work it takes to raise money, and the amount of selling required in an industry is always inversely proportional to the judgement of the buyers.
Fortunately, if startups get cheaper to start, there's another way to convince investors. Instead of going to venture capitalists with a business plan and trying to convince them to fund it, you can get a product launched on a few tens of thousands of dollars of seed money from us or your uncle, and approach them with a working company instead of a plan for one. Then instead of having to seem smooth and confident, you can just point them to Alexa.
This way of convincing investors is better suited to hackers, who often went into technology in part because they felt uncomfortable with the amount of fakeness required in other fields.
6. Startup Hubs Will Persist
It might seem that if startups get cheap to start, it will mean the end of startup hubs like Silicon Valley. If all you need to start a startup is rent money, you should be able to do it anywhere.
This is kind of true and kind of false. It's true that you can now start a startup anywhere. But you have to do more with a startup than just start it. You have to make it succeed. And that is more likely to happen in a startup hub.
I've thought a lot about this question, and it seems to me the increasing cheapness of web startups will if anything increase the importance of startup hubs. The value of startup hubs, like centers for any kind of business, lies in something very old-fashioned: face to face meetings. No technology in the immediate future will replace walking down University Ave and running into a friend who tells you how to fix a bug that's been bothering you all weekend, or visiting a friend's startup down the street and ending up in a conversation with one of their investors.
The question of whether to be in a startup hub is like the question of whether to take outside investment. The question is not whether you need it, but whether it brings any advantage at all. Because anything that brings an advantage will give your competitors an advantage over you if they do it and you don't. So if you hear someone saying "we don't need to be in Silicon Valley," that use of the word "need" is a sign they're not even thinking about the question right.
And while startup hubs are as powerful magnets as ever, the increasing cheapness of starting a startup means the particles they're attracting are getting lighter. A startup now can be just a pair of 22 year old guys. A company like that can move much more easily than one with 10 people, half of whom have kids.
We know because we make people move for Y Combinator, and it doesn't seem to be a problem. The advantage of being able to work together face to face for three months outweighs the inconvenience of moving. Ask anyone who's done it.
The mobility of seed-stage startups means that seed funding is a national business. One of the most common emails we get is from people asking if we can help them set up a local clone of Y Combinator. But this just wouldn't work. Seed funding isn't regional, just as big research universities aren't.
Is seed funding not merely national, but international? Interesting question. There are signs it may be. We've had an ongoing stream of founders from outside the US, and they tend to do particularly well, because they're all people who were so determined to succeed that they were willing to move to another country to do it.
The more mobile startups get, the harder it would be to start new silicon valleys. If startups are mobile, the best local talent will go to the real Silicon Valley, and all they'll get at the local one will be the people who didn't have the energy to move.
This is not a nationalistic idea, incidentally. It's cities that compete, not countries. Atlanta is just as hosed as Munich.
7. Better Judgement Needed
If the number of startups increases dramatically, then the people whose job is to judge them are going to have to get better at it. I'm thinking particularly of investors and acquirers. We now get on the order of 1000 applications a year. What are we going to do if we get 10,000?
That's actually an alarming idea. But we'll figure out some kind of answer. We'll have to. It will probably involve writing some software, but fortunately we can do that.
Acquirers will also have to get better at picking winners. They generally do better than investors, because they pick later, when there's more performance to measure. But even at the most advanced acquirers, identifying companies to buy is extremely ad hoc, and completing the acquisition often involves a great deal of unneccessary friction.
I think acquirers may eventually have chief acquisition officers who will both identify good acquisitions and make the deals happen. At the moment those two functions are separate. Promising new startups are often discovered by developers. If someone powerful enough wants to buy them, the deal is handed over to corp dev guys to negotiate. It would be better if both were combined in one group, headed by someone with a technical background and some vision of what they wanted to accomplish. Maybe in the future big companies will have both a VP of Engineering responsible for technology developed in-house, and a CAO responsible for bringing technology in from outside.
At the moment, there is no one within big companies who gets in trouble when they buy a startup for $200 million that they could have bought earlier for $20 million. There should start to be someone who gets in trouble for that.
8. College Will Change
If the best hackers start their own companies after college instead of getting jobs, that will change what happens in college. Most of these changes will be for the better. I think the experience of college is warped in a bad way by the expectation that afterward you'll be judged by potential employers.
One change will be in the meaning of "after college," which will switch from when one graduates from college to when one leaves it. If you're starting your own company, why do you need a degree? We don't encourage people to start startups during college, but the best founders are certainly capable of it. Some of the most successful companies we've funded were started by undergrads.
I grew up in a time where college degrees seemed really important, so I'm alarmed to be saying things like this, but there's nothing magical about a degree. There's nothing that magically changes after you take that last exam. The importance of degrees is due solely to the administrative needs of large organizations. These can certainly affect your life—it's hard to get into grad school, or to get a work visa in the US, without an undergraduate degree—but tests like this will matter less and less.
As well as mattering less whether students get degrees, it will also start to matter less where they go to college. In a startup you're judged by users, and they don't care where you went to college. So in a world of startups, elite universities will play less of a role as gatekeepers. In the US it's a national scandal how easily children of rich parents game college admissions. But the way this problem ultimately gets solved may not be by reforming the universities but by going around them. We in the technology world are used to that sort of solution: you don't beat the incumbents; you redefine the problem to make them irrelevant.
