Спасибо, что скачали книгу в бесплатной электронной библиотеке BooksCafe.Net
Все книги автора
Эта же книга в других форматах
Приятного чтения!
- Вступление
- ГЛАВА ПЕРВАЯ
- ПЕНЬ, ДИСК ИЛИ ШАР?
- ЭРАТОСФЕН ИЗМЕРЯЕТ ЗЕМЛЮ
- СУДЬБА РУКОПИСЕЙ АРИСТАРХА САМОССКОГО
- СИСТЕМА КЛАВДИЯ ПТОЛЕМЕЯ
- ПЕРВОЕ КРУГОСВЕТНОЕ ПУТЕШЕСТВИЕ
- НАУКА И РЕЛИГИЯ
- ВОССТАНИЕ КОПЕРНИКА
- КОСТЕР, КОТОРЫЙ БУДЕТ ГОРЕТЬ ВЕЧНО
- ПЛАНЕТЫ ПЕРЕСТАЛИ БЫТЬ ЗВЕЗДАМИ
- ЗАКОНОДАТЕЛЬ НЕБА
- НАША ПЛАНЕТА
- ВСЕЛЕННАЯ, В КОТОРОЙ МЫ ЖИВЕМ
- ДЗЕТА ВОЗНИЧЕГО
- НАЧАЛО НОВОЙ ЭРЫ
- ГЛАВА ВТОРАЯ
- ГЛАВА ТРЕТЬЯ
- ГЛАВА ЧЕТВЕРТАЯ
- ГЛАВА ПЯТАЯ
- ГЛАВА ШЕСТАЯ
- ГЛАВА СЕДЬМАЯ
- ГЛАВА ВОСЬМАЯ
- ЗАКЛЮЧЕНИЕ
Художник Н. М. Кольчицкий
Словно перечеркнутый тонким зигзагом кольца висит в небе огромный Сатурн, окруженный узкими серпами своих многочисленных спутников.
…одна крепость за другой капитулирует перед натиском науки, пока, наконец, вся бесконечная область природы не оказывается завоеванной знанием и в ней не остается больше места для творца.Ф. Энгельс
Великий научный подвиг совершил Николай Коперник, разрушивший освященную церковью геоцентрическую систему строения мира Птолемея, утвердивший Солнце в центре планетной системы.
Джордано Бруно первым отодвинул границы Вселенной в бесконечность и утвердил мысль о множественности обитаемых миров.
Галилео Галилей был первым человеком, направившим на звездное небо телескоп. Сделанные им открытия окончательно утвердили правильность запрещенной церковью «коперниканской ереси».
Иоганна Кеплера называют «законодателем неба». Он открыл основные законы движения планет, те самые законы, по которым будут двигаться в межпланетном пространстве многие типы космических кораблей.
Современный крупный телескоп — очень большое, сложное и чрезвычайно точное сооружение.
Художник Н. И. ГришинВеличина этого города колоссальна. Если бы мы захотели нанести его очертания на плане, на котором мы изобразили Солнце и Проксиму, у нас бы ничего не вышло: диаметр нашего звездного города равен примерно 85 тыс. световых лет. Солнце находится на расстоянии примерно 23 тыс. световых лет от его центра. В общем потоке бесчисленных звезд летит Солнце вокруг центра Галактики со скоростью около 250 километров в секунду. Полный оборот оно делает примерно за 180 млн. лет. Снова всей территории нашего материка не хватит для того, чтобы даже в таком уменьшенном масштабе мы могли начертать область, которую уже объял человек силой своего разума.
Шаг за шагом завоевывал человек атмосферу, все выше и выше проникая в ее заоблачные дали чуткими органами своих приборов. На высоту лишь немногим больше 20 км поднимаются современные самолеты. Но и эта скромная на наш сегодняшний взгляд высота превосходит более чем в два раза высочайшие горные вершины и области, в которые осмеливаются залетать самые могучие птицы. На 22 км над поверхностью Земли поднимались стратостаты, до высоты в 36,5 км — радиозонды и до 40 км — шары-зонды. На этой высоте обычно догорают метеоры.
Во много раз подняли «потолок», достигнутый человеком, ракеты. Одноступенчатая ракета «Викинг» со взлетным весом в 7,5 тонны 24 мая 1954 года достигла рекордной высоты — 254 км. Ее полет длился 10 минут, а максимальная развитая ею скорость составляла 8880 км в час. Почти удвоил этот рекорд полет составной двухступенчатой ракеты, достигнувшей высоты 480 км. Где-то, в пределах уже разведанных ракетами высот скоро будет создан искусственный спутник Земли.