The greatest value of universities is not the brand name or perhaps even the classes so much as the people you meet. If it becomes common to start a startup after college, students may start trying to maximize this. Instead of focusing on getting internships at companies they want to work for, they may start to focus on working with other students they want as cofounders.
What students do in their classes will change too. Instead of trying to get good grades to impress future employers, students will try to learn things. We're talking about some pretty dramatic changes here.
9. Lots of Competitors
If it gets easier to start a startup, it's easier for competitors too. That doesn't erase the advantage of increased cheapness, however. You're not all playing a zero-sum game. There's not some fixed number of startups that can succeed, regardless of how many are started.
In fact, I don't think there's any limit to the number of startups that could succeed. Startups succeed by creating wealth, which is the satisfaction of people's desires. And people's desires seem to be effectively infinite, at least in the short term.
What the increasing number of startups does mean is that you won't be able to sit on a good idea. Other people have your idea, and they'll be increasingly likely to do something about it.
10. Faster Advances
There's a good side to that, at least for consumers of technology. If people get right to work implementing ideas instead of sitting on them, technology will evolve faster.
Some kinds of innovations happen a company at a time, like the punctuated equilibrium model of evolution. There are some kinds of ideas that are so threatening that it's hard for big companies even to think of them. Look at what a hard time Microsoft is having discovering web apps. They're like a character in a movie that everyone in the audience can see something bad is about to happen to, but who can't see it himself. The big innovations that happen a company at a time will obviously happen faster if the rate of new companies increases.
But in fact there will be a double speed increase. People won't wait as long to act on new ideas, but also those ideas will increasingly be developed within startups rather than big companies. Which means technology will evolve faster per company as well.
Big companies are just not a good place to make things happen fast. I talked recently to a founder whose startup had been acquired by a big company. He was a precise sort of guy, so he'd measured their productivity before and after. He counted lines of code, which can be a dubious measure, but in this case was meaningful because it was the same group of programmers. He found they were one thirteenth as productive after the acquisition.
The company that bought them was not a particularly stupid one. I think what he was measuring was mostly the cost of bigness. I experienced this myself, and his number sounds about right. There's something about big companies that just sucks the energy out of you.
Imagine what all that energy could do if it were put to use. There is an enormous latent capacity in the world's hackers that most people don't even realize is there. That's the main reason we do Y Combinator: to let loose all this energy by making it easy for hackers to start their own startups.
A Series of Tubes
The process of starting startups is currently like the plumbing in an old house. The pipes are narrow and twisty, and there are leaks in every joint. In the future this mess will gradually be replaced by a single, huge pipe. The water will still have to get from A to B, but it will get there faster and without the risk of spraying out through some random leak.
This will change a lot of things for the better. In a big, straight pipe like that, the force of being measured by one's performance will propagate back through the whole system. Performance is always the ultimate test, but there are so many kinks in the plumbing now that most people are insulated from it most of the time. So you end up with a world in which high school students think they need to get good grades to get into elite colleges, and college students think they need to get good grades to impress employers, within which the employees waste most of their time in political battles, and from which consumers have to buy anyway because there are so few choices. Imagine if that sequence became a big, straight pipe. Then the effects of being measured by performance would propagate all the way back to high school, flushing out all the arbitrary stuff people are measured by now. That is the future of web startups.

Why to Move to a Startup Hub

After the last talk I gave, one of the organizers got up on the stage to deliver an impromptu rebuttal. That never happened before. I only heard the first few sentences, but that was enough to tell what I said that upset him: that startups would do better if they moved to Silicon Valley.
This conference was in London, and most of the audience seemed to be from the UK. So saying startups should move to Silicon Valley seemed like a nationalistic remark: an obnoxious American telling them that if they wanted to do things right they should all just move to America.
Actually I'm less American than I seem. I didn't say so, but I'm British by birth. And just as Jews are ex officio allowed to tell Jewish jokes, I don't feel like I have to bother being diplomatic with a British audience.
The idea that startups would do better to move to Silicon Valley is not even a nationalistic one. [1] It's the same thing I say to startups in the US. Y Combinator alternates between coasts every 6 months. Every other funding cycle is in Boston. And even though Boston is the second biggest startup hub in the US (and the world), we tell the startups from those cycles that their best bet is to move to Silicon Valley. If that's true of Boston, it's even more true of every other city.
This is about cities, not countries.
And I think I can prove I'm right. You can easily reduce the opposing argument ad what most people would agree was absurdum. Few would be willing to claim that it doesn't matter at all where a startup is—that a startup operating out of a small agricultural town wouldn't benefit from moving to a startup hub. Most people could see how it might be helpful to be in a place where there was infrastructure for startups, accumulated knowledge about how to make them work, and other people trying to do it. And yet whatever argument you use to prove that startups don't need to move from London to Silicon Valley could equally well be used to prove startups don't need to move from smaller towns to London.
The difference between cities is a matter of degree. And if, as nearly everyone who knows agrees, startups are better off in Silicon Valley than Boston, then they're better off in Silicon Valley than everywhere else too.
I realize I might seem to have a vested interest in this conclusion, because startups that move to the US might do it through Y Combinator. But the American startups we've funded will attest that I say the same thing to them.
I'm not claiming of course that every startup has to go to Silicon Valley to succeed. Just that all other things being equal, the more of a startup hub a place is, the better startups will do there. But other considerations can outweigh the advantages of moving. I'm not saying founders with families should uproot them to move halfway around the world; that might be too much of a distraction.
Immigration difficulties might be another reason to stay put. Dealing with immigration problems is like raising money: for some reason it seems to consume all your attention. A startup can't afford much of that. One Canadian startup we funded spent about 6 months working on moving to the US. Eventually they just gave up, because they couldn't afford to take so much time away from working on their software.
(If another country wanted to establish a rival to Silicon Valley, the single best thing they could do might be to create a special visa for startup founders. US immigration policy is one of Silicon Valley's biggest weaknesses.)
If your startup is connected to a specific industry, you may be better off in one of its centers. A startup doing something related to entertainment might want to be in New York or LA.
And finally, if a good investor has committed to fund you if you stay where you are, you should probably stay. Finding investors is hard. You generally shouldn't pass up a definite funding offer to move. [2]
In fact, the quality of the investors may be the main advantage of startup hubs. Silicon Valley investors are noticeably more aggressive than Boston ones. Over and over, I've seen startups we've funded snatched by west coast investors out from under the noses of Boston investors who saw them first but acted too slowly. At this year's Boston Demo Day, I told the audience that this happened every year, so if they saw a startup they liked, they should make them an offer. And yet within a month it had happened again: an aggressive west coast VC who had met the founder of a YC-funded startup a week before beat out a Boston VC who had known him for years. By the time the Boston VC grasped what was happening, the deal was already gone.
Boston investors will admit they're more conservative. Some want to believe this comes from the city's prudent Yankee character. But Occam's razor suggests the truth is less flattering. Boston investors are probably more conservative than Silicon Valley investors for the same reason Chicago investors are more conservative than Boston ones. They don't understand startups as well.
West coast investors aren't bolder because they're irresponsible cowboys, or because the good weather makes them optimistic. They're bolder because they know what they're doing. They're the skiers who ski on the diamond slopes. Boldness is the essence of venture investing. The way you get big returns is not by trying to avoid losses, but by trying to ensure you get some of the big hits. And the big hits often look risky at first.
Like Facebook. Facebook was started in Boston. Boston VCs had the first shot at them. But they said no, so Facebook moved to Silicon Valley and raised money there. The partner who turned them down now says that "may turn out to have been a mistake."
Empirically, boldness wins. If the aggressive ways of west coast investors are going to come back to bite them, it has been a long time coming. Silicon Valley has been pulling ahead of Boston since the 1970s. If there was going to be a comeuppance for the west coast investors, the bursting of the Bubble would have been it. But since then the west coast has just pulled further ahead.
West coast investors are confident enough of their judgement to act boldly; east coast investors, not so much; but anyone who thinks east coast investors act that way out of prudence should see the frantic reactions of an east coast VC in the process of losing a deal to a west coast one.
In addition to the concentration that comes from specialization, startup hubs are also markets. And markets are usually centralized. Even now, when traders could be anywhere, they cluster in a few cities. It's hard to say exactly what it is about face to face contact that makes deals happen, but whatever it is, it hasn't yet been duplicated by technology.
Walk down University Ave at the right time, and you might overhear five different people talking on the phone about deals. In fact, this is part of the reason Y Combinator is in Boston half the time: it's hard to stand that year round. But though it can sometimes be annoying to be surrounded by people who only think about one thing, it's the place to be if that one thing is what you're trying to do.
I was talking recently to someone who works on search at Google. He knew a lot of people at Yahoo, so he was in a good position to compare the two companies. I asked him why Google was better at search. He said it wasn't anything specific Google did, but simply that they understood search so much better.
And that's why startups thrive in startup hubs like Silicon Valley. Startups are a very specialized business, as specialized as diamond cutting. And in startup hubs they understand it.
Notes
[1] The nationalistic idea is the converse: that startups should stay in a certain city because of the country it's in. If you really have a "one world" viewpoint, deciding to move from London to Silicon Valley is no different from deciding to move from Chicago to Silicon Valley.
[2] An investor who merely seems like he will fund you, however, you can ignore. Seeming like they will fund you one day is the way investors say No.

Six Principles for Making New Things

The fiery reaction to the release of Arc had an unexpected consequence: it made me realize I had a design philosophy. The main complaint of the more articulate critics was that Arc seemed so flimsy. After years of working on it, all I had to show for myself were a few thousand lines of macros? Why hadn't I worked on more substantial problems?
As I was mulling over these remarks it struck me how familiar they seemed. This was exactly the kind of thing people said at first about Viaweb, and Y Combinator, and most of my essays.
When we launched Viaweb, it seemed laughable to VCs and e-commerce "experts." We were just a couple guys in an apartment, which did not seem cool in 1995 the way it does now. And the thing we'd built, as far as they could tell, wasn't even software. Software, to them, equalled big, honking Windows apps. Since Viaweb was the first web-based app they'd seen, it seemed to be nothing more than a website. They were even more contemptuous when they discovered that Viaweb didn't process credit card transactions (we didn't for the whole first year). Transaction processing seemed to them what e-commerce was all about. It sounded serious and difficult.
And yet, mysteriously, Viaweb ended up crushing all its competitors.