Такой выглядит Земля с высоты нескольких сотен км.
Чуткие пальцы радиолуча коснулись поверхности Луны и, отразившись, вернулись обратно.Дзета Возничего, — так называют одну из не очень ярких звезд в созвездии Возничего, одну из скромных рядовых звезд ночного неба. Вот что нам известно сегодня об этой звезде.
До далёкой звезды,
Обгоняя луч быстрого света,
Улетают мечты,
Вслед за ними умчатся ракеты.Н. Кутов
Исаак Ньютон первым объяснил, почему брошенный вверх камень падает обратно на Землю, и указал силу, которая двигает планеты.
Мысленно установив на вершине горы орудие, будем стрелять из него, все увеличивая пороховой заряд, а вместе с этим и скорость вылетающего снаряда. Все более пологой будет становиться его траектория, и, наконец, снаряд ляжет на круговую орбиту — превратится в искусственный спутник Земли. Дальнейшее увеличение скорости превратит круговую орбиту в эллиптическую, а затем, разорвав ее, отправит снаряд в безвозвратный космический рейс.
Явление кумуляции в стакане воды. Упавшая из пипетки капля создает на поверхности воды лунку (А), в которую устремляются со всех сторон струйки воды (Б), и в результате их столкновения крохотная капелька выбрызгивается на довольно значительную высоту (В).
Исторгнутый фантастической электропушкой снаряд устремился в небо.
«Я точно уверен, что и моя… мечта — межпланетное путешествие, — мною теоретически обоснованная, превратится в действительность… Я верю, что многие из вас будут свидетелями первого — заатмосферного путешествия».К. Э. Циолковский
Приговоренный к смерти, находясь в тесном каземате Петропавловской крепости, молодой ученый Николай Кибальчич обдумывал проект летательного аппарата, который позволил бы человеку разорвать оковы земного притяжения.
Константин Эдуардович Циолковский является основоположником астронавтики — науки о космических сообщениях.Независимо от Кибальчича, ничего не зная и не подозревая о его проекте, ту же идею — использовать для космических путешествий ракетный двигатель — выдвинул Константин Эдуардович Циолковский.
Детская игрушка — жестяной пропеллер, взлетающий с раскручиваемой катушки — вот первый предшественник современного самолета.
Увеселительная пороховая ракета — предшественник двигателей будущих космических кораблей.Циолковский вывел основную формулу движения ракеты. Анализ этой формулы показывает, что ракета в космическом пространстве может развить поистине беспредельную скорость. Но для этого она должна израсходовать очень много горючего.
Если температура в камере сгорания равна 2700°, скорость истечения теоретически может достичь 6500 метров в секунду; если ее поднять до 5700°, скорость истечения можно обеспечить в 11 400 метров в секунду.Конструктор задумчиво откладывает в сторону эту таблицу. Перед ним другая. Он смотрит на неумолимые колонки цифр:
Если при скорости истечения газов в 2000 метров в секунду мы захотим разогнать космический корабль до параболической скорости, но не допустим ускорения свыше 1,1g (около 11 метров в секунду за секунду), на каждый килограмм груза, которому мы придадим требуемую скорость, нам надо будет сжечь 143 тыс. килограммов горючего!Это, конечно, немыслимо! Конструктор решает ухудшить условия жизни экипажа, подвергнуть людей повышенному ускорению. Пусть будет ускорение 10g (около 100 метров в секунду за секунду). Конечно, людям не легко будет перенести такое ускорение, но, во-первых, он, конструктор ракеты, приложит все усилия для того, чтобы облегчить работу экипажа в этих условиях. Он сконструирует специальные гамаки, в которых экипаж будет лежать в это время, чтобы перегрузка равномерно распределялась по всему телу. Во-вторых, ведь время действия перегрузки очень сократится по сравнению с первым вариантом. И трудно сказать еще, что легче переносит человеческий организм — небольшую, но длительную перегрузку или большую, но кратковременную.
При той же скорости истечения газов горения, — гласит она, — равной 2000 метров в секунду, при допустимом ускорении 10g, на каждый килограмм полезного груза ракета должна сжечь 358 килограммов горючего.Это хотя и лучше, но еще ни в какой мере не устраивает конструктора. Он знает, что самый легкий бак, который сможет вместить 358 килограммов горючего, будет весить не один, а 30–35 килограммов! Ведь даже обыкновенное ведро, содержащее 10 килограммов воды, весит около килограмма!