The initial reaction to Y Combinator was almost identical. It seemed laughably lightweight. Startup funding meant series A rounds: millions of dollars given to a small number of startups founded by people with established credentials after months of serious, businesslike meetings, on terms described in a document a foot thick. Y Combinator seemed inconsequential. It's too early to say yet whether Y Combinator will turn out like Viaweb, but judging from the number of imitations, a lot of people seem to think we're on to something.
I can't measure whether my essays are successful, except in page views, but the reaction to them is at least different from when I started. At first the default reaction of the Slashdot trolls was (translated into articulate terms): "Who is this guy and what authority does he have to write about these topics? I haven't read the essay, but there's no way anything so short and written in such an informal style could have anything useful to say about such and such topic, when people with degrees in the subject have already written many thick books about it." Now there's a new generation of trolls on a new generation of sites, but they have at least started to omit the initial "Who is this guy?"
Now people are saying the same things about Arc that they said at first about Viaweb and Y Combinator and most of my essays. Why the pattern? The answer, I realized, is that my m.o. for all four has been the same.
Here it is: I like to find (a) simple solutions (b) to overlooked problems (c) that actually need to be solved, and (d) deliver them as informally as possible, (e) starting with a very crude version 1, then (f) iterating rapidly.
When I first laid out these principles explicitly, I noticed something striking: this is practically a recipe for generating a contemptuous initial reaction. Though simple solutions are better, they don't seem as impressive as complex ones. Overlooked problems are by definition problems that most people think don't matter. Delivering solutions in an informal way means that instead of judging something by the way it's presented, people have to actually understand it, which is more work. And starting with a crude version 1 means your initial effort is always small and incomplete.
I'd noticed, of course, that people never seemed to grasp new ideas at first. I thought it was just because most people were stupid. Now I see there's more to it than that. Like a contrarian investment fund, someone following this strategy will almost always be doing things that seem wrong to the average person.
As with contrarian investment strategies, that's exactly the point. This technique is successful (in the long term) because it gives you all the advantages other people forgo by trying to seem legit. If you work on overlooked problems, you're more likely to discover new things, because you have less competition. If you deliver solutions informally, you (a) save all the effort you would have had to expend to make them look impressive, and (b) avoid the danger of fooling yourself as well as your audience. And if you release a crude version 1 then iterate, your solution can benefit from the imagination of nature, which, as Feynman pointed out, is more powerful than your own.
In the case of Viaweb, the simple solution was to make the software run on the server. The overlooked problem was to generate web sites automatically; in 1995, online stores were all made by hand by human designers, but we knew this wouldn't scale. The part that actually mattered was graphic design, not transaction processing. The informal delivery mechanism was me, showing up in jeans and a t-shirt at some retailer's office. And the crude version 1 was, if I remember correctly, less than 10,000 lines of code when we launched.
The power of this technique extends beyond startups and programming languages and essays. It probably extends to any kind of creative work. Certainly it can be used in painting: this is exactly what Cezanne and Klee did.
At Y Combinator we bet money on it, in the sense that we encourage the startups we fund to work this way. There are always new ideas right under your nose. So look for simple things that other people have overlooked—things people will later claim were "obvious"—especially when they've been led astray by obsolete conventions, or by trying to do things that are superficially impressive. Figure out what the real problem is, and make sure you solve that. Don't worry about trying to look corporate; the product is what wins in the long term. And launch as soon as you can, so you start learning from users what you should have been making.
Reddit is a classic example of this approach. When Reddit first launched, it seemed like there was nothing to it. To the graphically unsophisticated its deliberately minimal design seemed like no design at all. But Reddit solved the real problem, which was to tell people what was new and otherwise stay out of the way. As a result it became massively successful. Now that conventional ideas have caught up with it, it seems obvious. People look at Reddit and think the founders were lucky. Like all such things, it was harder than it looked. The Reddits pushed so hard against the current that they reversed it; now it looks like they're merely floating downstream.
So when you look at something like Reddit and think "I wish I could think of an idea like that," remember: ideas like that are all around you. But you ignore them because they look wrong.

Trolls

A user on Hacker News recently posted a comment that set me thinking:
Something about hacker culture that never really set well with me was this—the nastiness. ... I just don't understand why people troll like they do.
I've thought a lot over the last couple years about the problem of trolls. It's an old one, as old as forums, but we're still just learning what the causes are and how to address them.
There are two senses of the word "troll." In the original sense it meant someone, usually an outsider, who deliberately stirred up fights in a forum by saying controversial things. [1] For example, someone who didn't use a certain programming language might go to a forum for users of that language and make disparaging remarks about it, then sit back and watch as people rose to the bait. This sort of trolling was in the nature of a practical joke, like letting a bat loose in a room full of people.
The definition then spread to people who behaved like assholes in forums, whether intentionally or not. Now when people talk about trolls they usually mean this broader sense of the word. Though in a sense this is historically inaccurate, it is in other ways more accurate, because when someone is being an asshole it's usually uncertain even in their own mind how much is deliberate. That is arguably one of the defining qualities of an asshole.
I think trolling in the broader sense has four causes. The most important is distance. People will say things in anonymous forums that they'd never dare say to someone's face, just as they'll do things in cars that they'd never do as pedestrians—like tailgate people, or honk at them, or cut them off.
Trolling tends to be particularly bad in forums related to computers, and I think that's due to the kind of people you find there. Most of them (myself included) are more comfortable dealing with abstract ideas than with people. Hackers can be abrupt even in person. Put them on an anonymous forum, and the problem gets worse.
The third cause of trolling is incompetence. If you disagree with something, it's easier to say "you suck" than to figure out and explain exactly what you disagree with. You're also safe that way from refutation. In this respect trolling is a lot like graffiti. Graffiti happens at the intersection of ambition and incompetence: people want to make their mark on the world, but have no other way to do it than literally making a mark on the world. [2]
The final contributing factor is the culture of the forum. Trolls are like children (many are children) in that they're capable of a wide range of behavior depending on what they think will be tolerated. In a place where rudeness isn't tolerated, most can be polite. But vice versa as well.
There's a sort of Gresham's Law of trolls: trolls are willing to use a forum with a lot of thoughtful people in it, but thoughtful people aren't willing to use a forum with a lot of trolls in it. Which means that once trolling takes hold, it tends to become the dominant culture. That had already happened to Slashdot and Digg by the time I paid attention to comment threads there, but I watched it happen to Reddit.
News.YC is, among other things, an experiment to see if this fate can be avoided. The sites's guidelines explicitly ask people not to say things they wouldn't say face to face. If someone starts being rude, other users will step in and tell them to stop. And when people seem to be deliberately trolling, we ban them ruthlessly.
Technical tweaks may also help. On Reddit, votes on your comments don't affect your karma score, but they do on News.YC. And it does seem to influence people when they can see their reputation in the eyes of their peers drain away after making an asshole remark. Often users have second thoughts and delete such comments.
One might worry this would prevent people from expressing controversial ideas, but empirically that doesn't seem to be what happens. When people say something substantial that gets modded down, they stubbornly leave it up. What people delete are wisecracks, because they have less invested in them.
So far the experiment seems to be working. The level of conversation on News.YC is as high as on any forum I've seen. But we still only have about 8,000 uniques a day. The conversations on Reddit were good when it was that small. The challenge is whether we can keep things this way.
I'm optimistic we will. We're not depending just on technical tricks. The core users of News.YC are mostly refugees from other sites that were overrun by trolls. They feel about trolls roughly the way refugees from Cuba or Eastern Europe feel about dictatorships. So there are a lot of people working to keep this from happening again.
Notes
[1] I mean forum in the general sense of a place to exchange views. The original Internet forums were not web sites but Usenet newsgroups.
[2] I'm talking here about everyday tagging. Some graffiti is quite impressive (anything becomes art if you do it well enough) but the median tag is just visual spam.

A New Venture Animal

 I was annoyed recently to read a description of Y Combinator that said "Y Combinator does seed funding for startups." What was especially annoying about it was that I wrote it. This doesn't really convey what we do. And the reason it's inaccurate is that, paradoxically, funding very early stage startups is not mainly about funding.
Saying YC does seed funding for startups is a description in terms of earlier models. It's like calling a car a horseless carriage.
When you scale animals you can't just keep everything in proportion. For example, volume grows as the cube of linear dimension, but surface area only as the square. So as animals get bigger they have trouble radiating heat. That's why mice and rabbits are furry and elephants and hippos aren't. You can't make a mouse by scaling down an elephant.
YC represents a new, smaller kind of animal—so much smaller that all the rules are different.
Before us, most companies in the startup funding business were venture capital funds. VCs generally fund later stage companies than we do. And they supply so much money that, even though the other things they do may be very valuable, it's not that inaccurate to regard VCs as sources of money. Good VCs are "smart money," but they're still money.
All good investors supply a combination of money and help. But these scale differently, just as volume and surface area do. Late stage venture investors supply huge amounts of money and comparatively little help: when a company about to go public gets a mezzanine round of $50 million, the deal tends to be almost entirely about money. As you move earlier in the venture funding process, the ratio of help to money increases, because earlier stage companies have different needs. Early stage companies need less money because they're smaller and cheaper to run, but they need more help because life is so precarious for them. So when VCs do a series A round for, say, $2 million, they generally expect to offer a significant amount of help along with the money.
Y Combinator occupies the earliest end of the spectrum. We're at least one and generally two steps before VC funding. (Though some startups go straight from YC to VC, the most common trajectory is to do an angel round first.) And what happens at Y Combinator is as different from what happens in a series A round as a series A round is from a mezzanine financing.
At our end, money is almost a negligible factor. The startup usually consists of just the founders, and their living expenses are the company's main expense. And since most founders are under 30, their living expenses are low. But at this early stage companies need a lot of help. Practically every question is still unanswered. Some companies we've funded have been working on their software for a year or more, but others haven't decided what to work on, or even who the founders should be.
When PR people and journalists recount the histories of startups after they've become big, they always underestimate how uncertain things were at first. They're not being deliberately misleading. When you look at a company like Google, it's hard to imagine they could once have been small and helpless. Sure, at one point they were a just a couple guys in a garage—but even then their greatness was assured, and all they had to do was roll forward along the railroad tracks of destiny.
Far from it. A lot of startups with just as promising beginnings end up failing. Google has such momentum now that it would be hard for anyone to stop them. But all it would have taken in the beginning would have been for two Google employees to focus on the wrong things for six months, and the company could have died.
We know, because we've been there, just how vulnerable startups are in the earliest phases. Curiously enough, that's why founders tend to get so rich from them. Reward is always proportionate to risk, and very early stage startups are insanely risky.