Может быть, так будет выглядеть первый обитаемый искусственный спутник Земли. Он будет снабжен реактивным двигателем 1, парашютом 2 для торможения при спуске и выдвижными крыльями 3 для планирования. Герметическая кабина астронавта из прозрачного органического стекла 4 снабжена металлическими шторами для предохранения астронавта от ожогов солнечными лучами. Большую часть объема искусственного спутника занимают баки с горючим 5 и окислителем 6 для работы реактивного двигателя в случае необходимости увеличить заторможенную сопротивлением воздуха скорость полета, а также при посадке.Конструктор начинает выискивать возможности повышения скорости истечения газов. Для этого надо повысить температуру в камере сгорания, а значит, найти новые высококалорийные топлива. Это влечет за собой необходимость предусмотреть интенсивное охлаждение деталей двигателя, входящих в соприкосновение с горячими газами, в первую очередь камеры сгорания и сопла. А что если сделать их пористыми и сквозь эти поры подавать, продавливать внутрь жидкое горючее? Испаряясь на поверхности этих деталей, оно будет поглощать большое количество тепла и тем самым охлаждать их. И конструктор решается увеличить скорость истечения газов до 5000 метров в секунду. Таблица, которую он держит перед глазами, сообщает ему, что:
При скорости истечения газов в 5000 метров в секунду и допустимом ускорения в 10g для того, чтобы придать требующуюся космическую скорость 1 килограмму ракеты, надо сжечь 10 килограммов топлива.Соотношение весов получается как раз таким, как у ведра — металлического сосуда, наполненного жидкостью. Создать конструкцию тары с таким соотношением весов можно, — это будет тонкостенная жестяная бочка, наполненная горючим, но ни для двигателя, ни для пассажиров, ни для приборов ни грамма веса уже не останется. А ведь нельзя сжечь все топливо при взлете, надо его взять и с собой для посадки на планету и для возвращения на Землю. Это тоже полезный груз.
Вот как зависит количество топлива, необходимого для сообщения 1 кг массы космической скорости, от скорости истечения газов из сопла реактивного двигателя и допустимого ускорения.Отношение масс ракеты до взлета (ракеты с полным запасом горючего) и ракеты, набравшей уже требующуюся космическую скорость, получается при имеющихся у нас научно-технических возможностях таким, которое исключает возможность сооружения космического корабля. Железной логикой цифр конструктор доказал, что космический полет при существующем уровне развития техники невозможен.
Выгорело топливо в первой ступени, и она отцепилась, уменьшая массу ракетного поезда. Эта идея К. Э. Циолковского открывает реальную возможность космических сообщений средствами современной техники.Да, это так. И конструктором, впервые сделавшим все эти выкладки, может быть, не совсем в изложенной нами последовательности, был сам Циолковский.
Тесным строем взлетела по другому проекту К. Э. Циолковского космическая армада. На лету происходило переливание горючего в баки соседних ракет.
«Пассажир» тяжелой ракеты «ФАУ-2» — легкая ракета «Вак Корпораль» достигла рекордной высоты — свыше 400 километров.
Вслед за эрой аэропланов винтовых настанет эра аэропланов реактивных.К. Э. Циолковский
Семейство реактивных двигателей (снизу вверх): 1 — пороховые ракеты и сегодня применяющиеся как дополнительные двигатели при взлете тяжело нагруженных воздушных кораблей. 2 — турбокомпрессорный реактивный двигатель — самый распространенный двигатель современной скоростной авиации. Встречный воздух сжимается компрессором а; в него в камере сгорания б впрыскивается горючее; газы горения вращают турбину в и, вылетая через сопло г, создают реактивную силу. 3 — в прямоточном реактивном двигателе встречный воздух, пройдя решетку а, попадает в камеру сгорания б, и газы горения выбрасываются через сопло в. 4 — жидкостный реактивный двигатель — двигатель будущих космических кораблей. Горючее а и окислитель б подаются турбонасосами в в смесительную камеру г. Горючая смесь сгорает в камере д, и газы горения вырываются в сопло е. Для привода турбонасоса используется перекись водорода ж.Первые самолеты летали очень низко над землей — высота их подъема едва достигала нескольких десятков метров. К 1920 году «потолок» самолета поднялся до 4000 метров. Сегодня он превзошел 18 тыс. метров, хотя серийные самолеты, как правило, и не поднимаются на такую высоту.
Боевые пороховые ракеты — близкие родственники осветительных ракет — были могучим оружием советских летчиков в борьбе против фашистских оккупантов.Введение наддува обеспечило двигателю самолета возможность и в разреженных слоях атмосферы «дышать» уплотненным воздухом. И скорость самолета повысилась на добрых 150–200 километров в час.
Двигатели этих скоростных реактивных самолетов — ближайшие родственники двигателей будущих космических кораблей.
Так представляют себе некоторые ученые старт космического корабля. Целый ряд двигателей сменит он на пути в небо. Первоначальную скорость ему придает, сбросив его с наклонной эстакады, электрическая платформа. Турбореактивные двигатели, подвешенные под крыльями, пронесут корабль со все возрастающей скоростью сквозь плотные слои атмосферы. Затем включаются прямоточные воздушно-реактивные двигатели, а сменит их жидкостный реактивный двигатель, и только вторая ступень жидкостной ракеты отправится в космический рейс. Отработавшие двигатели и части космического корабля будут сбрасываться.
Вот он, жидкостный реактивный двигатель современной высотной ракеты. Такие же двигатели унесут в космическое пространство и первый межпланетный корабль.Но все же основным двигателем космического корабля ближайшего будущего станет жидкостный ракетный двигатель. Его идею выдвинул К. Э. Циолковский в 1903 году. Через 40 лет после этого жидкостный ракетный двигатель поднял ракету уже на высоту около 200 километров. Сегодня эта высота больше чем удвоена.
Проект грузовой ракеты-парома для двусторонней связи Земли с искусственным спутником. Три ее ступени имеют ряд аналогичных частей и устройств. К их числу относятся жидкостные ракетные двигатели 1, турбонасосы для подачи топлива 2, баки с перекисью водорода 3 для работы этих насосов, баки для горючего 4 и окислителя 5. Первая и вторая ступень снабжены парашютами для спуска 6. Первая ступень имеет хвостовое оперение для управления в атмосфере 7, третья ступень — несущие плоскости с рулями управления 8 для посадки на Землю при возвращении. Рубка управления 9 находится рядом с пассажирскими каютами и помещениями для багажа 10. Полезный груз этой ракеты составляет 25 тонн.Из этих баков трубопроводы ведут в камеру сгорания. В эти трубопроводы включены мощные насосы. Ведь свыше 125 килограммов топлива должны подать эти насосы в камеру сгорания за каждую секунду работы мотора. Приводятся они в движение от своего собственного двигателя — газовой турбины, работающей на перекиси водорода.
Несколько цистерн с топливом — заряд современной крупной высотной ракеты.
Настанет время, и в небо поднимутся сверхскоростные ракетные самолеты, работающие на атомном горючем. Вот одна из возможных схем работы такого двигателя. Воздух поступает в компрессор 1, и в него вводится урановая пыль. Из компрессора эта смесь поступает в реактор 2, состоящий из ряда графитовых сопел. В распыленном уране начинается ядерная реакция, температура смеси резко повышается, и она устремляется в циклон 3, где выделяется направляемая для дальнейшего использования по трубе 4 урановая пыль. А сжатый, нагретый до высокой температуры, воздух проходит газовую турбину 6 и попадает в сопло 5, создавая реактивную тягу.При расщеплении ядра атома урана осколки его движутся в разные стороны со скоростями в несколько десятков тысяч километров в секунду. Кинетическая энергия этих осколков переходит в тепловую, и металл в реакторе — так называют устройства, в которых искусственно осуществляются реакции распада ядер — нагревается до высокой температуры. Реактор приходится постоянно интенсивно охлаждать. Тепло, уносимое с охлаждающим реактор веществом, и является в настоящее время единственным, которое мы научились полезно использовать. Ни лучистой энергии, выделяющейся при расщеплении атомного ядра, ни кинетической энергии осколков ядра мы непосредственно ни улавливать, ни превращать в другие виды энергии для полезного использования еще не умеем.
Мы были узники на шаре скромном,
И сколько раз, в бессчетной смене лет,
Упорный взор Земли в просторе темном
Следил с тоской движения планет.В. Брюсов
Во время взлета, когда свинцовой тяжестью нальются тела астронавтов, они смогут только следить по приборам за ходом полета, за командами, отдаваемыми их товарищами на Земле.
Этой обезьянке выпала честь быть первым космическим путешественником. Одетая в полный костюм астронавта, она была единственным пассажиром ракеты, поднявшейся на высоту 50 километров.