What we really do at Y Combinator is get startups launched straight. One of many metaphors you could use for YC is a steam catapult on an aircraft carrier. We get startups airborne. Barely airborne, but enough that they can accelerate fast.
When you're launching planes they have to be set up properly or you're just launching projectiles. They have to be pointed straight down the deck; the wings have to be trimmed properly; the engines have to be at full power; the pilot has to be ready. These are the kind of problems we deal with. After we fund startups we work closely with them for three months—so closely in fact that we insist they move to where we are. And what we do in those three months is make sure everything is set up for launch. If there are tensions between cofounders we help sort them out. We get all the paperwork set up properly so there are no nasty surprises later. If the founders aren't sure what to focus on first, we try to figure that out. If there is some obstacle right in front of them, we either try to remove it, or shift the startup sideways. The goal is to get every distraction out of the way so the founders can use that time to build (or finish building) something impressive. And then near the end of the three months we push the button on the steam catapult in the form of Demo Day, where the current group of startups present to pretty much every investor in Silicon Valley.
Launching companies isn't identical with launching products. Though we do spend a lot of time on launch strategies for products, there are some things that take too long to build for a startup to launch them before raising their next round of funding. Several of the most promising startups we've funded haven't launched their products yet, but are definitely launched as companies.
In the earliest stage, startups not only have more questions to answer, but they tend to be different kinds of questions. In later stage startups the questions are about deals, or hiring, or organization. In the earliest phase they tend to be about technology and design. What do you make? That's the first problem to solve. That's why our motto is "Make something people want." This is always a good thing for companies to do, but it's even more important early on, because it sets the bounds for every other question. Who you hire, how much money you raise, how you market yourself—they all depend on what you're making.
Because the early problems are so much about technology and design, you probably need to be hackers to do what we do. While some VCs have technical backgrounds, I don't know any who still write code. Their expertise is mostly in business—as it should be, because that's the kind of expertise you need in the phase between series A and (if you're lucky) IPO.
We're so different from VCs that we're really a different kind of animal. Can we claim founders are better off as a result of this new type of venture firm? I'm pretty sure the answer is yes, because YC is an improved version of what happened to our startup, and our case was not atypical. We started Viaweb with $10,000 in seed money from our friend Julian. He was a lawyer and arranged all our paperwork, so we could just code. We spent three months building a version 1, which we then presented to investors to raise more money. Sounds familiar, doesn't it? But YC improves on that significantly. Julian knew a lot about law and business, but his advice ended there; he was not a startup guy. So we made some basic mistakes early on. And when we presented to investors, we presented to only 2, because that was all we knew. If we'd had our later selves to encourage and advise us, and Demo Day to present at, we would have been in much better shape. We probably could have raised money at 3 to 5 times the valuation we did.
If we take 6% of a company we fund, the founders only have to do 6.4% better in their next round of funding to end up net ahead. We certainly manage that.
So who is our 6% coming out of? If the founders end up net ahead it's not coming out of them. So is it coming out of later stage investors? Well, they do end up paying more. But I think they pay more because the company is actually more valuable. And later stage investors have no problem with that. The returns of a VC fund depend on the quality of the companies they invest in, not how cheaply they can buy stock in them.
If what we do is useful, why wasn't anyone doing it before? There are two answers to that. One is that people were doing it before, just haphazardly on a smaller scale. Before us, seed funding came primarily from individual angel investors. Larry and Sergey, for example, got their seed funding from Andy Bechtolsheim, one of the founders of Sun. And because he was a startup guy he probably gave them useful advice. But raising money from angel investors is a hit or miss thing. It's a sideline for most of them, so they only do a handful of deals a year and they don't spend a lot of time on the startups they invest in. And they're hard to reach, because they don't want random startups pestering them with business plans. The Google guys were lucky because they knew someone who knew Bechtolsheim. It generally takes a personal introduction with angels.
The other reason no one was doing quite what we do is that till recently it was a lot more expensive to start a startup. You'll notice we haven't funded any biotech startups. That's still expensive. But advancing technology has made web startups so cheap that you really can get a company airborne for $15,000. If you understand how to operate a steam catapult, at least.
So in effect what's happened is that a new ecological niche has opened up, and Y Combinator is the new kind of animal that has moved into it. We're not a replacement for venture capital funds. We occupy a new, adjacent niche. And conditions in our niche are really quite different. It's not just that the problems we face are different; the whole structure of the business is different. VCs are playing a zero-sum game. They're all competing for a slice of a fixed amount of "deal flow," and that explains a lot of their behavior. Whereas our m.o. is to create new deal flow, by encouraging hackers who would have gotten jobs to start their own startups instead. We compete more with employers than VCs.
It's not surprising something like this would happen. Most fields become more specialized—more articulated—as they develop, and startups are certainly an area in which there has been a lot of development over the past couple decades. The venture business in its present form is only about forty years old. It stands to reason it would evolve.
And it's natural that the new niche would at first be described, even by its inhabitants, in terms of the old one. But really Y Combinator is not in the startup funding business. Really we're more of a small, furry steam catapult.

You Weren't Meant to Have a Boss

A few days ago I was sitting in a cafe in Palo Alto and a group of programmers came in on some kind of scavenger hunt. It was obviously one of those corporate "team-building" exercises.