Батареи термоэлементов, скрытые в этом оригинальном абажуре, вырабатывают электрический ток, питающий лампы радиоприемника.В конструкции корабля все тщательно продумано для того, чтобы обеспечить экипажу сносные температурные условия. Корпус корабля покрыт черной матовой краской, рассчитанной на то, чтобы поглощать большую часть солнечных лучей.
Если нагреть один из спаев и охладить другой, гальванометр покажет прохождение тока.
Схема работы простейшего фотоэлемента. Под действием солнечных лучей начинается переход электронов из слоя закиси меди 1 в чистую медь 2. Если теперь замкнуть цепь между сеткой 3 и медью, в ней обнаружится электрический ток.Для поддержания жизнедеятельности своего организма человек должен потреблять в сутки, при условии, что он занимается физическим трудом, около 140 граммов сухого белка, примерно такое же количество жиров, около 400 граммов углеводов, несколько граммов минеральных солей и витаминов. Кроме того, за сутки человек потребляет от 2 до 5 литров воды. Таким образом, суточная норма воды и пищи для каждого члена экипажа космического корабля составляет не менее 3–4 килограммов. К этому надо прибавить еще необходимый для дыхания человека кислород, затраты которого также составят, видимо, около 1 килограмма в сутки.
Схема устройства для очистки воздуха в космическом корабле от избытков углекислого газа и воды. Насос 1 качает холодильный агрегат через спиральную трубку 2, находящуюся в затененной кораблем части космического пространства. Подаваемый вентилятором 3 в шкаф холодильника воздух соприкасается с охлажденной трубкой 4 и на ней в виде инея осаждается углекислый газ и вода. Охлажденный воздух проходит через спиральную трубку 5, находящуюся на освещенной солнцем стороне космического корабля, и нагревается до комнатной температуры.Этот процесс можно моделировать. В колбу насыпают немного земли и проросшие семена растений, например гороха. Землю в меру увлажняют, отверстие колбы герметически закупоривают и переворачивают вниз горлышком. И этот изолированный в колбе мир ставят на подоконник.
В этой колбе — целый изолированный мир с полным кругооборотом всех веществ, необходимых для жизнедеятельности населяющих его растений и бактерий.Для полного кругооборота пищевых веществ «космические оранжереи», конечно, должны быть значительно больше по величине, но не так уже намного, как может показаться с первого взгляда.
Космический корабль 1, отправившийся в дальний рейс — это настоящая искусственная планетка, в которой осуществлен полный кругооборот всех веществ. Для регенерации воздуха и пищевых запасов служит оранжерея 2, связанная с основными помещениями корабля туннелем 3. Для создания искусственной тяжести как в жилых помещениях, так и в оранжерее вся система вращается вокруг общего центра тяжести, оставаясь постоянно обращенной прозрачной стенкой оранжереи перпендикулярно к лучам Солнца. Внизу схема движения питающей воды в оранжерее.Точно так же потребуются большие количества энергии и для обратного синтеза пищевых веществ.
Разрушения, которые может причинить космическому кораблю столкновение даже с небольшим метеорным телом, сравнимы с разрушениями, производимыми взрывом торпеды.А метеор летит в 10 раз быстрее. Встретившись на такой скорости с металлической обшивкой корабля, метеорное тело мгновенно останавливается. Вся кинетическая энергия его движения переходит в тепловую, от чего оно без остатка испаряется. Так же нагревается и испаряется часть обшивки корабля, подвергшаяся удару. Поскольку это происходит в неуловимо короткую долю секунды, образовавшиеся газы при очень высокой температуре не успевают расширяться, занимают тот же объем, какой занимала масса метеорного тела и участвовавшая в соударении часть обшивки корабля. В следующее мгновение газы начинают расширяться, раздирая обшивку, создавая во внутренних помещениях корабля взрывную волну сжатого воздуха, разрушающую все, что встретится ей на пути. Метеорное тело массой в 1 грамм, движущееся со скоростью 30 километров в секунду, может выбить из корпуса корабля 5-10 килограммов стального покрытия.
Двухслойная стенка — одно из возможных средств защиты от губительного обстрела космической артиллерии — ударов метеорных тел.
Одна из межпланетных дорог — траектория космического корабля, направленного для облета Луны, — уже проложенная смелой мыслью ученых в черных глубинах космоса.Дальность маршрута современного самолета не превышает нескольких тысяч километров, и выше четырех десятков тысяч километров она никогда не поднимется. Сорок тысяч километров как предельная дальность действия самолета обеспечит беспересадочный облет вокруг всего земного шара, по любому прямому маршруту.
«Человечество… сначала робко проникнет за пределы атмосферы, а потом завоюет себе все околосолнечное пространство».К. Э. Циолковский
Вот она, одна из разведчиц ионосферы, — ракета «Вак Корпораль», перед взлетом.Максимальная высота, достигнутая стратостатом, составляла 22 тыс. метров. На такую высоту поднялся в 1934 году советский стратостат «Осоавиахим». В 1935 году американский стратостат «Эксплорер-2» превзошел рекорд советского стратостата на 66 метров.
Так выглядит до предела нафаршированное приборами и механизмами грузовое отделение современной ракеты, используемой для исследования высотных слоев ионосферы.
Легкий толчок — и вторая ступень ракеты, отделившись от первой, рванулась ввысь.Капитан успокаивает нас. Он советует нам подальше откинуться на спинки, полулечь. Оказывается, в полете кресла будут сами устанавливаться в том же относительно силы тяжести направлении, что и сейчас, какие бы положения ни приняла ракета. Для этого кресла оборудованы гироскопами специальной конструкции. Эти гироскопы не то у каждого кресла свои, не то на все кресла один большой гироскоп. Переспросить мы не успели, капитан поднялся в рубку управления. Да и пора. До отлета осталось всего 2 минуты. Напряженно смотрим на часы: полторы минуты, минута, 30 секунд… Ровно… Спинки и сидения кресел с силой начинают давить нам в спину. А, это действие ускорения.
Приятно сидеть в удобном кресле, сохраняющем постоянное положение по отношению к направлению силы тяжести при любых положениях ракеты «Москва — Владивосток», и, находясь на расстоянии нескольких тысяч километров от Москвы и нескольких сотен километров от земной поверхности, смотреть передаваемый по телевизору со стадиона в Лужниках очередной международный матч.
Яростная сила кумулятивного заряда выбросила искусственный спутник — массивный стальной шар — параллельно земной поверхности.
Один из проектов автоматического искусственного спутника Земли. Спутник имеет вполне реальную ось, вокруг которой вращается таким образом, чтобы при своем движении вокруг Земли всегда оставаться обращенным к Солнцу одной стороной. Эта ось 1 служит и антенной радиопередатчика и помещением для аппаратуры: счетчика космических лучей 2, счетчика свободных электронов 3 и т. д. Обращенная к Солнцу сторона спутника представляет собой прозрачную линзу 4, концентрирующую лучи Солнца на поверхности гелиоэлектростанции 5. Кроме того, в ней есть отверстие для аппаратуры, исследующей ультрафиолетовое излучение Солнца 6 и рентгеновы лучи 7. Внутри спутника установлены аккумуляторы 8, радиопередатчик 9, шифрующая аппаратура 10. Запись показаний приборов ведется на магнитной ленте, растянутой на зубчатом ободе 11 с помощью записывающей головки 12. Обод вращает мотор 13 через редуктор 14.Эта забота о том, чтобы первый же искусственный спутник, созданный человеком, приобрел все формы движения, свойственные небесным телам, созданным самой природой, тоже, конечно, не случайна. Это обеспечивает искусственной луне устойчивость положения, гарантирует, что к лучам Солнца она всегда повернута одной стороной, точнее, одним полюсом. У этой крошки, как видим, есть даже полюса…
Один из проспектов космической гелиоэлектростанции. Зеркало 1 концентрирует солнечные лучи на парообразователе 2. Полученный в нем пар высокого давления поступает в паровую турбину 3, вращающую электрогенератор 4. Отработавший пар поступает в холодильник 5, конденсируется, и конденсат насосом 6 снова подается в парообразователь.По всей вероятности, космические строители будут привязаны к строящемуся искусственному спутнику тонкими, но прочными нейлоновыми канатами. Тяжести этих «оков» они не почувствуют — там нет тяжести, — а помешать зазевавшемуся астронавту улететь навсегда в космическое пространство они смогут. Ведь каждый неудачный толчок, случайное движение могут там вызвать стремительный полет. И через несколько минут человек, если он не будет привязан к массивному корпусу спутника, превратится в крохотную звездочку, стремительно удаляющуюся в мировое пространство. Попробуйте найти в нем вот так случайно «упорхнувшего» человека!