They looked familiar. I spend nearly all my time working with programmers in their twenties and early thirties. But something seemed wrong about these. There was something missing.
And yet the company they worked for is considered a good one, and from what I overheard of their conversation, they seemed smart enough. In fact, they seemed to be from one of the more prestigious groups within the company.
So why did it seem there was something odd about them?
I have a uniquely warped perspective, because nearly all the programmers I know are startup founders. We've now funded 80 startups with a total of about 200 founders, nearly all of them programmers. I spend a lot of time with them, and not much with other programmers. So my mental image of a young programmer is a startup founder.
The guys on the scavenger hunt looked like the programmers I was used to, but they were employees instead of founders. And it was startling how different they seemed.
So what, you may say. So I happen to know a subset of programmers who are especially ambitious. Of course less ambitious people will seem different. But the difference between the programmers I saw in the cafe and the ones I was used to wasn't just a difference of degree. Something seemed wrong.
I think it's not so much that there's something special about founders as that there's something missing in the lives of employees. I think startup founders, though statistically outliers, are actually living in a way that's more natural for humans.
I was in Africa last year and saw a lot of animals in the wild that I'd only seen in zoos before. It was remarkable how different they seemed. Particularly lions. Lions in the wild seem about ten times more alive. They're like different animals. And seeing those guys on their scavenger hunt was like seeing lions in a zoo after spending several years watching them in the wild.
Trees
What's so unnatural about working for a big company? The root of the problem is that humans weren't meant to work in such large groups.
Another thing you notice when you see animals in the wild is that each species thrives in groups of a certain size. A herd of impalas might have 100 adults; baboons maybe 20; lions rarely 10. Humans also seem designed to work in groups, and what I've read about hunter-gatherers accords with research on organizations and my own experience to suggest roughly what the ideal size is: groups of 8 work well; by 20 they're getting hard to manage; and a group of 50 is really unwieldy. [1]
Whatever the upper limit is, we are clearly not meant to work in groups of several hundred. And yet—for reasons having more to do with technology than human nature—a great many people work for companies with hundreds or thousands of employees.
Companies know groups that large wouldn't work, so they divide themselves into units small enough to work together. But to coordinate these they have to introduce something new: bosses.
These smaller groups are always arranged in a tree structure. Your boss is the point where your group attaches to the tree. But when you use this trick for dividing a large group into smaller ones, something strange happens that I've never heard anyone mention explicitly. In the group one level up from yours, your boss represents your entire group. A group of 10 managers is not merely a group of 10 people working together in the usual way. It's really a group of groups. Which means for a group of 10 managers to work together as if they were simply a group of 10 individuals, the group working for each manager would have to work as if they were a single person—the workers and manager would each share only one person's worth of freedom between them.
In practice a group of people never manage to act as if they were one person. But in a large organization divided into groups in this way, the pressure is always in that direction. Each group tries its best to work as if it were the small group of individuals that humans were designed to work in. That was the point of creating it. And when you propagate that constraint, the result is that each person gets freedom of action in inverse proportion to the size of the entire tree. [2]
Anyone who's worked for a large organization has felt this. You can feel the difference between working for a company with 100 employees and one with 10,000, even if your group has only 10 people.
Corn Syrup
A group of 10 people within a large organization is a kind of fake tribe. The number of people you interact with is about right. But something is missing: individual initiative. Tribes of hunter-gatherers have more freedom. The leaders have a little more power than other members of the tribe, but they don't generally tell them what to do and when the way a boss can.
It's not your boss's fault. The real problem is that in the group above you in the hierarchy, your entire group is one virtual person. Your boss is just the way that constraint is imparted to you.
So working in a group of 10 people within a large organization feels both right and wrong at the same time. On the surface it feels like the kind of group you're meant to work in, but something major is missing. A job at a big company is like high fructose corn syrup: it has some of the qualities of things you're meant to like, but is disastrously lacking in others.
Indeed, food is an excellent metaphor to explain what's wrong with the usual sort of job.
For example, working for a big company is the default thing to do, at least for programmers. How bad could it be? Well, food shows that pretty clearly. If you were dropped at a random point in America today, nearly all the food around you would be bad for you. Humans were not designed to eat white flour, refined sugar, high fructose corn syrup, and hydrogenated vegetable oil. And yet if you analyzed the contents of the average grocery store you'd probably find these four ingredients accounted for most of the calories. "Normal" food is terribly bad for you. The only people who eat what humans were actually designed to eat are a few Birkenstock-wearing weirdos in Berkeley.
If "normal" food is so bad for us, why is it so common? There are two main reasons. One is that it has more immediate appeal. You may feel lousy an hour after eating that pizza, but eating the first couple bites feels great. The other is economies of scale. Producing junk food scales; producing fresh vegetables doesn't. Which means (a) junk food can be very cheap, and (b) it's worth spending a lot to market it.
If people have to choose between something that's cheap, heavily marketed, and appealing in the short term, and something that's expensive, obscure, and appealing in the long term, which do you think most will choose?
It's the same with work. The average MIT graduate wants to work at Google or Microsoft, because it's a recognized brand, it's safe, and they'll get paid a good salary right away. It's the job equivalent of the pizza they had for lunch. The drawbacks will only become apparent later, and then only in a vague sense of malaise.
And founders and early employees of startups, meanwhile, are like the Birkenstock-wearing weirdos of Berkeley: though a tiny minority of the population, they're the ones living as humans are meant to. In an artificial world, only extremists live naturally.