Проект искусственного спутника, собираемого из корпусов грузовых ракет, заброшенных с поверхности Земли на его траекторию. Собранные в гигантское кольцо, вращающееся вокруг своей оси, эти цилиндрические корпуса 1 являются складами, цистернами для горючего, жилыми помещениями и лабораториями. Центральная труба 2 служит космопортом для космических кораблей; помещения 3 рядом с ней используются как доки для ремонта и дозаправки космических кораблей. Под чешуйчатой поверхностью 4 из прозрачной пластмассы находится оранжерея. Рядом с искусственным спутником висят в пространстве гелиоэлектростанции 5. Количество вырабатываемой ими электроэнергии регулируется степенью поворота к лучам Солнца их зеркал (также сделанных из развернутых корпусов ракет). Здесь же находится гигантское зеркало 6 телескопа с обсерваторией 7. Для связи с Землей и космическими кораблями служат направленные антенны 8. Для выездов в пространство используются одно- и многоместные «космические велосипеды» 9.Когда работы будут закончены, здесь буйно зазеленеет растительность. Резкое изменение условий жизни, видимо, вызовет и резкое изменение форм растений. Космические садоводы предполагают, что здесь будут выращиваться невиданных на Земле величины, вкуса и питательности плоды…
«Наука достигла такого состояния, когда реальна посылка стратоплана на Луну…»А. Н. Несмеянов
Незримые радиолучи прочно свяжут космический корабль с земным пультом управления. Именно здесь, в окружении бесчисленных аппаратов, вычислительных машин, будут находиться ученые, инженеры, штурманы, управляющие полетом.…В большом затемненном зале, вдоль стен которого поблескивают стеклом и никелем какие-то щиты управления, сложные приборы, светятся тусклыми разноцветными огоньками сигнальные лампочки и флоуресцирующие стрелки приборов, у большого экрана телевизора стоят ученые.
Посадкой автоматической ракеты на Луну будут управлять по радио с Земли. Сначала радиосигналы ориентируют корабль соплом двигателя к Луне, а затем на нужном расстоянии от ее поверхности они включат для торможения движения реактивные двигатели.В разные стороны разлетаются осколки камня, поднимается облако пыли, летящей так же далеко, как и камни, но и так же быстро осаждающейся на почву: ведь атмосферы там нет. Корпус ракеты, почти на четверть зарывшийся в рыхлый, пористый грунт, безнадежно искалечен. Топливные баки смяты в гармошку. Только верхняя часть сохранила свою первоначальную форму.
Вот оно, внутреннее устройство автоматической танкетки. «Глазами» ее служит телеприемная камера 1 с прожектором 2, выбрасываемая из корпуса на штативе 3. «Органы чувств» танкетки — разнообразная измерительная аппаратура 4 — занимают носовой отсек. Специальное устройство 5 с буром 6 служит для взятия проб грунта. Радио-шлифующие устройства, радиотелепередатчики и радиоприемники 7 помещаются в средней части корпуса. Здесь же находится выдвижная антенна 8, двигатель внутреннего сгорания 9 и электромоторы 10 для привода гусениц 11 танкетки. Дополнительными источниками питания этих моторов и аппаратуры служат аккумуляторы 12, подзаряжаемые от термоэлектрогенераторов 13. Баки 14 наполнены горючим и окислителем для работы двигателя внутреннего сгорания.
Сидя в своей лаборатории на Земле, ученые получают все данные исследований, проведенных автоматической аппаратурой танкетки, видят на экране телевизора пейзаж Луны, управляют всей деятельностью своего механического разведчика.Космический корабль, который предстоит соорудить для полета на Луну с космического спутника, будет резко отличаться от рассматриваемых до сих пор ракет, предназначенных для полетов в космическое пространство со станции отправления на Земле.
Покинув измятый при посадке корпус ракеты, автоматическая танкетка потревожила своими гусеницами вековечную пыль Луны.Раз большие цистерны из-под топлива будут использованы для жилья экипажа на весь период полета, значит, они наряду с планером должны составить центральное ядро космического корабля. Их надо поставить рядом, притом лучше всего таким образом, чтобы из кабины планера можно легко перейти в эти цистерны.