Programmers
The restrictiveness of big company jobs is particularly hard on programmers, because the essence of programming is to build new things. Sales people make much the same pitches every day; support people answer much the same questions; but once you've written a piece of code you don't need to write it again. So a programmer working as programmers are meant to is always making new things. And when you're part of an organization whose structure gives each person freedom in inverse proportion to the size of the tree, you're going to face resistance when you do something new.
This seems an inevitable consequence of bigness. It's true even in the smartest companies. I was talking recently to a founder who considered starting a startup right out of college, but went to work for Google instead because he thought he'd learn more there. He didn't learn as much as he expected. Programmers learn by doing, and most of the things he wanted to do, he couldn't—sometimes because the company wouldn't let him, but often because the company's code wouldn't let him. Between the drag of legacy code, the overhead of doing development in such a large organization, and the restrictions imposed by interfaces owned by other groups, he could only try a fraction of the things he would have liked to. He said he has learned much more in his own startup, despite the fact that he has to do all the company's errands as well as programming, because at least when he's programming he can do whatever he wants.
An obstacle downstream propagates upstream. If you're not allowed to implement new ideas, you stop having them. And vice versa: when you can do whatever you want, you have more ideas about what to do. So working for yourself makes your brain more powerful in the same way a low-restriction exhaust system makes an engine more powerful.
Working for yourself doesn't have to mean starting a startup, of course. But a programmer deciding between a regular job at a big company and their own startup is probably going to learn more doing the startup.
You can adjust the amount of freedom you get by scaling the size of company you work for. If you start the company, you'll have the most freedom. If you become one of the first 10 employees you'll have almost as much freedom as the founders. Even a company with 100 people will feel different from one with 1000.
Working for a small company doesn't ensure freedom. The tree structure of large organizations sets an upper bound on freedom, not a lower bound. The head of a small company may still choose to be a tyrant. The point is that a large organization is compelled by its structure to be one.
Consequences
That has real consequences for both organizations and individuals. One is that companies will inevitably slow down as they grow larger, no matter how hard they try to keep their startup mojo. It's a consequence of the tree structure that every large organization is forced to adopt.
Or rather, a large organization could only avoid slowing down if they avoided tree structure. And since human nature limits the size of group that can work together, the only way I can imagine for larger groups to avoid tree structure would be to have no structure: to have each group actually be independent, and to work together the way components of a market economy do.
That might be worth exploring. I suspect there are already some highly partitionable businesses that lean this way. But I don't know any technology companies that have done it.
There is one thing companies can do short of structuring themselves as sponges: they can stay small. If I'm right, then it really pays to keep a company as small as it can be at every stage. Particularly a technology company. Which means it's doubly important to hire the best people. Mediocre hires hurt you twice: they get less done, but they also make you big, because you need more of them to solve a given problem.
For individuals the upshot is the same: aim small. It will always suck to work for large organizations, and the larger the organization, the more it will suck.
In an essay I wrote a couple years ago I advised graduating seniors to work for a couple years for another company before starting their own. I'd modify that now. Work for another company if you want to, but only for a small one, and if you want to start your own startup, go ahead.
The reason I suggested college graduates not start startups immediately was that I felt most would fail. And they will. But ambitious programmers are better off doing their own thing and failing than going to work at a big company. Certainly they'll learn more. They might even be better off financially. A lot of people in their early twenties get into debt, because their expenses grow even faster than the salary that seemed so high when they left school. At least if you start a startup and fail your net worth will be zero rather than negative. [3]
We've now funded so many different types of founders that we have enough data to see patterns, and there seems to be no benefit from working for a big company. The people who've worked for a few years do seem better than the ones straight out of college, but only because they're that much older.
The people who come to us from big companies often seem kind of conservative. It's hard to say how much is because big companies made them that way, and how much is the natural conservatism that made them work for the big companies in the first place. But certainly a large part of it is learned. I know because I've seen it burn off.
Having seen that happen so many times is one of the things that convinces me that working for oneself, or at least for a small group, is the natural way for programmers to live. Founders arriving at Y Combinator often have the downtrodden air of refugees. Three months later they're transformed: they have so much more confidence that they seem as if they've grown several inches taller. [4] Strange as this sounds, they seem both more worried and happier at the same time. Which is exactly how I'd describe the way lions seem in the wild.
Watching employees get transformed into founders makes it clear that the difference between the two is due mostly to environment—and in particular that the environment in big companies is toxic to programmers. In the first couple weeks of working on their own startup they seem to come to life, because finally they're working the way people are meant to.
Notes
[1] When I talk about humans being meant or designed to live a certain way, I mean by evolution.
[2] It's not only the leaves who suffer. The constraint propagates up as well as down. So managers are constrained too; instead of just doing things, they have to act through subordinates.
[3] Do not finance your startup with credit cards. Financing a startup with debt is usually a stupid move, and credit card debt stupidest of all. Credit card debt is a bad idea, period. It is a trap set by evil companies for the desperate and the foolish.
[4] The founders we fund used to be younger (initially we encouraged undergrads to apply), and the first couple times I saw this I used to wonder if they were actually getting physically taller.

Спасибо, что скачали книгу в бесплатной электронной библиотеке BooksCafe.Net
Оставить отзыв о книге
Все книги автора