Проект космического корабля, предназначенного для полета по маршруту: искусственный спутник Земли — искусственный спутник Луны — Земля. При полете с искусственного спутника Земли экипаж помещается в герметической кабине планера 1, а отделения цистерны 2 и 3 заполнены горючим и окислителем, затрачиваемыми при отлете на работу реактивного двигателя 4. Как только эти отделения освобождаются, экипаж превращает их в свои основные помещения. Для того, чтобы лечь на круговую орбиту вокруг Луны используется горючее и окислитель из баков 5 и 6, которые после этого отцепляются. Для того чтобы лечь на возвратный курс, сжигается топливо из баков 7 и 8. При входе в атмосферу Земли экипаж снова переходит в кабину планера, который отцепляется от остальных частей корабля и с помощью выдвижных крыльев производит планирующий спуск и посадку.Такое линейное размещение мы приняли тоже не без оснований. Ось направления действия реактивной силы работающего двигателя должна проходить через центр тяжести корабля, иначе он будет крутиться в космосе на месте, как крутится на воде корабль, если у него работает только один из двух рядом поставленных винтов. А обеспечить такое совпадение направления действия реактивной силы и положение центра тяжести легче всего, разметив все наши очень симметричные элементы корабля на одной оси симметрии. Какую форму должны иметь цистерны?
Самолеты-носители поднимают космический корабль в верхние слои атмосферы и сообщают ему часть требующейся скорости.
Притормозив скорость работой реактивного двигателя и истратив на это последние остатки горючего, астронавты отцепляют планер и начинают планирующий спуск сквозь атмосферу.Столь низкие температуры на Земле можно получить только искусственно, с помощью дорогих и сложных холодильных машин. При этих температурах основные газы, составляющие атмосферу нашей планеты, — азот и кислород — могут находиться в жидком виде. 280 градусов — таков температурный перепад между днем и ночью на Луне.
По наблюдениям Луны в телескоп мы можем представить себе, как выглядит ее поверхность. Как не похож этот ближайший к нам мир на нашу Землю!
Художник Н. М. КольчицкийОни становятся в круг, и легкий алюминиевый шест поднимается на почве Луны. А на нем — не колеблемое ветром, неподвижно висящее, но до слез волнующее окружающих — алеет полотно советского флага…
На мертвые камни Луны ступили первые астронавты. Развернуты надувные дома, соединенные надувными же коридорами из прозрачной пластмассы. Гелиоэлектростанция дает первый ток, установлена прочная радиосвязь с Землей. Наш вечный спутник стал обитаемым.
Первое жилище на Луне — клочок уюта на поверхности этого негостеприимного мира. Внутренняя обстановка его должна удовлетворить основным требованиям: быть легкой, компактной и удобной.
Уста премудрых нам гласят:
Там разных множество светов,
Несчетны солнца там горят,
Народы там и круг веков.М. В. Ломоносов
Загадочный сосед Земли — Марс. По всей вероятности, он будет первым после Луны небесным телом, на которое ступит нога астронавта с Земли.
Художник И. М. Кольчицкий
Раздается грохот. Корабль вздрагивает и отрывается от бетонного поля ракетодрома. Несколько мгновений — и, превратившись в тонкую стрелу, он исчезает в голубизне неба.
Фонтаны раскаленных газов — протуберанцы бушуют на поверхности Солнца. Брошенная в их водоворот Земля (кружок вверху) была бы подобна челноку, попавшему в главный поток Ниагары.
Гигантские вихри и бури непрерывно сотрясают могучую атмосферу Юпитера — первой планеты на орбиту которой вылетят астронавты, преодолев пояс астероидов.В величественном движении вокруг Солнца гигантскую планету сопровождает целая свита спутников. На ее небе сияют целых двенадцать лун. Среди них есть и спутники-великаны, не уступающие по величине нашей Луне и даже превосходящие ее. И есть спутники-крошки, которые, оказавшись в семье астероидов, почувствовали бы себя в своем кругу. Поперечники их составляют от 20 до 120 километров.
Окруженный матово-серебристым кольцом, Сатурн покажется будущим астронавтам дивным произведением ювелирного искусства, висящим на черном бархате неба.Ярко освещенный золотисто-желтый диск планеты, окруженный разноцветными мерцающими кольцами, на черном фоне неба кажется дивной драгоценностью, сделанной волшебным ювелиром.
…Мы на Плутоне. Солнце светит нам в спину, и легкая тень от корпуса гигантского корабля лежит на бесконечной сумрачной равнине, как дорога в неизвестное. Здесь — граница солнечной системы. За ней, там, дальше, распростерся бескрайний океан космического пространства. Но и его черную бездну пересекут когда-нибудь посланцы Земли, отправившиеся на разведку соседних звезд.Уран имеет пять спутников. Плоскости их орбит почти перпендикулярны к орбите планеты. О том, какие физические условия обнаружат будущие астронавты на их поверхностях, можно только догадываться.
Спасибо, что скачали книгу в бесплатной электронной библиотеке BooksCafe.Net
Оставить отзыв о книге
Все книги автора